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Abstract

While acquired chemoresistance is recognized as a key challenge to treating many types of

cancer, the dynamics with which drug sensitivity changes after exposure are poorly charac-

terized. Most chemotherapeutic regimens call for repeated dosing at regular intervals, and if

drug sensitivity changes on a similar time scale then the treatment interval could be opti-

mized to improve treatment performance. Theoretical work suggests that such optimal

schedules exist, but experimental confirmation has been obstructed by the difficulty of

deconvolving the simultaneous processes of death, adaptation, and regrowth taking place

in cancer cell populations. Here we present a method of optimizing drug schedules in vitro

through iterative application of experimentally calibrated models, and demonstrate its ability

to characterize dynamic changes in sensitivity to the chemotherapeutic doxorubicin in three

breast cancer cell lines subjected to treatment schedules varying in concentration, interval

between pulse treatments, and number of sequential pulse treatments. Cell populations are

monitored longitudinally through automated imaging for 600–800 hours, and this data is

used to calibrate a family of cancer growth models, each consisting of a system of ordinary

differential equations, derived from the bi-exponential model which characterizes resistant

and sensitive subpopulations. We identify a model incorporating both a period of growth

arrest in surviving cells and a delay in the death of chemosensitive cells which outperforms

the original bi-exponential growth model in Akaike Information Criterion based model selec-

tion, and use the calibrated model to quantify the performance of each drug schedule. We

find that the inter-treatment interval is a key variable in determining the performance of

sequential dosing schedules and identify an optimal retreatment time for each cell line which

extends regrowth time by 40%-239%, demonstrating that the time scale of changes in che-

mosensitivity following doxorubicin exposure allows optimization of drug scheduling by vary-

ing this inter-treatment interval.
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Author summary

Acquired chemoresistance is a common cause of treatment failure in cancer. The schedul-

ing of a multi-dose course of chemotherapeutic treatment may influence the dynamics of

acquired chemoresistance, and drug schedule optimization may increase the duration of

effectiveness of a particular chemotherapeutic agent for a particular patient. Here we pres-

ent a method for experimentally optimizing an in vitro drug schedule through iterative

rounds of experimentation and computational analysis, and demonstrate the method’s

ability to improve the performance of doxorubicin treatment in three breast carcinoma

cell lines. Specifically, we find that the interval between drug exposures can be optimized

while holding drug concentration and number of treatments constant, suggesting that this

may be a key variable to explore in future drug schedule optimization efforts. We further

use this method’s model calibration and selection process to extract information about the

underlying biology of the doxorubicin response, and find that the incorporation of delays

on both cell death and regrowth are necessary for accurate parameterization of cell growth

data.

Introduction

Cancer is the second most prevalent cause of death in the United States, and acquired che-

moresistance is a common cause of treatment failure in cancer [1,2]. While many studies have

investigated the biochemical mechanisms of chemoresistance, predicting the onset of resis-

tance and the population dynamics of sensitive and resistant cells remains a challenge [3–6].

Early chemotherapy treatment schedules, based on the approach of maximally-tolerated

dose to achieve maximal killing of tumor cells, assumed a homogenous, exponentially growing

cell population [7,8]. Subsequent studies have pointed to the significance of intratumor hetero-

geneity in cell growth rate and drug sensitivity [9–18]. Norton and others established that

tumor kill is proportional to growth rat [19–21], and adjuvant chemotherapy schedules for

breast cancer were revised to decrease the interval of therapy for fast-growing TNBC [22–24].

Other studies point to metronomic therapy and adaptive therapy as potential improvements

for breast cancer scheduling [25–29].

Mathematical modeling of drug responses has developed optimal solutions for drug dosing

under a variety of model assumptions [30–34], highlighting the opportunity to improve cancer

treatment by optimizing drug schedules. However, these efforts have generally been purely

theoretical. Under the necessarily simplified assumptions of these drug sensitivity models, it is

possible to find a true mathematical optimum, but these studies have not explored the magni-

tude or form of deviation between their models and experimental observations. This reveals a

need for methods to experimentally test the response to drug schedules, and to use those

experimental results to inform and calibrate models of drug response in cancer. Robust predic-

tive models of drug response are a necessary step towards the ultimate goal of patient-specific

predictive models of therapy-response and relapse.

A challenge in modeling chemoresistance is that the state of drug sensitivity is often repre-

sented as binary–sensitive or resistant. Clinically, resistance is usually inferred at very coarse

time intervals–a patient is retrospectively assessed as sensitive or resistant to a course of treat-

ment as a whole. In in vitro work, cell lines are labeled as sensitive or resistant as well, based on

their stable drug sensitivity [35,36]. This approach may obscure key underlying characteristics

of the system if drug sensitivity is heterogeneous in the cancer cell population. In addition,
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cells may change drug sensitivity over time or in response to environmental conditions, adding

temporal heterogeneity [37–42]. The consequence is that cells display a distribution of

responses to drug exposure and this distribution may vary with time [43–51]. Experimental

work describing the distribution of drug sensitivity in cancer cell populations, and the tempo-

ral changes arising from cell plasticity, is key to understanding drug resistance at the popula-

tion level.

In this work, we seek to quantify the dynamic changes in drug sensitivity following treat-

ment to iteratively optimize treatment schedules in a series of in vitro experiments subjecting

three breast cancer cell lines to a series of pulsed drug perturbations which vary in drug con-

centration, inter-treatment interval, and number of serial drug exposures. Long-term auto-

mated time-lapse microscopy enables quantitation of population dynamics in multiple

replicates, doses and regimens over days to weeks. Here we measured up to 12 individual cul-

ture wells in 3 cell types treated with a range of 9 doses and 13 regimens.

By calibrating the resulting data to a mathematical model, we quantify the distribution of

the underlying populations with respect to model parameters of interest including resistant

fraction, relapse growth rate, and sensitive cell death rate. Additionally, we characterize the

dynamics of both the relapse and dying populations. In this study, we sought to capture the

fact that sensitive cells do not respond to drug treatment by immediately undergoing cell death

and resistant cells do not respond by continuing to proliferate at the same rate as untreated

cells. Rather, the processes of cell death, cell cycle arrest, and cell growth after treatment are

complex and these time scales may overlap—with some cells continuing to die in response to

drug treatment, while others are simultaneously recovering from a period of arrest and begin-

ning to proliferate.

