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Abstract: Biofilms comprising aggregates of microorganisms or multicellular communities have been
a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous
biofilm-forming microorganisms have been identified, which have been shown to result in major
effects including biofouling and biofilm-related infections. Quorum sensing (which describes the
cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its
virulence. As such, elucidating the various mechanisms responsible for biofilm resistance (including
quorum sensing) will assist in developing strategies to inhibit and control the formation of biofilms in
nature. Employing biological control measures (such as the use of bioactive compounds) in targeting
biofilms is of great interest since they naturally possess antimicrobial activity among other favorable
attributes and can also possibly act as potent antibiofilm agents. As an effort to re-establish the
current notion and understanding of biofilms, the present review discuss the stages involved in
biofilm formation, the factors contributing to its development, the effects of biofilms in various
industries, and the use of various bioactive compounds and their strategies in biofilm inhibition.

Keywords: biofilms; quorum sensing; biofouling; biofilm-related Infections; biological control;
bioactive compounds; antibiofilm agents

1. Introduction

Biofilms are defined as aggregates of microorganisms or multicellular communities
that are embedded in extracellular matrix produced by the microorganisms themselves [1,2].
Some biofilms contain only a single species, while some others contain a multitude of
species [3]. The matrix in which microorganisms are encased is composed of extracellular
polymeric substances (EPS) typically consisting of polysaccharides, proteins or peptides,
lipids, as well as deoxyribonucleic acids (DNA). These biofilm components facilitate the
coherence of cells and cell surface attachment [4,5]. Biofilm formation is not only attributed
to bacteria, but also to fungi and protists [3,6]. Some of the examples of biofilm-forming
bacteria, fungi, and protists are shown in Figure 1.
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Figure 1. Types of biofilm-forming microorganisms [3,7–17].

Biofilms can be formed on any surfaces, including both biotic and abiotic surfaces [2].
Biotic surfaces such as the teeth of animals, a most common sites for bacteria to form
biofilm. Biofilm formation on abiotic surfaces is prevalent in industrial and medical settings,
whereby they are evidently found in industrial pipes and equipment for clinical use [2].
Among all the microorganisms, bacterial biofilm is highly associated with nosocomial
diseases due to the colonization of bacteria on the surface of medical equipment, most
commonly seen in indwelling urinary catheters and implantable medical devices [18,19].

Biofilm formation is the protective mechanism of microorganisms that is involved
in stress coping [20]. Their survival can be prolonged in unfavourable conditions as they
are able to withstand the stress when they are within biofilms. This does not happen to
planktonic cells as they can easily die in such conditions [20]. The presence of any stress
can trigger the formation of biofilm and cause free-floating (planktonic) bacteria to switch
to the biofilm mode of growth [21]. Some common stressful conditions that are faced by
the organisms include nutrient deprivation, changes in pH, and the presence of antibiotics
in their surroundings, which are discussed later in this review [20].

The formation of biofilms in the human body is associated with high morbidity and
mortality rates [18]. One of the reasons is because they are capable of resisting phagocytosis.
Therefore, the clearing of biofilms away from the host is of great difficulty, allowing them
to persist and cause chronic infections [22]. A common example is the formation of dental
plaque, a type of bacterial biofilm that forms on the teeth, responsible for tooth decay and
gum-related diseases [23]. Besides that, diseases caused by biofilm-forming organisms
are very difficult to treat due to the organisms’ increased resistance against antibiotics.
As such, it is a great challenge for researchers and physicians to search for alternative
compounds or substances to target biofilms [19]. In this review, we focused on the uses of
various bioactive compounds in targeting biofilm, alongside with the factors triggering
and contributing to biofilm formation and its impact.
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2. Stages in Biofilm Formation and Its Development

The development of biofilm involves four main stages, starting with cellular attach-
ment, to formation of microcolonies, then biofilm maturation, and finally dispersion [17].

