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In the article a brief description of the biological basis of the regulation of human biological clocks was presented in order to
introduce the role of circadian rhythms in physiology and specifically in the pharmacological translational tools based on the
computational physiology models to motivate the need to provide models of circadian fluctuation in plasma cations. The main
aim of the study was to develop statistical models of the circadian rhythm of potassium, sodium, and calcium concentrations in
plasma.The developed ion models were further tested by assessing their influence on QT duration (cardiac endpoint) as simulated
by the biophysically detailed models of human left ventricular cardiomyocyte. The main results are model equations along with an
electronic supplement to the article that contains a fully functional implementation of all models.

1. Introduction

The crucial role of homeostasis maintenance in all living
creatures is not in contradiction with the observation that
various biological parameters are not static. The rhythmical
changes observed in humans that occur periodically play an
important role in the adaptation to the dynamic environ-
ment. Chronobiology influences the activity and functions
of organs and tissues and is also a driver of anatomical,
physiological, and molecular changes. Classification of bio-
logical rhythms depends on interval duration, starting with
the very short periods expressed in seconds (e.g., electro-
cardiographic changes), through ultradian periods described
in minutes/hours (e.g., sleep), and circadian periods close
to 24 hours, up to longer periods, including monthly (cir-
catrigintan, i.e., menstrual) and yearly (circannual) rhythms
[1]. It has been suggested that in humans, the physiological
rhythmicity and its behavioral reflection define chronotype
(e.g., morningness versus eveningness tendencies).

In the following sections, a brief description of the bio-
logical basis of the regulation of human biological clocks is
presented in order to introduce the role of circadian rhythms
in physiology and specifically in the pharmacological transla-
tional tools based on the computational physiologymodels to
motivate the need to provide models of circadian fluctuation
in the main plasma cations.

2. Human Biological Clocks

The center of the circadian clock is localized in the bilat-
eral suprachiasmatic nuclei (SCN) in the hypothalamus [1–
4]. Also, organs known as peripheral circadian oscillators,
for example, the heart, liver, kidneys, are thought to be
responsible for circadian rhythmicity of human physiology,
behavior, or biochemistry. Information exchange between
clocks involves humoral and nervous systems and includes
feedback loops. Peripheral oscillators may also show their
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autonomous nature [2–6]. There are many genes that are
expressed in a clock-dependent manner in both central or
peripheral clock tissues—for details see numerous reviews
[1–3]. As for the cardiovascular system, circadian variation
may be seen in blood pressure, heart rate, coronary blood
flow, hormonal secretion, or electrical activity [2, 7–10]. The
clock localized in the heart influences the cells’ response
to numerous physiological or pathological conditions, for
example, ischemia [11, 12]. Examples of external and internal
factors influencing heart functioning are physical activity and
autonomic nervous/humoral system (e.g., glucocorticoids,
renin-angiotensin-aldosterone activity) modulating blood
pressure, for example, causing its increase in the morning
[2, 3]. However, most studies on peripheral clock localized
in cardiomyocytes and factors influencing it were performed
on animals. Although comprehensive data on humans are
still lacking, it was shown that almost 10% of genes in heart
muscle tissue are expressed in a clock-dependent manner
[2, 9].Thus, the control and the loops between the clocks take
place on different levels: from organs and systems through
biochemical, cellular to molecular levels.

It is not only the physiological functioning of the heart,
but also many diseases such as atrial fibrillations and other
arrhythmias (also those triggered by drugs), myocardial
infarction, or sudden cardiac death that show circadian vari-
ation [5, 7, 13]. The incidence of most adverse cardiological
events is related to the time of the day [1, 5]. Moreover,
the studies suggest that circadian oscillation (e.g., RR or QT
interval, R and T wave voltage) may play a predicting role
in cardiac death. It was shown that prolongation of the QTc
interval plays a prognostic role and also reduced circadian
fluctuations are connected with poorer patients’ outcome
[2, 13].