Model selection is used to identify three phenomenological models which vary in the

dynamics defining cell growth and death in treated populations, and which can be used to

parameterize the data. Time-lapse microscopy data is used to calibrate the three phenomeno-

logical models, and select the model which best characterizes the data. The optimal model is

then used to quantify the impact of the tested drug schedules on cancer cell population, and

identify schedules with superior performance. This demonstrates a method for optimizing

drug schedules using mathematical models of drug sensitivity which are experimentally cali-

brated using high throughput in-vitro experiments. This method could be extended to addi-

tional drugs, drug combinations, and cancer types.

Results

Model description

We used a mathematical model, described by a system of ordinary differential equations,

which treats cancer cell population dynamics as a process consisting of a decreasing drug-sen-

sitive subpopulation of tumor cells, and an independently growing drug-resistant subpopula-

tion. This model has successfully described tumor dynamics in non-small cell lung cancer,

melanoma [52], multiple myeloma [53], and ovarian cancer [54]. After exposure to drug, the

net fitness of the drug-sensitive (S) cells is represented in terms of an exponential decay or

“tumor cell kill” rate k, and the net fitness of the resistant (R) cancer cells as an exponential

growth rate gr> 0, and the initial fraction of drug-resistant cells by 0� fr� 1. Additionally,

the resistant cancer cells may experience a period of proliferation arrest tr� 0 (Fig 1A). The R
and S designations are solely with respect to the specific drug exposure being examined, and

are not intended to specify any particular mechanism of action. To analyze the response of a

population of S and R cells to drug treatment, we use a system of two ordinary differential Eqs

(1 and 2) coupled by the total cell number (Eq 3) to describe the dynamics of the S and R
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subpopulations.

dR
dt
¼ grR 1 �

N
Nmax

� �

H t � trð Þ ð1Þ

dS
dt
¼ � k tð ÞS ð2Þ

N ¼ Rþ S ð3Þ

Fig 1. Schematic illustration of model structures with curves for total cell number (black) partitioned into resistant (red) and sensitive (green)

fractions. Regions of the curves are marked to show the effects of key model parameters (A). The effects of three different models of k are shown for model 1

with an exponential time delay on k (B), model 2 with a linear time delay on k (C) or model 3 with no time delay on k (D).

https://doi.org/10.1371/journal.pcbi.1009104.g001
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Initial conditions are specified using the resistant fraction, fr, in Eqs 4 and 5. H(x) is the

Heaviside step function, which is 0 for negative values of the argument and 1 for positive val-

ues of the argument.

Rðt0Þ ¼ frN0 ð4Þ

Sðt0Þ ¼ ð1 � frÞN0 ð5Þ

To better understand how growth and death dynamics impact drug sensitivity of the overall

cell population, we use automated image analysis of time lapse microscopy data to calibrate

parameters (Table 1) for three families of phenomenological models of the population-level

drug response. Resistant cells experience a period of growth arrest, tr, followed by logistic

growth at rate, gr. Sensitive cells die at rate k, which is subject to variation in the doxorubicin

response [55], and three models for k are considered: 1) a time-delayed model of k, such that

the value varies between cell growth at the initial growth rate of g0 and cell death at a maximum

rate of kd with exponential decay from g0 to kd at a time constant of td (Eq 6) (Fig 1B), 2) a

time-delayed model of k such that the value varies linearly between cell growth at the initial

growth rate of g0 and cell death at a maximum rate of kd over a total time of td (Eq 7) (Fig 1C),

3) a constant value of k (Eq 8, Fig 1D). Models 1 and 2 each include 6 total parameters, while

the simpler model 3 includes 4.

k ¼ kd � g0 þ kdð Þexp �
t
td

� �

ð6Þ

k ¼ kd � g0 þ kdð Þ 1 �
t
td

� �

H td � tð Þ ð7Þ

k ¼ kd ð8Þ

Model 1 represents a case in which cells transition from proliferating to dying probabilisti-

cally after treatment. At the time of treatment, the cell population is still proliferating (repre-

sented in the model as a negative net death rate for this cell compartment). The probabilistic

behavior of individual cells, when evaluated over the cell population, results in a smooth tran-

sition in the net death rate from proliferation to death and approaches the maximum value of

kd exponentially at a time constant of td. Model 2 represents a case where cells take time, td, to

halt proliferation, again transitioning from initially proliferating at a rate of g0 at the time drug

exposure begins, to an eventual maximum death rate of kd. Model 3 represents the simplest

Table 1. Summary of model parameters. Parameters were either calibrated from growth data (see Methods - Model

Calibration) or determined from longitudinal cell growth data (see Methods - Quantification of tr).

Symbol Model Parameter Description Parameter Assignment

fr Resistant fraction Calibrated

gr Post-treatment growth rate Calibrated

tr Proliferation delay Measured via clustering analysis

kd Sensitive cell death rate Calibrated

td Time constant for death delay Calibrated

g0 Pre-treatment growth rate Calibrated

Nmax Carrying capacity Calibrated

https://doi.org/10.1371/journal.pcbi.1009104.t001
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case with the minimum number of parameters; here the population responds to drug exposure

rapidly enough on the time scale of the experiment for transition time to be negligible. These

are nested models, and we will evaluate the need for the additional parameters, which increase

the complexity of the models, using model selection criteria when fitting the data to the

models.

Model identifiability

To test the ability of our modeling framework to accurately extract parameter values and select

among models, each model within the family described above was used to calibrate simulated

data. This model family includes three sets of assumptions concerning the form of the sensitive

cell death rate k, which are described as models 1, 2, and 3. Independently, the proliferation

delay tr can be zero or non-zero, and if non-zero, tr can be calibrated or given as input. Finally,

the carrying capacity Nmax can be calibrated or fixed. Model identifiability techniques were

used to investigate the ability of each of the 18 models that these assumptions generate to

extract information from simulated data sets (see Text A in S1 File). A set of three models

varying only in the handling of the sensitive cell death rate were identified, which demon-

strated the greatest ability to extract parameter values from simulated data sets with known

ground truth (Table 2).

A key finding from this model identifiability work was that if a proliferation delay is present

in the ground truth model (tr 6¼ 0), the proliferation delay must be given as model input to

extract accurate parameter values. The question of whether tr is in fact non-zero must be

resolved experimentally, as computational work alone proved unable to determine this in the

analysis stage. Examination of the raw data demonstrated that the period of proliferation

arrest, tr, can be non-zero, and in some cases is substantial (Fig 2).

The Akaike information criterion [56,57] (AIC) was applied to the calibrations generated in

this model identifiability analysis to test its ability to identify the underlying model structure in

cases where the ground truth is known independently. When the AIC is computed for three

otherwise equivalent models which vary in the form of k, it selects the model which matches

the ground truth of the simulated data in 97% of cases where there is no death delay, in 87% of

cases if the death delay has an exponential form, and in 84% of cases when the death delay has

a linear form. In each case, the correct model is identified in a majority of simulated data sets,

demonstrating the utility of the AIC at identifying the model which best matches the ground

truth.