2.1. Cellular Attachment

Attachment of bacteria onto a surface is the initial step of biofilm formation [24]. In
order for an organism to bind to a surface, they have to overcome the repulsive forces
caused by the negatively charged bacterial membrane and the surface [25]. A hydrophobic
surface such as plastic has a reduced force of repulsion as compared to a hydrophilic
surface, for example glass and metal. The reduction in repulsive forces corresponds to
increased strength of attachment [17]. Attachment is achieved by the presence of flagella
and pili on the bacterial membrane [17,25]. The attachment phase involving the structural
support is called a reversible attachment. The binding is reversible as bacteria are only
poorly bound to a surface and are able to leave the surface at this stage. The bacteria
leaving a surface return to their planktonic lifestyle [26]. For bacteria that stays on the
surface, they undergo irreversible attachment, a step that is important for the transition
from a planktonic to biofilm lifestyle. The adhesion of cells to a surface is aided by the
surface proteins of the bacterial cells, resulting in irreversible binding [27]. As a result, the
biofilm is now able to withstand stronger chemical and physical shear forces [28].

2.2. Microcolonies Formation

After bacterial cells have attached irreversibly onto a surface, they start to divide
and produce EPS [1]. The production of EPS leads to the formation of a biofilm matrix,
a ‘shelter’ where all the attached cells are living in [29]. EPS is involved in the adhesion
of cells to surfaces, contributing to permanent attachment [27]. Recently, it was found
that matrix proteins of a biofilm possess adhesin-like properties that mediate cellular
attachment. Drescher et al. [30] showed that RbmA, one of the matrix proteins found in the
Vibrio cholerae biofilm, acts as a mediator in this process. In addition to that, EPS mediates
cellular cohesion in which bacterial cells are brought together and form microcolonies, the
second step of biofilm formation [31]. Usually, a biofilm contains more than one type of
micro-community and involves coordination between one community to another. This
coordination is important for substrate exchange, the distribution of essential metabolic
products, and also the excretion of harmful substances [17].

2.3. Biofilm Maturation

Cellular division with continuous production of EPS leads to the formation of an
early biofilm, which becomes mature after some time and ultimately becomes a three-
dimensional (3-D) structure. The aforementioned 3-D structure is contributed to by the
EPS (produced by the embedded cells), and they are also responsible for maintaining this
architecture [32]. The maturation process involves cell-to-cell communication, in which
cells embedded in the biofilm release signaling molecules called auto-inducers to facilitate
quorum sensing [17,33]. Cells that receive the signals and then express their genes coding
for EPS. With the increased production of EPS, biofilms acquire the previously described
3-D structure [17,34]. Besides that, a mature biofilm also contains water channels in the
matrix acting as a circulatory system. The functions of these channels include nutrient
distribution and the removal of waste products [35,36].

2.4. Detachment of Biofilm

Following maturation, biofilms undergo a process known as dispersion. At this stage,
some of the cells leave the biofilm and return to their planktonic lifestyle [37]. As these
cells return to their free-floating form, they are now able to attach onto a new surface, and
the cycle starts all over again [21]. Cells can either detach from the biofilm actively or
passively. Passive dispersal of a biofilm is mediated by mechanical forces or external forces
such as abrasion, fluid shear, and solid shear [38,39]. In active dispersal, it involves the



Medicina 2021, 57, 839 4 of 28

upregulation and downregulation of genes. Several environmental triggers are found to be
related to the dispersal of biofilms, which include nutrient starvation, insufficient oxygen
supply, and changes in temperature [40]. Under these conditions, genes responsible for
flagella synthesis are upregulated and this provides the bacterial cells the ability to leave
the biofilm [41]. Besides that, production of dispersin B is also enhanced. This enzyme
is present in the extracellular matrix and functionally acts to hydrolyze polysaccharides,
resulting in EPS degradation. Increased secretion of dispersin B into the matrix negatively
impacts biofilm formation and allows adherent cells to leave the biofilm easily [41,42].
Figure 2, as shown, summarizes the stages in biofilm formation.

Figure 2. Stages in biofilm formation.

3. Factors Contributing to Biofilm Formation

The ability of microorganisms to form a biofilm is dependent on the structure of the
organism itself, in which organisms with pili promote the attachment and colonization of
the organism to a surface. This is an initial stage that need to be completed before biofilms
formation and development [43]. Flagella is another structural factor in the formation of
biofilms as it gives bacteria their motility characteristic and assists in fast spreading of
bacteria over the attached surfaces [44]. Apart from these structural factors, bacteria form
biofilms when they detect changes that occur in the environment where they are living
in. The stressful conditions threaten bacterial survival, and bacteria respond by forming
a biofilm [21]. In the subsequent subsections, each of the structural and environmental
factors are discussed in detail.