The biological rhythmicity can be influenced by genetic
factors and is frequently related to the risk of developing a
number of diseases and their further course [3, 14–16].There-
fore, chronotype modification has been used as a therapeutic
strategy [17] for various diseases including cardiovascular
disturbances [2].

3. Chronopharmacology

Circadian rhythms have been actively investigated and
applied in clinical pharmacology. The accumulation of
knowledge in this area led to the formation of a new field
called chronopharmaceutics, which aims at delivering drugs
in a controlledmanner at themost appropriate time of the day
[18], which in turn leads to the optimization of drugs dosing
and their clinical effect. Various drugs and populations were
investigated in chronopharmacology research; for example,
see Block et al. [19]. Numerous studies also confirmed that
circadian rhythms influence both the pharmacokinetics and
pharmacodynamics of drugs. Time of drug application mod-
ifies drug pharmacokinetics by changing all the elements of
the ADME pathway—absorption, distribution, metabolism,
and excretion [20]. As a result, many drug pharmacokinetic
parameters are influenced to some degree, which in turn

impacts drug efficacy and safety, that is, the pharmacody-
namic components of chronopharmacology [21–23].

4. Cardiac Electrophysiology Simulations

Chronopharmaceutics, however, is not the only area of
pharmaceutical sciences that can benefit from research into
the human rhythms. Translational tools based on the bio-
physically detailedmathematicalmodels allowing for in vitro-
in vivo extrapolation are gaining increasing interest and are
more and more commonly used in systems pharmacology
[24]. In cardiology, simulations based on the models of
cardiac electrophysiology are utilized for the assessment of
drugs’ cardiac safety [25, 26]. Approaches taken by different
research groups vary significantly with respect to the mod-
elling techniques, level of models complexity, heart represen-
tation (ranging from single cell up to the two- andwhole heart
three-dimensional simulations), and the simulated endpoints
[27–29]. Regardless of the applied methodology, most of
the published manuscripts report results nonspecific to any
individual patient by only using simulations constant (usually
average) values of parameters describing human biology
[30]. Based on the publicly available data sources, empirical
models describing the distribution of each relevant physio-
logical parameter in populations of human individuals can
be developed and introduced into cardiac electrophysiology
simulations. For example, in Polak et al. [31] and Polak and
Fijorek [32], regression models relating age to the volume of
cardiomyocyte and cell electric capacitance were developed
and later used to introduce interindividual variability into the
cardiac electrophysiology simulations. In Fijorek et al. [33]
inter- and intraindividual variability was introduced into the
cardiac electrophysiology simulations by accounting for cir-
cadian rhythmicity of the heart rate. However, the circadian
rhythmicity of many other physiological parameters can be
similarly modeled and introduced into the simulations.

5. Study Aims

Themain aim of the study was to develop statistical models of
the circadian rhythm of three plasma ions, that is, potassium,
sodium, and calcium.The developed ionmodels were further
tested by assessing their influence on QT duration (cardiac
endpoint) as simulated by the biophysically detailed models
of human left ventricular cardiomyocyte.The relevance of the
ions to cardiac electrophysiology was described previously
[34].

6. Materials, Methods, and Results

The first stage included estimation of mean and standard
deviation of concentration of potassium, sodium, and cal-
cium. Suitable data was obtained fromPolak et al. [34], which
is an archive of data on plasma concentration of potassium,
sodium, and calcium extracted from scientific articles via
extensive literature search. The data were available for a large
number of healthy subjects of both sexes (496, 553, and 475
males; 328, 322, and 1783 females; potassium, sodium, and
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calcium, resp.) and a wide range of ages (4–69, 4–103, and 2–
75).

Estimation ofmean concentration and standard deviation
of concentration (Table 1) was performed separately for both
sexes since statistically significant differences between them
were found. Different normal ranges of metabolic panel
components for men and women are already used in clinical
practice for parameters such as: liver function tests, uric
acid, creatinine, creatine kinase, and hormone levels [35,
36]. However, for potassium, sodium, and calcium, separate
normal ranges for men and women have not been used so far
in daily clinical practice.