Quantification of long term population level response

To determine the dynamics of the long-term cell population response to doxorubicin, breast

cancer cell populations were subjected to one to five sequential doxorubicin exposures, with

the drug concentration, interval between drug exposures, or number of drug exposures

allowed to vary. Time lapse microscopy and automated image analysis was used to quantify

the cell number throughout the treatment period and up to four weeks after the final dose.

Table 2. Summary of model assumptions in models selected for further analysis.

Model Assignment of tr, proliferation delay in R cells k, death delay in S cells Nmax

1 known and given as input Exponential Calibrated

2 known and given as input Linear Calibrated

3 known and given as input None Calibrated

https://doi.org/10.1371/journal.pcbi.1009104.t002
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The long term response to a 24 hour doxorubicin pulse varies not only with drug concen-

tration (Fig 3A, 3D, and 3G), but also with the cell population’s history of previous exposure,

even if the total dose delivered remains constant (Fig 3B, 3C, 3E, 3F, 3H, and 3I). Population

behavior varies over time, and the response observed at any single time point (such as 48 or 72

hours, which are frequently chosen as endpoints for single time-point observations) does not

accurately characterize the overall dynamic response. Visual assessment of these cell number

curves offers some intuition on the relative strength of the drug treatments: A cell population

that is sensitive to a drug treatment may manifest in a curve that dips to a deeper minimum, or

takes longer to resume net population growth, or shows slower population growth over the

long term. As expected, for a single administration of doxorubicin, these effects of treatment

increase with dose (Fig 3A, 3D, and 3G). When multiple doses of the same concentration are

administered, the total amount of drug increases with the number of exposures; this generates

the similarly intuitive result that the impact of the treatment increases when going from one

treatment to two sequential treatments (Fig 3C, 3F, and 3I).

When the total drug exposure for each treatment group is held constant while the interval

between the two exposures is varied, the cell population response curves vary considerably

(Fig 3B, 3E, and 3H). This indicates that the drug sensitivity of all three cell lines varies

dynamically, such that the timing of a second drug exposure has a profound effect on the effec-

tiveness of the second treatment. While these observations can be made on a qualitative level

from the cell number curves, calibrating these experimental results to the models discussed

above allows for quantitative investigation of the variation in response.

Fraction of non-recovering replicates

Under some treatment regimens, we observe a bifurcation in the response: some replicate cultures

recover proliferative capacity during the experiment, while others do not (and therefore exhibit

only cell death throughout the experiment). This necessitates split handling of the analysis as well,

since the resistant population properties cannot be obtained in cases where no cells were resistant

to the treatment. The percentage of replicate cultures which do not recover in each treatment

group is shown in Fig 4, and these wells are excluded from the analysis of resistant cell popula-

tions. This is accomplished by fixing fr and gr at 0 when fitting non-recovering replicates, and by

performing further analysis of resistant populations using only the fitted parameters from recover-

ing replicates. This allows us to extract information about the sensitive population from non-

recovering replicates without contaminating analysis of the resistant population.

Fig 2. Micrograph example illustrating doxorubicin induced proliferation delay. In this example demonstrating a doxorubicin induced proliferation delay,

after exposure to 150 nM doxorubicin at time 0 (A) MCF7 cells stop proliferating and remain in arrest for 315 hours. At 14 days (B), cells have died off in the

intervening time, and proliferation has not occurred, and at 21 days (C), proliferation has produced a small patch of cells indicated by the red arrow;

proliferation then continues and produces a patch of hundreds of cells by 28 days (D). Untreated cells grow to confluence in approximately four days.

https://doi.org/10.1371/journal.pcbi.1009104.g002
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Although this phenomenon hinders analysis of some resistant cell properties, it also reveals

which treatment regimens are capable of eliminating the entire experimental cancer cell popula-

tion. The bifurcation indicates that these treatments should not be assumed to be completely

Fig 3. Cell population response to doxorubicin regimens. Population level response to 24 hour doxorubicin exposures is quantified as doxorubicin

concentration varies in the MCF7 cell line (A), the BT474 cell line (D), and the MDA-MB-231 cell line (G), as the interval between two 24 hour doxorubicin

exposures varies at 75 nM in the MCF7 cell line (B), at 35 nM in the BT474 cell line (E), and at 200 nM in the MDA-MB-231 cell line (H), and as the number of

sequential 24 hour doxorubicin exposures varies at a two day interval and 75 nM in the MCF7 cell line (C), at a zero day interval (continuous exposure) and 35

nM in the BT474 cell line (F), and at a two day interval and 200 nM in the MDA-MB-231 cell line (I). Each curve represents the average of six (A, D, G) or 12

(B, C, E, F, H, I) replicate samples, and 95% confidence intervals are marked by the shaded regions. All curves are aligned such that t = 0 is the beginning of the

final drug exposure for that treatment group.

https://doi.org/10.1371/journal.pcbi.1009104.g003
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Fig 4. Percentage of non-recovering replicate cell populations. The percentage of replicate cultures which did not recover during the course of the

experiment is shown as doxorubicin concentration varies in the MCF7 cell line (A), the BT474 cell line (D), and the MDA-MB-231 cell line (G), as the interval

between two 24 hour doxorubicin exposures varies at 75 nM in the MCF7 cell line (B), at 35 nM in the BT474 cell line (E), and at 200 nM in the MDA-MB-231

cell line (H), and as the number of sequential 24 hour doxorubicin exposures varies at a two day interval and 75 nM in the MCF7 cell line (C), at a zero day

interval (continuous exposure) and 35 nM in the BT474 cell line (F), and at a two day interval and 200 nM in the MDA-MB-231 cell line (I). Each value is the

percentage of 6 (A, D, G) or 12 (B, C, E, F, H, I) replicates.

https://doi.org/10.1371/journal.pcbi.1009104.g004
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effective against the cancer cell population; rather, it is sufficient for cells that are resistant to the

treatment in question to be rare enough in the population as a whole that the initial population of

approximately 2,000 seeded cells is too low to ensure that such a resistant cell will be present.

Despite this caveat, these conditions do represent the practical limits of treatment regimens that

can be investigated in the 96 well format. In the MCF7 cell line, doxorubicin concentrations of

125 nM or higher may result in non-recovering replicates (Fig 4A), and two or more sequential

treatments at 75 nM may result in non-recovering replicates (Fig 4C). In the BT474 cell line, a

doxorubicin concentration of 120 nM resulted in no recovering wells (Fig 4D), and two or more

sequential exposures to 35 nM doxorubicin resulted in some non-recovering wells (Fig 4F). Simi-

larly, in the MDA-MB-231 cell line, doxorubicin at a concentration of 1 μM (Fig 4G) or three or

more exposures to 200 nM doxorubicin (Fig 4I) may result in non-recovering replicates. While

the concentration thresholds vary from cell line to cell line, in each of these cases the fraction of

non-recovering wells increases with the total drug exposure within a cell line.