3.1. Structural Factors
3.1.1. EPS

The extracellular matrix (ECM) of microorganisms is the most studied biofilm compo-
nent, which plays a fundamental role in biofilm formation [45,46]. This matrix contains
polymeric substances, which vary in structure and composition among different microor-
ganisms [47]. EPS, originally referred to as ‘exopolymers’ or ‘extracellular polysaccharides’,
are high-molecular-weight polymers that are synthesized by bacteria, cyanobacteria, pro-
tists, fungi, and microalgae [48–51]. The EPS consists of a vast number of organic polymers
such as polysaccharides, proteins, carbohydrates, rare sugars, lipids, humic acids, and
extracellular DNA [52,53].

The synthesis of EPS is a self-produced energy-demanding process attributed to the
select conditions in the environment. For instance, abiotic conditions such as drought can
trigger EPS biosynthesis as a response to environmental threats [54]. The EPS further affects
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the density, water content, charge, and mechanical stability of biofilm cells. Metaphor-
ically referred to as ‘The House of Biofilm Cells’ by Flemming et al. [29], EPS-directed
changes onto the aforesaid properties determine the biofilm cells’ condition of life in the
microenvironment. This is owing to the fact that EPS biopolymers are hydrated to form a
matrix that holds the cells together that allow for surface attachment, in addition to their
sorption properties that enable the supply of nutrients from the environment to the biofilm
organisms. The main role of EPS is to act as an impermeable barrier that offers protec-
tion against antimicrobials and environmental stressors [54]. Apart from that, the matrix
structure produces nutrient gradients (alongside cell signals), resulting in the emergence of
persister cells and spores, which are the highly resistant subpopulations in charge of the
antimicrobial resistance mechanism [55].

Each of the EPS biopolymers play an important role in biofilms, comprising proteins
as the carbon and energy reserve, polysaccharides that contribute to adhesion interactions,
and extracellular DNA that is responsible for the entire formation structure [45]. Besides
that, extracellular DNA (eDNA) was shown to be involved in the exchange of genetic
materials between biofilm cells. A study by Hendrickx et al. [56] revealed that the amount
of DNA concentration affects the frequency of transformation events whereby the events
are seen to be higher in biofilms as compared to planktonic cells. A study by Roca et al. [53]
reported the presence of rare sugars (fucose and rhamnose) in bacterial EPS that may play a
role in providing additional biological protection to biofilms in spite of the physical barrier
provided by EPS.

3.1.2. Pili

Pili are important hair-like appendages that can impact the formation of biofilms in
Gram-positive and Gram-negative bacteria. Several studies reinforced the aforementioned
statement by comparing the biofilms of wild-type strains (with pili) and mutant strains
(without pili) [15,57]. In the case of Gram-positive bacteria, Nallapareddy et al. [58] showed
that the absence of pili can lead to prominent defects in biofilms formed by Enterococcus
faecalis mutants. A study comparing wild-type and mutant strains of Clostridium difficile
showed that the biomass and number of live cells significantly decreased in the mutant-
strain biofilms. In other words, thicker masses of biofilms were observed for the wild-type
strains as compared to the mutant strains [15]. Additionally, Kimura et al. [43] documented
a decrease in biofilms produced by mutant strains of serotype M6 group A Streptococcus
(GAS) (as compared to wild-type strains).

In the case of Gram-negative bacteria, researchers from China found that the absence
of pili in Salmonella correlates with an impaired development of biofilms [57]. Furthermore,
it was proven by Luo et al. [14] that pili of Acinetobacter baumannii is responsible for surface
attachment prior to biofilm formation. This suggests that biofilms cannot be formed in the
absence of pili as the aforesaid appendage is necessary for mediating the twitching motility
(to spread rapidly over biofilm surfaces) of A. baumannii [14]. This type of motility is also
found in Pseudomonas aeruginosa, further highlighting the significance of pili towards the
foundation and development of Gram-negative-derived biofilms [59].