Markowitz et al. [37] suggested the existence of a rela-
tionship between age and ions concentration. However, the
results of meta-analysis presented in Polak et al. [34] show
no significant age dependence for potassium and sodium
concentration. In the case of calcium, there might be a weak
positive relationship with age; however, the age impact seems
to be too small to be of clinical relevance in the context
assumed in this paper, but further research in this area is
needed. As a result, none of the developed models include
age as an explanatory variable.

There is a noticeable evidence of the existence of a
circadian rhythm in potassium and sodium ion concentra-
tions [38–40]. Kanabrocki et al. [41] additionally studied
a circadian rhythm in calcium ion concentration; however,
the results were not statistically significant, probably due
to the rather small number of subjects included in the
study. Given insufficient support for calcium rhythmicity, the
model developed for that ion does not contain a circadian
component.

For potassium and sodium, it was decided to base the new
models on the models proposed by Sennels et al. [38] after
they had been extensively modified. The main argument in
favor of the Sennels’ model is that among the existingmodels,
this is the one with the largest number of subjects used
for its development (23 individuals, all men). Additionally,
it is the most recently published model, so its participants
are believed to be the most similar to the presently living
population of healthy people. Also, the samples were taken
9 times for every individual (at 9:00, 12:00, 15:00, 18:00,
21:00, 0:00, 3:00, 6:00, and 9:00), which surpasses any other
reviewed report, giving Sennels’ study more power to detect
a circadian rhythm. The standard deviation of residuals (the
potassium and sodium model) was estimated from the data
extracted from the box plots presented in Sennels’ paper
using the method described by Hozo et al. [42]. The male
and female mean concentrations were taken from Table 1 and
incorporated into the developed models. Due to the lack of
suitable data, it was assumed that the circadian rhythm is the
same for men and women.

In the case of calcium, it was assumed that the con-
centration values between 2.0–2.8mM are physiologically
valid [34]. Consequently, the assumption of normality of
calcium concentration was dismissed, and logit-normality
was assumed; that is, concentration is normal after a scaled
logit transformation. After transformation, mean calcium
concentration for males was 0.1 (SD = 1.3) and for females
−0.5 (SD = 0.8). In the case of the potassium and sodium

Table 1: Estimation results of mean concentration and standard
deviation of concentration.

Ion Sex Number of
subjects Mean Standard

deviation (SD)

Potassium Female 328 4.088 0.445
Male 496 4.213 0.347

Sodium Female 322 138.169 4.398
Male 553 140.096 3.017

Calcium Female 1783 2.313 0.136
Male 475 2.418 0.199

model, such transformation was not needed since both mod-
els conformed with the physiological concentration ranges
satisfactorily (residuals in both models were assumed to
follow the normal distribution).Having completed the above-
mentioned stages, the ionic means are calculated by the
following formulas:

mean potassium

= (M/F mean concentration)

+ 0.18 ∗ COS(2 ∗ PI
24

∗ (Time—10 :07)) ,

mean sodium

= (M/F mean concentration)

+ 1.1 ∗ COS(2 ∗ PI
24

∗ (Time—13 :08)) ,

mean logit-transformed calcium

= (M/F mean logit-transformed concentration) ,

(1)

where M/F—male or female; time—value from 0 to 24 range.
In the next phase, the stochastic part of the models was

extended by incorporating a physiology-based assumption
that for a given individual, the closer in time the concen-
trations are measured, the more similar are the deviations
from the mean concentration. The most common way to
induce a correlation between residuals is to use an autore-
gressive process. In order to estimate the parameters of this
process, concentration trajectories from individual subjects
are needed. These were extracted for potassium from the
Kanabrocki et al. [43] and Williams et al. [44] papers, for
sodium from theKanabrocki et al. [43] paper, and for calcium
from theKanabrocki et al. [43], Jubiz et al. [45], andWills [46]
papers. The data were used to estimate the autocorrelation
coefficient of autoregressive process of order one—AR(1). In
all of the enumerated studies, the number of subjects was very
small, and ionic concentrations were evaluated very sparsely.
Consequently, it was found that the data was not able to
support a more sophisticated autoregressive model. Results
for the AR(1) process are presented assuming a 15-minute
sampling interval for ionic concentrations (Table 2).