When the inter-treatment interval is varied with the total drug exposure held constant, we

find that the fraction of non-recovering wells peaks in the MCF7 cell line at 75% (nine repli-

cates out of 12) with a two day interval (Fig 4B), then declines to 0% at intervals of 10 or more

days. In the BT474 cell line, 8% (one replicate out of 12) fails to recover in the zero interval

(continuous treatment) group, with all wells recovering at longer intervals (Fig 4E). In the

MDA-MB-231 cell line, the fraction of wells which do not recover peaks at 50% (six out of 12

replicate wells) at an interval of 2 or 4 days, and declines at longer intervals (Fig 4H). In each

cell line this again suggests that the drug sensitivity of these populations varies dynamically

over this period of approximately two weeks after an initial drug exposure.

Proliferation delay, tr
The model identifiability analysis demonstrates that, if a period of growth arrest is present in

experimental data, then it must be incorporated into the growth model to obtain accurate

parameter values via model calibration (Text A Figure C in S1 File). Growth arrest does occur

under some of the treatment regimens investigated in this series of experiments. Density based

clustering analysis using DBSCAN [58] with manual correction for common errors is used to

identify the restart of proliferation in replicate cultures which experience a period of growth

arrest (Fig 5). When the concentration of doxorubicin in a single exposure is varied, a thresh-

old is observed with concentrations of 50 nM or higher inducing growth arrest in the MCF7

cell line (Fig 5A), concentrations of 42.5 nM of higher inducing growth arrest in the BT474

cell line (Fig 5D), and concentrations of 150 nM or higher inducing growth arrest in the

MDA-MB-231 cell line (Fig 5G). In the MCF7 cell line, when the interval between two 75 nM

doxorubicin exposures is varied, the period of growth arrest decreases as the inter-treatment

interval increases (Fig 5B), with intervals of 0–4 days experiencing over 200 hours of growth

arrest and with some replicates at intervals of 8 or more days experiencing no growth arrest at

all; since an initial 75 nM exposure results in approximately 125 hours of growth arrest, this

suggests dynamic variation in drug sensitivity over this period of approximately two weeks.

Likewise, in the BT474 cell line, as the interval between two 35 nM doxorubicin exposures is

varied the period of growth arrest decreases with intervals of 10 days or longer resulting in no

growth arrest (Fig 5E). Similarly, when the MDA-MB-231 cell line is exposed to two 200 nM

drug pulses, the period of growth arrest is elevated for at least 10 days, with a peak of over 400

hours with a two day interval between exposures (Fig 5H). When the number of sequential

drug exposures at a two day interval is varied, the period of growth arrest increases signifi-

cantly after a second treatment in the MCF7 cell line (Fig 5C), the BT474 cell line (Fig 5F),

and the MDA-MB-231 cell line (Fig 5I).
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Model selection

AIC values are calculated for each replicate culture for models 1 (exponential death delay), 2

(linear death delay), and 3 (no death delay); the AIC allows comparison of the goodness of fit

for models with varying numbers of free parameters. Across 648 replicate cultures calibrated

Fig 5. Proliferation delay, tr varies with dosing regimen. Length of growth arrest of resistant cells (tr) is displayed as a Tukey box-and-whiskers plot as

doxorubicin concentration varies in the MCF7 cell line (A), the BT474 cell line (D), and the MDA-MB-231 cell line (G), as the interval between two 24 hour

doxorubicin exposures varies at 75 nM in the MCF7 cell line (B), at 35 nM in the BT474 cell line (E), and at 200 nM in the MDA-MB-231 cell line (H), and as

the number of sequential 24 hour doxorubicin exposures varies at a two day interval and 75 nM in the MCF7 cell line (C), at a zero day interval (continuous

exposure) and 35 nM in the BT474 cell line (F), and at a two day interval and 200 nM in the MDA-MB-231 cell line (I). The number of replicates in each group

varies between 3 and 12; all replicates in which recovery is observed are included (see Fig 4).

https://doi.org/10.1371/journal.pcbi.1009104.g005
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to models 1, 2, and 3, the AIC indicates that model 1 is optimal in 382 replicates (59.0%),

model 2 is optimal in 129 replicates (19.9%), and model 3 is optimal in 137 replicates (21.1%).

This suggests that model 1 achieves the best overall performance across the range of conditions

analyzed; however, models 2 and 3 are selected in a substantial minority of cases.

Although model 1 is able to capture cell growth dynamics in all three cell lines (Fig 6), the

ability of each model to recapitulate data varies between replicates. In the example MCF7 repli-

cate (Fig 6A), model 1 has ΔAICs of 0.9 compared to model 2 and 81.3 compared to model 3,

indicating that models 1 and 2 performed similarly in this case, while model 3 was substantially

worse. In the example BT474 replicate (Fig 6B), model 1 has ΔAICs of 86.6 compared to

model 2 and 332.8 compared to model 3, indicating that model 1 outperforms both models 2

and 3. In the MDA-MB-231 example replicate, model 1 has ΔAICs of -0.02 compared to

model 2, indicating that this is one of the replicates in which model 2 outperforms model 1

(although the performance is quite similar, indicated by the very small ΔAICs of -0.02), and

2.8 compared to model 3, indicating that model 1 outperforms model 3. A more detailed inves-

tigation of the structure of these model preferences is available in Text C Figures E and F in

S1 File). Critical time projections and model validation results are constructed using model 1.

Model validation

A leave-one-out cross validation [59] is used to test the predictive capability of model 1. Across

143,093 total points evaluated, 80.6% fall within the 95% confidence interval. These results are

summarized in Table 3, with a more detailed breakdown in Text D Table D in S1 File.