3.1.3. Flagella

Flagella is a structure responsible for motility in bacteria, allowing them to move
towards any surfaces, either living or non-living [44]. Sarah et al. [12] reported defective
biofilm formation in mutated strains of Campylobacter jejuni (non-flagellated phenotype),
accentuating the importance of flagella for effective development of biofilms. The authors
demonstrated that flagella mediate the adherence of C. jejuni to solid surfaces, thereby
initiating the formation of biofilms. They also inferred that flagella mediate cell-to-cell
adhesion, correlating with the findings of Serra et al. [60]. The flagella-mediated initiation
of biofilm formation was also demonstrated by Du et al. [61], using Pseudomonas aeruginosa
as the model bacteria. They revealed that wild-type strains with flagellar motility promotes
biofilm initialization in aqueous environments. This inference was proven by the higher
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cell counts that were recorded after incubation, as compared to the mutant strains, which
conferred lower cell counts [61].

Bacterial motility is not only important for cellular attachment, but also plays an
important role in biofilm maturation. The maturation of biofilms is promoted by the
inhibition of bacterial motility, a process known as motility-to-sessility transition [62]. The
regulation of this process involves cyclic-di-guanosine monophosphate (c-di-GMP), a small
signaling molecule that resides in the cytoplasm. When the concentration of cytoplasmic
c-di-GMP increases, it inhibits bacterial motility and leads to the activation of biofilm
formation. Vice versa, decreased concentration of c-di-GMP does not inhibit motility and
therefore biofilm formation is not activated [63]. The level of c-di-GMP determines the
motility of various bacterial species (including Pseudomonas aeruginosa and Escherichia coli),
ultimately affecting their ability to form matured biofilms [63].

3.2. Environmental Factors
3.2.1. Nutritional Cues

Nutritional deprivation or low-nutrient conditions creates stress onto the microor-
ganisms and triggers biofilm formation. However, the biofilms are not able to mature if
nutrient levels are constantly low [64]. Bacterial cells present within biofilms obtain their
nutrients via fluid channels that are formed in the biofilm itself. These channels not only
disperse nutrients all over the biofilm, but also serves to send out toxic substances that
could harm bacteria [35]. Bacteria do fail to form biofilms when they are in nutrient-rich
conditions or sometimes they do form a biofilm, albeit a loose one. The bacterial biofilm
formed under this condition can be easily disrupted by shear forces from fluid [26]. This is
in contrast to biofilms formed under low-nutrient condition as they can withstand fluid
shear force, and therefore are not easily disrupted [26]. In a study to elucidate the effects
of nutrient levels towards biofilm formation (by Bacillus subtilis), Zhang et al. [13] found
that the production of the matrix was triggered by nutrient depletion in bacterial biofilms.
Reduction of carbon (glycerol and glutamate) levels in the growing medium triggers the
expression of EPS promoter, resulting in increased matrix production [13].

3.2.2. Oxygen Levels

Changes in oxygen levels can affect the formation of biofilms in various species of
bacteria. Mashruwala et al. [65] demonstrated hypoxia-mediated biofilm formation in
Staphylococcus aureus. Under an oxygen-limiting condition, cellular respiration is impaired,
which in turn activates programmed cell death in the bacteria. As a result, the bacterial
cells lyse and release proteins and DNA (components that make up the EPS) into the
surroundings, suggesting that hypoxia does indeed mediate the formation of biofilms [65].
Bacterial cells in the deeper layer of the biofilm are exposed to lower levels of oxygen,
and this trigger cellular apoptosis [65,66]. Consequently, more intracellular substances be
released into the matrix, and this increases the strength of biofilms [67]. However, when
the oxygen concentration falls to an extremely low level, cellular detachment from the
biofilm can also occur [68].