In the next stage, the validity of the developed models
was verified. A set of a 1000 random model paths of ionic
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Table 2: Estimation results for stochastic structure of ionic models.

Ion Sex SD of
residuals

SD of residuals
in AR(1) process

AR(1)
coefficient

Potassium Female 0.303 0.119 0.92
Male 0.236 0.092

Sodium Female 1.866 0.371 0.98
Male 1.280 0.255

Calcium
(logit scale)

Female 0.80 0.224 0.96
Male 1.30 0.364

concentrations for males and females for each ion was
generated. Figure 1 shows 3 random paths of each kind. The
paths successfully reproduced the theoretical properties of
the models as given by the models equations and estimated
coefficients; that is, generated data showed circadian rhyth-
micity (excluding the calciummodel) and the sex-dependent
mean level and variability, also the generated concentrations
were within physiological ranges. Consequently, models were
deemed internally valid. An electronic supplement to the
paper contains a fully functional Excel implementation of all
the described models.

As computer models of heart physiology become increas-
ingly popular as translational tools utilized, for example, for
the drugs’ proarrhythmic potency assessment, proper and
detailed account of the physiological parameters’ inter- and
intraindividual variability becomes an element of the greatest
importance. It should therefore be suggested that circadian
rhythms are an important element of human biological vari-
ability. Consequently, in the last stage, the developed models
were built in to the ToxComp platform simulating the cardiac
electrophysiology at the cellular (single cardiomyocyte) and
heartwall (1D strand) level.TheToxCompplatform combines
a physiologically based electrophysiological model of human
left ventricular cardiomyocytes and a database of human
physiological, genotypic, and demographic data enabling the
prediction of the QT prolongation in humans based on the in
vitro data [25, 31]. To account for the heterogeneities in ionic
currents between endocardial,midmyocardial, and epicardial
cells, 1D strand paced at the epicardial side was constructed.
The 50 : 30 : 20 distribution of the endo-, mid-, and epicardial
cells was used together with a diffusion coefficient equal
to 0.0016 cm2/ms. The Forward Euler method was used to
integrate model equations. Integration results were used to
calculate a pseudo-ECG. First and last beats were excluded
from the simulated pseudo-ECG traces. A space step and a
time step were set to Δ𝑥 = 0.01mm and Δ𝑡 = 0.01ms. 100
virtual individuals were simulated (50% of females) in the
age range of 18–55 (mean = 32.7, SD = 9.0). The values of the
nonionic physiological parameters were randomly assigned
to each virtual individual to mimic population consisting
of healthy volunteers as previously described [31]. For every
virtual individual, a 10 000 milliseconds long pseudo-ECG
traces were simulated at the following 12 time points during
the day: 6:00, 8:00, 10:00, 12:00, 14:00, 16:00, 18:00, 20:00,
22:00, 0:00, 2:00, and 4:00. The simulations were performed

under the assumption of five different scenarios. In the
scenario “A,” constants K+, Ca2+, and Na+ concentrations
were assumed, in scenario “B,” K+ concentration was gen-
erated from the developed model, and constants Ca2+ and
Na+ were assumed, in scenario “C,” Na+ concentration was
generated from the developedmodel, and constants Ca2+ and
K+ were assumed, in scenario “D,” Ca2+ concentration was
generated from the developed model, and constant K+ and
Na+ were assumed, and in scenario “E,” K+, Ca2+, and Na+
concentrations were generated from the developed models.