Model performance varies between cell lines and with recovery status. Model 1 performs

best in the MCF7 cell line (88% of data in the 95% confidence interval), less well in the

MDA-MB-231 cell line (80.7% of data in the 95% confidence interval), and worst in the BT474

cell line (75.1% of data in the 95% confidence interval). Wells which recover are better mod-

eled (89.8% of data within the 95% confidence interval) than wells which do not (62.5% of data

Fig 6. Examples of model fitting demonstrate the ability of model 1 to capture long term dynamics. Examples of model fitting are shown for a single

replicate culture in the MCF7 (A), BT474 (B), and MDA-MB-231 (C) cell lines. The curve represents a response to the doxorubicin concentration used in serial

treatment within the cell line– 75 nM for the MCF7 line, 35 nM for the BT474 cell line, and 200 nM for the MDA-MB-231 cell line. Data is shown as open blue

circles, while the best-fit curve for model 1 (the total number of sensitive and resistant cells) is shown in black, with the resistant and sensitive compartments

shown in red and green respectively.

https://doi.org/10.1371/journal.pcbi.1009104.g006
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within the 95% confidence interval). These results indicate that model 1 captures a significant

portion (but not all) of the variation in the population level response to doxorubicin.

Critical time projection

After doxorubicin treatment, the cancer cell populations varied in rate of cell number decrease,

lag time to net re-growth, and re-growth rate (Fig 3). Some cell populations remain quiescent

and never initiate re-growth within the time of the experiment (Fig 4). To allow consistent

comparison across the range of conditions explored in these experiments, we define a cell pop-

ulation as having recovered from the drug perturbation at the time, referred to as the critical

time, when the population reaches twice the initial cell number for that replicate culture. In

some cultures, regrowth to twice the original cell number is not observed before the end of the

experiment. To enable the inclusion of these results, we use model projections of the critical

time based on the best-fit curve of the optimal model identified by model selection.

As the concentration of doxorubicin in a single exposure increases, the critical time

increases in all three cell lines (Fig 7A, 7D, and 7G). When the interval between two 75 nM

doxorubicin exposures is varied in the MCF7 cell line (Fig 7B), and when the interval between

two 200 nM doxorubicin exposures is varied in the MDA-MB-231 cell line (Fig 7H), a peak in

the critical time is observed for both cell lines at a two day inter-treatment interval; this sug-

gests that the cell population is sensitized to retreatment at this time. This result is consistent

with the observation that 9/12 replicate cultures treated with this regimen in the MCF7 cell

line and 6/12 replicate cultures treated with this regimen in the MDA-MB-231 cell line never

recover (Fig 4B and 4H), and with the observation that the period of growth arrest is elevated

at this time (Fig 5B and 5H). The maximum elevation in critical time to an average of 112.6

days in the MCF7 line and 55.8 days in the MDA-MB-231 line represent increases of 239%

and 40% when compared to critical times obtained after a second treatment after 16 days or 10

days, respectively. When the interval between two 35 nM doxorubicin exposures is varied in

the BT474 cell line, the critical time is elevated at intervals of zero to eight days (Fig 7E), which

is consistent with the elevated period of growth arrest observed in these replicates (Fig 5E).

The maximum elevation in critical time to an average of 46.0 days in the BT474 cell line repre-

sents an increase of 46% when compared to the average critical time after a second treatment

at 16 days. When the number of sequential treatments with 75 nM doxorubicin and a two day

inter-treatment interval in the MCF7 cell line is varied, the critical time increases on a second

Table 3. Leave-one-out cross validation. The performance of model 1 at predicting data excluded from the training

set is broken down by cell line and whether the replicate culture recovered or not (see Fig 4).

Condition Points Evaluated Within 95% CI

Overall 143093 80.6%

All cell lines, recovering wells 94824 89.8%

All cell lines, dying wells 48269 62.5%

MCF7 cell line, total 42442 88.0%

MCF7 cell line, recovering wells 25992 94.5%

MCF7 cell line, dying wells 16450 77.7%

BT474 cell line, total 56923 75.1%

BT474 cell line, recovering wells 41391 87.3%

BT474 cell line, dying wells 15532 42.4%

MDA-MB-231 cell line, total 43728 80.7%

MDA-MB-231 cell line, recovering wells 27441 89.1%

MDA-MB-231 cell line, dying wells 16287 66.4%

https://doi.org/10.1371/journal.pcbi.1009104.t003
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Fig 7. Critical time projections. Critical time is estimated based on the best fit to model 1 for each replicate culture in the MCF7 cell lines and shown as a

Tukey box-and-whiskers plot as doxorubicin concentration varies in the MCF7 cell line (A), the BT474 cell line (D), and the MDA-MB-231 cell line (G), as the

interval between two 24 hour doxorubicin exposures varies at 75 nM in the MCF7 cell line (B), at 35 nM in the BT474 cell line (E), and at 200 nM in the

MDA-MB-231 cell line (H), and as the number of sequential 24 hour doxorubicin exposures varies at a two day interval and 75 nM in the MCF7 cell line (C), at

a zero day interval (continuous exposure) and 35 nM in the BT474 cell line (F), and at a two day interval and 200 nM in the MDA-MB-231 cell line (I). The

number of replicates in each group varies between 3 and 12; all replicates in which recovery is observed are included. The 95% confidence interval on the mean

is shown by the shaded region.

https://doi.org/10.1371/journal.pcbi.1009104.g007
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treatment (Fig 7C); the critical time for a third treatment cannot be obtained because no repli-

cates treated with this regimen recovered (Fig 4C). When the number of sequential treatments

with 35 nM doxorubicin and no inter-treatment interval is varied in the BT474 cell line, the

critical time increases for the second and third treatment (Fig 7F), and cannot be obtained for

the fourth and fifth treatment because too few replicate wells recovered. Similarly, when the

number of sequential treatments with 200 nM doxorubicin and a two day inter-treatment

interval is varied in the MDA-MB-231 cell line, the critical time increases after a second and

third treatment, and cannot be obtained for the fourth treatment because no replicates treated

with that regimen recovered (Fig 5I).

Discussion

The use of longitudinal monitoring via time-lapse microscopy allowed us to implement and

compare dynamic models of drug sensitivity. This allowed us to identify conditions in which a

model incorporating a delay on sensitive cell death is preferred over the more common, sim-

pler model, and to determine that across the range of conditions tested, a model describing

that delay with an exponential time constant performs best. Additionally, our model selection

work identified the fraction of resistant cells (fr) and the proliferation delay (tr) as computa-

tionally non-separable. Quantification of tr via automated clustering analysis confirmed the

existence of a delay in proliferation under some conditions. Incorporating these two time

delays removed sources of systematic error and allowed extraction of more accurate values for

key model parameters such as the resistant fraction and post-recovery growth rate via

calibration.