Similarly, Cramton et al. [69] reported an increase in S. aureus biofilm formation as
a result of decreased oxygen levels. Aside from inducing biofilm formation, low oxygen
concentrations can also affect the maturation of biofilm. A study by Zhu et al. [70] found
that depleted oxygen concentrations can impair the maturation process of biofilm, inferring
that the rate of biofilm maturation is proportional to the rate of oxygen depletion. In a
study by Cramton et al. [69], researchers found that polysaccharide intercellular adhesin
(PIA) were also produced in higher amounts when cells are supplied with lower oxygen
concentrations. PIA is a polymer produced by S. aureus and is used for cellular adhesion.
Increased production of the aforementioned polymer facilitates cell-to-cell adhesion, an
important step in biofilm formation. An in vitro study by Ghotaslou and Salahi [71]
documented how hypoxic conditions can influence the gene expression in P. aeruginosa,
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causing the bacteria to produce polysaccharides extracellularly. Accumulation of these
polysaccharides leads to the formation of a polysaccharide layer that makes up the biofilm.

3.2.3. Temperature

The ability of bacteria to form biofilms can also be modulated by changes in temper-
ature. The effects of temperature on biofilm production varies among different species
of bacteria [72,73]. To reinforce this, the optimum temperature for biofilm production in
Salmonella spp. was found to be 30 ◦C as there is a rapid planktonic-to-biofilm transition
at this temperature [74]. As reported by Bonaventura et al. [7], Listeria monocytogenes is
able to form biofilms optimally at lower temperatures (4 ◦C and 12 ◦C), which is greatly
in contrast to the optimum temperature of Salmonella spp. In certain bacterial strains,
researchers also observed an increased production of biofilms at 37 ◦C as compared to
lower temperatures. By utilizing the crystal violet test, Hostacká et al. [8] estimated the
quantitative biofilm production by Pseudomonas aeruginosa, Klebsiella pneumoniae, and Vibrio
cholerae (non-O1 and O1) under 30 ◦C and 37 ◦C. The study demonstrated increased biofilm
production at 37 ◦C for five of the tested strains (one strain of P. aeruginosa, three strains of
K. pneumoniae, and one strain of V. cholerae non-O1). Mizan et al. [72] reported a significant
increase in Aeromonas hydrophila biofilm production at temperatures between 20 ◦C and
25 ◦C. Temperatures above 25 ◦C and below 20 ◦C do not favor biofilm formation, with
results showing declined biofilm production. Moreover, Obana et al. [73] found that surface
adhesion can also be affected by temperature. In this study, Clostridium perfringens were
found attached to the surface at 37 ◦C but not at 25 ◦C [73]. Table 1 summarizes the optimal
temperatures for biofilm formation in different bacterial species:

Table 1. Optimal temperatures for biofilm formation in different bacterial species.

Type of Bacteria Optimum Temperature References

Salmonella spp. 30 ◦C [74]
Listeria monocytogenes 37 ◦C [7]
Aeromonas hydrophila 20–25 ◦C [72]

Clostridium perfringens 37 ◦C [73]

3.2.4. pH Levels

A change in surrounding pH levels can also contribute to the formation of biofilms.
A study by Mathlouthi et al. [75] demonstrated the effect of pH on biofilm formation by
Escherichia coli MG1655. These neutrophilic bacteria were grown on a Luria Bertani (LB)
medium with pH 5.5 and pH 7.4 separately (under 25 ◦C and 37 ◦C). The results of the
study showed that neutral conditions favor biofilm formation at 25 ◦C, with only limited
formation at 37 ◦C. Under acidic growing environment, more biofilms are formed at 37 ◦C
as compared to 25 ◦C. E. coli biofilms formed the best at 37 ◦C under acidic pH, a growing
environment that resembles the host gut. From these findings, it is evident that the ability
to form a biofilm is affected by pH as well as temperature [75]. Biofilm formation by
Streptococcus agalactiae has been studied by D’Urzo et al. [11], whereby they demonstrated
the promotion of biofilm formation under acidic pH. Todd–Hewitt broths with pH 7.8 and
pH 5 were used and the cultures were incubated at 37 ◦C. Biofilms were hardly detected at
neutral pH, but a significant increase in biofilm formation was detected at pH 5 [11].