Assessment of the circadian variation of the pseudo-ECG
derived QT length was the endpoint of the simulation study.
Circadian changes, if present, could only result from the
circadian ion concentration rhythmicity and circadian heart
rate rhythmicity, with the latter enabled in all simulation sce-
narios, because the ToxComp platform in its current version
does not include any other sources of circadian variability.
Simulation results are presented in Figures 2 and 3. A near
lack of the circadian variability was noted for the scenarios
with sodium and calcium ions following proposed models,
similar to the results for all ion concentrations set to constant
values (scenarios A, C, and D, resp.), which was expected,
except for sodium. Simulation results suggested a significant
role of potassium in inducing circadian variability in QT
(scenario B). What is important, the two scenarios where
diurnal variation of the simulated QT was clearly present
(scenarios B and E) also exhibited characteristics that were
observed in the real (not simulated) clinical studies [47–49];
that is, QT value increases starting from the evening hours,
reaching highest values very early in the morning (about
4 am). After that, QT value drops and remains relatively
stable between 8 am and 4 pm when it again starts to rise.
In all scenarios, a gender difference was observed in the
simulated mean QT levels, which was consistent with finding
that women have on average lower levels of electrolytes’
concentration throughout the day. Figure 3 presents more
detailed information regarding the QT levels simulated in
scenario E. Despite the fact that ionic models included sex-
dependent dispersion, it may be seen that dispersion of QT
values for both genders is very similar. It may be the case that
the larger variability of potassium and sodium in females was
compensated by the larger variability of calcium in males.

7. Discussion

In the first paragraph of this section, modelling limitations
are described, and in the second paragraph, a brief indication
of alternative uses of the developed models is given.

The stochastic structure of the developed models was
based on small data sets. As a result, the dependence between
consecutive concentrations was described by a simple autore-
gressive model. However, a real process may exhibit a far
more sophisticated structure.Nevertheless, it should be noted
that even this simple autoregressive process is believed to
be a significant improvement upon a naive assumption of
independence of consecutive concentrations. Also, due to the
nature of the available data, the stochastic submodels were
developed separately from themean submodels (in principle,
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Figure 1: Sample random paths of ionic concentrations: (a) potassium male, (b) potassium female, (c) sodium male, (d) sodium female, (e)
calcium male, and (f) calcium female.

joint modelling should be preferred whenever possible, as it
leads to a more efficient use of data). Also, the mix of the
aggregated and individual data from different sources caused
a major problem for the quantitative assessment of the model
fit and model validation. Consequently, external validity of
the simulated paths of ionic concentrations was graded by

two domain experts who stated that the paths do not possess
features that might disqualify them from the physiological
point of view. The only raised concern regarded a high
intrasubject variability of potassium and calcium, which may
be a result of using AR process with short memory; however,
as it was mentioned before, the data were not sufficient to
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Figure 2: Mean QT values derived from the simulated scenarios.

support a more sophisticated autoregressive model. Further
research is definitely needed to objectively resolve this issue.
As it was justified in the main text, the modified Sennels’
models were utilized for potassium and sodium. However,
in Sennels, only male volunteers were included; therefore,
the assumption of the gender independent structure of the
circadian rhythm may potentially introduce a bias. Also,
it should be reiterated that sodium and potassium models
include a circadian rhythm but calcium does not, due to lack
of contrary evidence.

Current studies are aimed at establishing a connection
between pathogenesis of cardiac diseases and circadian
rhythms. Such a connection might be helpful in developing
new chronotherapeutics and an early assessment of potential
safety concerns. Circadian models of ions may be considered

in simulations of drugs’ activity, including their side effects,
efficacy, and targeting ability. Also, there are suggestions
that a synchronization of the cardiac clock with drug
delivery strategies may bring benefits in terms of avoiding
cardiotoxic events. Therefore, there is a need not only for
studies presenting models useful for chronopharmaceutical
research, but also concerning the potential use of chemical
oscillators as biomarkers for new chronotherapeutics and
chronopharmacological schedules [1, 2, 4, 50]. Additionally, it
is possible that circadian models of ion levels may play a role
in researching pharmacokinetics and pharmacodynamics of
new chronotherapeutics and “old” drugs (e.g., 𝛽-blockers,
calcium channel blockers), as it is the subject of numerous
studies whether the time of the day when the medication is
administered influences its effect or toxicity [2, 51].
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Figure 3: Mean and standard deviation of QT values derived only
from the scenario “E.”
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