We identified transient changes in doxorubicin sensitivity following an initial doxorubicin

exposure. Inter-treatment interval proved to be an optimizable factor in drug scheduling, with

retreatment during the window of transient sensitivity increasing the total time to population

doubling by 239% in the MCF7 line, 46% in the BT474 line, and 40% in the MDA-MB-231

line, compared to treatment with an identical total amount of drug with an interval such that

drug sensitivity had stabilized. Because both drug concentration and number of sequential

treatments tend to be more thoroughly explored in clinical application, inter-treatment inter-

val represents an additional dimension on which drug dosing schedules can be optimized, and

this may represent an opportunity to further improve the effectiveness of chemotherapeutic

treatment in the clinic. In addition to extending the time to population doubling, treatment at

the optimal time actually resulted in elimination of the cancer cell population in 9/12 replicate

cultures in the MCF7 cell line, 1/12 replicate cultures in the BT474 cell line, and 6/12 replicate

cultures in the MDA-MB-231 cell line. A number of hypotheses could explain the lesser rela-

tive improvement seen in the BT474 cell line, but it is likely that this results at least partly from

the difference in the relative dose range used in this cell line; in both the MCF7 and

MDA-MB-231 cell lines, the inter-treatment interval and serial dosing experiments were car-

ried out at drug concentrations that resulted in a proliferation delay (tr>0), while in the BT474

line these experiments were carried out at a dose that did not consistently produce a prolifera-

tion delay. This suggests that the threshold for proliferation delay could play a key role in

determining treatment effectiveness. It is also plausible that differences between the cell lines

play a role in the differences we observed as well, and additional experimentation would be

necessary to determine the relative importance of these factors. The optima identified for these

cell lines did not depend on any single model parameter; they result from the interaction of all

three relevant parameters, each of which changes dynamically with a different characteristic

time.
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In order to compare the performance of treatments varying in the rate of cell number

decrease, lag time to net re-growth, and re-growth rate, we utilized the critical time metric,

defined as the time at which a cell population reaches double its initial population. This defini-

tion prioritizes the long term regrowth of a culture over its immediate response; for example, a

culture which experiences a small decline in total population, but very slow regrowth, could be

identified as having a longer recovery time than a culture which experiences a steep drop in

population but very rapid regrowth. Utilizing a definition of cancer cell recovery or progres-

sion based on regrowth relative to the initial population has been found to avoid counterintui-

tive results [60]. This definition also enables comparison of cultures which do not experience a

drop in total population, but which do vary in growth rate, such as those exposed to a low con-

centration of doxorubicin (Fig 3A).

Although this mathematical modeling-based approach enabled the identification of key fea-

tures of the dynamic response which have previously not been recognized (i.e., the time delays

on both death and proliferation) it does have limitations. While model 1 was selected over the

existing bi-exponential model in all three cell lines, the improvement in performance varied

with cell line. The calibrated model allowed identification of optimal retreatment intervals in

the MCF7 and MDA-MB-231 cell lines, but did not offer a clear equivalent in the BT474 cell

line. This is likely due to differences in drug sensitivity and timing of response that characterize

each cell line–BT474 has higher sensitivity and responds more slowly; consequently it was

treated at a lower dose range. It is likely that the optimal model to describe growth dynamics

varies with cell line, and possible that the most relevant mechanisms of changing drug sensitiv-

ity vary with cell line. A second significant limitation of this approach is that it is phenomeno-

logical, and while it does not require knowledge of the underlying mechanism, it also doesn’t

produce direct evidence to elucidate the mechanism(s).

While these results do not bear directly on the mechanisms of doxorubicin induced cell

death, they are more compatible with some conclusions than others. Doxorubicin has multiple

known mechanisms of action, and the relative contributions of each are not known under

most circumstances [61]. The selection of model 1, with an exponential delay in the onset time

of cell death, as the model best characterizing our data set suggests that mitotic catastrophe

may play a larger role than other mechanisms such as doxorubicin-induced apoptosis which

has a more defined time course and would have been more consistent with the linear time

delay of model 2. It is likely that both processes are present, but mitotic catastrophe may be

playing a larger role, particularly in the early part of the response where our modeling frame-

work is most sensitive to td. Because no tests were performed to actually quantify the mecha-

nisms of cell death in these experiments, this conclusion must be considered speculative. We

anticipate that due to variations in the mechanism of action between different drugs, and even

for a single drug between different dosing regimes, the resulting best model selected by our

framework would also vary.

An additional limitation imposed by the experimental methods used here emerges from the

need to calibrate models using only the total cell population, which limits the complexity of

model which can be effectively calibrated. Models including additional subpopulations would

improve the correspondence to the underlying biological system. Visual observation of the

experimental cultures leads us to suspect that in addition to the sensitive cells which die and

the resistant cells which recover proliferative capacity during the course of the experiment,

there may be a subpopulation which persists in an arrested state throughout the course of the

experiment. It is also plausible that some cell populations include more than two phenotypic

subpopulations with different drug sensitivities, and depending on the drug schedule adminis-

tered these subpopulations could vary in all relevant parameters—the resistant fraction, post-

treatment growth rate, sensitive cell death rate, and the time constant for the death delay. Our
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framework, with a single sensitive population and a single resistant population, extracts

parameters that represent a sort of population average in these parameters—e.g. if there are

multiple resistant subpopulations which are growing at different rates, when we calibrate a sin-

gle post-treatment growth rate to the total cell number curve, we extract a value that averages

over the population and time course throughout the entire experiment. An experimental and

computational framework that could resolve additional subpopulations would allow the explo-

ration of these unresolved questions and improve our ability to identify the subpopulations

most important to the development of chemoresistance. Such an improved framework is likely

to require the development of novel experimental strategies to obtain time-resolved quantifica-

tion of some relevant subpopulation marker or cellular property. This is necessary to ensure

the uniqueness of solutions with additional subpopulations. Our framework is able to charac-

terize one sensitive and one resistant population from a single output, the total cell number,

due to the variation in sensitivity to each parameter over the time course of the experiment. To

model additional subpopulations is likely to require an additional output variable.

In the experiments described here, substantial variability is observed in the population level

responses (Figs 3 and 4), in the extracted parameters (Fig 5), and in the resulting metric for

drug schedule performance (Fig 7). While experimental error can result in some variability,

differences in the degree of variability within a single experiment (e.g. Fig 3A) suggest that

much of the variation observed represents genuine divergences in the drug response between

replicate populations. This results at least partially from stochasticity, both at the level of differ-

ences in subpopulation distribution in replicate populations and at the level of stochasticity in

drug response, cell survival, and post-treatment proliferation. This stochasticity is captured as

variability in extracted parameter values (Fig 5); rather than considering the variation of

parameter values as reflecting measurement error, we view it as capturing the distribution of

responses resulting from this stochasticity. This stochasticity could be further investigated by

performing experiments with identical drug dosing schedules while varying the population

size, since stochasticity results from the relative values of population frequency and population

size. Variability should decline as the population size of each replicate is increased.