3.2.5. Exposure to Antimicrobials

In terms of their natural sources, antimicrobials can be found in water systems (such
as rivers and lakes) at constant concentrations, caused by the continuous discharge of
chemicals including antibiotics into these water sources. Microorganisms living in those
affected areas are exposed to low concentrations of antibiotics for a long period of time [76].
A recent study by Salcedo et al. [77] suggested that antibiotics, with concentrations lower
than that of its minimum inhibitory concentration (MIC), can mediate biofilm formation.
Similar results were obtained by Strelkova et al. [78], whereby they found that any antibiotic
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concentrations that are below its MIC do induce the formation of biofilms. When patients
affected by biofilm-forming bacteria are given antibiotics, the bacterial cells found deep in
the biofilm are only exposed to very low levels of antibiotics. In this case, antibiotics have
no therapeutic effects as they are unable to inhibit biofilm formation, instead they act as
inducers that promote further development of biofilms [78].

4. Quorum Sensing in Biofilm Formation

The term quorum sensing (QS) was first described by W.C. Fuqua, denoting the cell–
cell interaction of bacteria [79]. His findings were based on research from Tomasz and
Nealson (as early as 1965 and 1970, respectively) who reported the discovery of autoin-
ducer activity in Vibrio fischeri [80]. QS is crucial in microbial communities as bacteria
can collectively obtain information about their population density, coordinate population
behavior, and perform gene expression in response to variations of the surrounding pop-
ulation density [81]. QS is extremely beneficial for microorganisms as certain biological
processes are much more expensive and unproductive for a single bacterial cell to carry
out [82,83]. For instance, the execution of activities such as bioluminescence, virulence
factor production, and biofilm formation require a higher population density of bacteria
for maximal performance [84].

Extracellular signaling molecules known as autoinducers (AIs) govern the communi-
cation among cells through their secretion, detection, and responses [85]. The concentration
of AIs is monitored by the population density of bacteria in the environment. The concen-
tration of AIs is said to be directly proportional to the bacterial community density as the
increment of bacterial population contributes to an elevation in AIs concentration [86].

The principle of the QS system in bacteria is closely dependent on the release of AIs
by bacteria in a particular community. The overall mechanism of AI release is different
in low cell density (LCD) and high cell density (HCD) environments [87]. As described
previously, the larger the population density, the higher the concentration of secreted AIs.
Hence, the concentration of AIs in HCD is comparatively higher than that in LCD, and the
threshold of detection and response by receptors that are present in the bacterial membrane
or cytoplasm can be attained easily. It is a circular loop denominated as a ‘feed-forward
AIs loop’, which describes the detection of sufficient concentrations of AIs that enable
bacteria to proceed into activation of gene expression alteration that could further promote
more secretion of AI molecules [88]. This loop is most probably the key to stimulating and
maintaining synchrony in bacterial populations [89].

From within bacterial cells, AHLs (acyl-homoserine lactones) and AIPs (auto-inducer
peptides) are produced and processed before they are secreted into the extracellular
space [84]. When the extracellular concentration of AIs is elevated in HCD environ-
ments, these signaling molecules bind to the two-component histidine kinase receptor that
is bound with the cognate membrane [90,91]. This activates a cascade reaction that has
been activated initially through autophosphorylation to the cognate response regulator in
the cytoplasm, then the activated regulator further activates transcription in the bacterial
gene [89]. Figure 3 illustrates the binding mechanism of AI molecules (bacterial QS) in
LCD and HCD environments.
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Figure 3. The binding mechanism of AIs molecules (bacterial QS) in LCD and HCD environments [89–91].

Despite QS being recognized as a general feature of bacteria, the mechanism still
differs in terms of the signaling molecules involved; namely, AI-1 and AI-2. AI-1 molecules
govern intraspecies communication and it involves the acyl-homoserine lactones (AHLs)-
based interaction whereas AI-2 is produced by both type of bacteria, which is the furanosyl
borate diester [92]. Apart from that, studies have also differentiated the mechanism of
AIs according to the types of bacteria [93]. Gram-positive bacteria such as Staphylococcus
spp. and Enterococcus spp. specifically synthesize AIPs for communication [94]. Pseu-
domonas spp. and Acinetobacter spp. are Gram-negative bacteria that produce AHLs as
their signaling molecules; the composition of AHLs consist of a lactone ring with varying
lengths of aliphatic acyl chain [95]. In addition, these bacteria can also be controlled by
other molecules that depend on S-adenosylmethionine as a substrate for their produc-
tion [89]. Figure 4 demonstrates the different types of AIs that are released by different
bacteria [84,96]. For example, Xanthomonas uses diffusible signal factor (DSF) [97], whereas
hydroxy palmitic acid methyl ester (3-OH PAME) is used by Ralstonia spp. [98].
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Figure 4. Different types of AIs in Gram-positive and Gram-negative bacteria [84,92,96–98].