Despite the limitations discussed above, the framework outlined here could have applicabil-

ity to future preclinical studies of chemotherapeutic dosing. Using an iterative experimental

process to explore the relationship between drug concentration, inter-treatment interval, num-

ber of doses, and metrics such as the fraction of non-recovering replicates or critical time

would allow the identification of optimal in vitro dosing schedules. In a purely in vitro setting

this might mean searching for a minimum in the total integrated dose to accomplish the elimi-

nation of all cultures. When looking to shift into in vivo experimentation, however, the mini-

mum total dose may not be the ideal metric because just as we have found that cancer cell drug

sensitivity changes dynamically, chemotherapeutic toxicity to healthy tissue may also have a

dynamic evolution over time. Therefore, it would be necessary to obtain information about in
vivo toxicity and to use this to restrict the parameter space explored in in vitro experimentation

and to guide the selection of the optimization’s objective function. This would generate a dos-

ing schedule tested in vitro which would be predicted to have optimal performance in vivo;

this schedule wouldn’t be expected to actually deliver optimal performance in vivo, due to the

multitude of additional influences on in vivo drug behavior. It would, however, give an initial

guess from which to start optimization of in vivo performance.

The approach described here allows for high throughput, high time resolution measurement

of population-averaged properties. In particular, multidrug treatment would greatly benefit from

longitudinal monitoring of population dynamics. Collateral sensitivity, a phenomenon where one

drug causes a cell population to become sensitive to a second drug [62], has shown increasing

promise in-vitro [63,64]. Notably, Dhawan et al. found that specific intervals between drugs was
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necessary in order to identify pairs of collaterally sensitive drugs. Furthermore, the repeatability of

collateral sensitivity to drug-resistant populations has yet to be fully understood [65,66]. Thus,

being able to perform high throughput measurement would allow for pairs of collaterally sensitive

drugs to not only be found but evaluated as potential treatments. Additionally, the approach dem-

onstrated here would allow for optimal control theory to be experimentally evaluated, a strategy

which can be used to find optimal treatment strategies for a dynamical system [67]. Optimal con-

trol theory requires a detailed and accurate understanding of the relationship between controlla-

ble variables such as drug concentration and inter-treatment interval and biological variables

such as the resistant fraction and post-treatment regrowth rate. The experimental and computa-

tional methods described here allow for the development of such detailed data sets. Optimal con-

trol theory has recently been used to find optimal scheduling [68,69], but has yet to be evaluated

in an in-vitro setting. The development of drug response models with sufficient detail for use in

predicting collateral sensitivity and testing optimal control theory could additionally contribute to

the field of adaptive therapy, in which treatment is modified based on feedback regarding a

patient’s individual response [70]. This approach currently shows significant promise in the treat-

ment of prostate cancer [71], and the development of more detailed drug response models can

contribute to the extension of these techniques to additional cancer types. Single cell sequencing

technologies promise to provide great insight into the mechanistic underpinnings of this hetero-

geneity in drug sensitivity [66,72]; however, throughput for these technologies remains low

enough (and expense remains high enough) that directly assessing dynamic changes in drug sen-

sitivity over short time scales remains difficult.

These two approaches can complement each other, with longitudinal studies such as the

ones described here identifying key time scales and single cell transcriptomic studies enhanc-

ing mechanistic insight. This suggests several potentially productive avenues for continuing

work: Additional longitudinal studies can extend the techniques demonstrated here to new

drugs, new cell lines and new cancer types. Along with the development of new data sets,

exploration of additional cancer growth models will allow deeper understanding of what fea-

tures of a cell line (drug sensitivity, growth rate, clonal heterogeneity, etc.) correspond to par-

ticular optimal growth models. The data presented here also indicate time points that would

be of particular interest for future single-cell studies, such as the two day post treatment opti-

mal treatment interval in the MCF7 and MDA-MB-231 cell lines. Such studies could elucidate

the mechanisms underlying these early changes in drug sensitivity, and could in turn enable

another generation of longitudinal studies in cell lines engineered with fluorescent reporters

coupled to mechanisms thus identified.

Finally, while these methods are several steps removed from clinically actionable at this

point, there is potential to contribute to preclinical drug development. In vitro mechanistic

studies and preclinical screening often report cell death at a single end point 24–72 hours after

treatment; this is insufficient to quantify the long-term drug response of the cell population.

Longitudinal studies such as these, implemented iteratively to identify key time scales such as

the optimal inter-treatment interval, could allow further optimization of drug treatment

schedules to inform preclinical testing.

Methods

Cell culture

MCF7 (ATCC HTB-22) cells were cultured in Minimum Essential Media (MEM) (Gibco),

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (P/S)

(Gibco); these cells were maintained at 37˚ C in a 5% CO2 atmosphere [73]. BT474 (ATCC

HTB-20) cells were cultured in Richter’s Modification MEM (IMEM) (Corning),
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supplemented with 10% FBS, 1% P/S, and 20 μg/mL insulin; these cells were maintained at 37˚

C in a 5% CO2 atmosphere [74]. MDA-MB-231 (ATCC HTB-26) cells were cultured in Dul-

becco’s Modified Eagle Media (DMEM) (Gibco) supplemented with 5% FBS and 1% P/S; these

cells were maintained at 37˚ C in a 5% CO2 atmosphere [75].

To facilitate the use of fluorescent microscopy and automated cell quantification, stable

fluorescent cell lines were established (MCF7-EGFPNLS1, BT474-GNS2, 231-GNS) expressing

constitutive EGFP with a nuclear localization signal. Genomic integration of the EGFP expres-

sion cassette was accomplished utilizing the Sleeping Beauty transposon system. The

EGFP-NLS sequence was obtained as a gBlock (IDT) and cloned into the optimized Sleeping

Beauty transfer vector pSBbi-Neo. pSBbi-Neo was a gift from Eric Kowarz (Addgene plasmid

#60525) [76]. To mediate genomic integration, this two-plasmid system consisting of the

transfer vector containing the EGFP-NLS sequence and the pCMV (CAT)T7-SB100 plasmid

containing the Sleeping Beauty transposase was co-transfected into the MCF-7 population uti-

lizing Lipofectamine 2000. mCMV (CAT)T7-SB100 was a gift from Zsuzsanna Izsvak

(Addgene plasmid # 34879) [77]. Following gene integration with Sleeping Beauty transposase,

eGFP+ cells were collected by fluorescence activated cell sorting and maintained in media sup-

plemented with 200 ng/mL G418 in place of P/S.

Doxorubicin treatment

Doxorubicin hydrochloride (Cayman Chemical 15007) is reconstituted in water. Cell culture

media is replaced with complete growth media containing doxorubicin at the specified con-

centration. After 24 hours, doxorubicin media is replaced with drug-free media.

Long term doxorubicin response experiments

Cells are seeded in a 96-well plate at target densities of 2,000 cells per well. Fluorescent and

phase contrast images are collected at intervals of 4 hours or shorter throughout the study in

the Incucyte S2 Live Cell Analysis System (Essen/Sartorius) with temperature and environ-

mental control. Cells are initially seeded in 100 μL growth media per well and cultured for 2

days to allow cell adhesion and recovery from the passaging process. Drug treatment is per-

formed by adding 100 μL growth media containing doxorubicin at 2x the desired final concen-

tration, with 6 or 12 replicates for each experimental condition. After 24 hours, the drug

exposure is ended by aspirating the media, and replacing with fresh growth media. Images col-

lection is continued for 21–56 days at a frequency between once per two hours and once per

four hours; the duration of image collection is selected such that all wells in which any cells

recover proliferation are allowed to reach the logistic growth stage.

Model identifiability analysis

To test the ability of our modeling framework to accurately extract parameter values and select

among models, each model within the family described above was used to calibrate simulated

data. This model family includes three sets of assumptions concerning the form of k, which are

described as models 1, 2, and 3; independently, tr can be zero or non-zero. Six simulated data

sets, labeled A through F and each containing 1000 time series of cell number, were generated

from these six sets of assumptions concerning the underlying ground truth. For each data set,

parameter values were randomly generated from within a physiologically reasonable parame-

ter space (details provided in Text A in S1 File), a cell number vector was generated based on

those parameter values, and Gaussian random noise was added to each data point of the cell

number vector to simulate measurement error. We were interested in determining whether

the underlying model could be identified from the cell number data alone, or whether the tr
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value must also be specified to obtain accurate parameter values. Additionally, we sought to

determine whether it was possible to reduce the number of free parameters by fixing Nmax.

This resulted in a total of 18 models: k selected from models 1, 2, or 3, tr calibrated, assumed to

be 0, or given as input, and Nmax either calibrated or fixed. Each data set was used to calibrate

the 18 models, summarized in Table 4.

To check the ability of each model to extract accurate parameter values from the simulated

data sets, Pearson’s correlation coefficients (PCC) between the known and calibrated values

for the model parameters were computed for each combination of model and simulated data

set (Text C Table C in S1 File).

The Akaike information criterion was applied to the calibrations generated by models 1–3

on simulated data sets A-F to test its ability to identify the underlying model structure in cases

where the ground truth is known independently.

Image analysis

Cell counting is performed using the green fluorescence channel using standard image analysis

techniques: background subtraction, followed by thresholding, edge detection, and a mini-

mum area filter. These settings have been optimized for accuracy and robustness in handling

the image-to-image variation in acquired images. Due to variations in cell brightness and

nucleus size which occur after doxorubicin exposure, the optimal image processing parameters

vary from experiment to experiment. The processing definition is therefore optimized itera-

tively for each experiment, with visual checks of a sample of the processed images used to con-

firm the accuracy of cell counting. A detailed description of the recommended optimization

process is provided as Text E in S1 File.

Data normalization

The data for each replicate culture is truncated to ensure that only accurate, meaningful data is

used for model calibration. Time course cell number data for each replicate culture is

Table 4. Summary of model assumptions tested in model identifiability analysis.

Model Assignment of tr, proliferation delay in R cells k, death delay in S cells Nmax

1 known and given as input Exponential Calibrated

2 known and given as input Linear Calibrated

3 known and given as input None Calibrated

4 calibrated Exponential Calibrated

5 calibrated Linear Calibrated

6 calibrated None Calibrated

7 0 Exponential Calibrated

8 0 Linear Calibrated

9 0 None Calibrated

10 known and given as input Exponential Fixed

11 known and given as input Linear Fixed

12 known and given as input None Fixed

13 calibrated Exponential Fixed

14 calibrated Linear Fixed

15 calibrated None Fixed

16 0 Exponential Fixed

17 0 Linear Fixed

18 0 None Fixed

https://doi.org/10.1371/journal.pcbi.1009104.t004
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truncated at 30,000 cells or when the counted cell number drops by more than 50% as a result

of media handling, or when the cell count becomes unreliable as indicated by repeated discon-

tinuities in the cell number vector. In the case of a single discontinuity where fewer than half

of the cells are lost, the data is instead normalized to remove the discontinuity; this normaliza-

tion is performed by specifying that the cell number for time points prior to the discontinuity

will be divided by a constant α, calculated such that the first and second derivative of the cell

number are smooth across the discontinuity:

a ¼

ðNd� 1 � Nd� 2Þ

ðtd� 1 � td� 2Þ
þ 2

Nd� 1

td � td� 1

2
Nd

td � td� 1
þ

Nd � Ndþ1

tdþ1 � td

Here Nd is the cell number just after the discontinuity, Nd−1 is the cell number just before

the discontinuity, and so on.

Quantification of tr
To find the proliferation delay, tr, a density-based clustering technique (DBSCAN) was used to

find an initial clustering of cells after treatment had been applied. The optimal parameters for

DBSCAN were manually calibrated for each plate. Once a sufficiently large cluster of cells was

properly identified, the cluster was tracked backwards in time. At each previous timepoint,

DBSCAN was again used to identify the location of the cluster. When a timepoint was identi-

fied at which clustering could no longer be found, the proliferation delay was determined as

the difference in hours between that timepoint and the time of initial treatment.

Model calibration

Model parameters are extracted from time course cell population data by calibrating the three

models to the cell number vector for each replicate culture using a nonlinear least-squares

approach (“lsqnonlin”) implemented in MATLAB.

Calculation of AIC

The residual sum of squares (RSS) after model calibration, the number of data points in the

replicate n, and the model parameter number p, are used to calculate the AIC using Eq 9. The

AIC also includes an arbitrary constant, Carb, which we omit in calculations because model

selection is performed based on ΔAIC.

AIC ¼ 2pþ n � lnðRSSÞ þ Carb ð9Þ

Critical time projection

In replicates where the cell population reaches double the replicate’s original population dur-

ing the course of the experiment, the critical time is identified as the first time at which the

number of cells is greater than or equal to double the starting population. However, in some

cultures regrowth to twice the original cell number is not observed before the end of the exper-

iment. To enable the inclusion of these results, we use model projections of the critical time

based on the best-fit curve of the optimal model identified by model selection. Critical time

projections are carried forward for a maximum of one year; replicates in which the population

is not projected to reach double its initial value within one year are marked as not recovering.
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