5. Consequences of Biofilm Formation
5.1. Biofouling

In various industrial fields (including water, food, medical, shipping, and oil in-
dustries), one of the most common problem of biofilm formation is biofouling [99,100].
Biofouling (also known as biological fouling) is generally defined as the unwanted growth
and agglomeration of living organisms on surfaces [101]. Based on recent studies, it is
now widely recognized that biofouling has negative impacts in many industries and can
cost them their profitability [102]. Biofouling in medical industries only involves biofilm
formation, which contrasts with biofouling in marine, manufacturing industries, and
food industries as it involves a combination of biofilm formation, macrofouling, and scal-
ing [103]. The physical and chemical properties of surfaces can influence the extent of
bacterial adhesion [104]. The morphology of biofouling can be distinguished based on the
thickness, bioadhesive strength, density, and type of fouling organisms [103]. For the most
part, biofouling elicits a high cost in various industrial sectors due to its wide range of
detrimental effects. The subsequent subsections review the aforesaid effects in more detail.

5.1.1. Biofouling in Marine Industries

Globally, more than four thousand marine species have been associated with causing
biofouling, subsequently posing a more than a serious threat in marine parks and aqua-
cultures [105–107]. Marine biofouling can be categorized as microfouling (which involves
the accumulation of microorganisms) and macrofouling (which involves the accumulation
of macro-organisms such as invertebrates), which can further be divided into soft and
hard macrofouling [104,108]. Soft macrofouling invertebrates comprise corals, tunicates,
sponges, and hydroids, whereas hard macrofouling invertebrates include mussels, tube-
worms, and barnacles [109,110]. These marine fouling organisms dwell better in temperate
and tropical environmental conditions, but this can fluctuate according to seasonal vari-
ations [111]. According to Lebret et al. [112], marine algae is predominant among these
organisms as they colonize the fastest, adhere to a broad range of surfaces, and produce
numerous metabolites that have antifungal and antimicrofouling properties. Notably, some
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studies have described microorganisms as being involved in biofouling forms microlayers,
which then initiates the adhesion of macro-organisms that can subsequently develop into
macrofouling [100,104,109]. Figure 5 shows the classification of marine biofouling.

Figure 5. Classification of marine biofouling.

Marine biofouling appears as the visible aquatic growth of living organisms on
seashore rocks, ships, boats, buoys, and underwater structures, which over time can
incur physical stress on ship engines, stimulate biocorrosion of ship vessels, and interfere
with mariculture environments [103,107]. A biofilm of 1 mm thickness is able to increase
the friction drag of ship hulls by 80%, resulting in an overall 15% speed loss [113]. Since
biofouling creates surface roughness at ship hulls, this can cause elevated ship resistance,
which increases the fuel consumption (with emission of greenhouse gases), leading to high
maintenance costs. To reinforce this, a study conducted by Baciocco [114] revealed that in
the year 1974, the US Navy spent 200 million dollars to cover shipping maintenance and
marine deterioration costs, both of which were elevated due to biofouling.

Biofouling can accelerate the decay of ship coatings due to the colonization of fouling
marine species, further affecting the ship’s performance (causing unwanted noises, reduced
speed, and an increase in fuel usage). This leads to an increment in unnecessary dry-
docking procedures (a method of ship repair) and repainting, increasing the overall burden
for more maintenance costs [107,111]. According to Munk et al. [115], ship vessel owners
spend millions of dollars every three to five years just to cover the costs for dry-docking
procedures, which involves the replacement of the hull coating, the cleaning of hulls, and
the polishing of propellers. The accumulation of biofouling algae communities on ship
walkways and structures can create a slippery-like coating, which may pose a potential
safety hazard if one is not carefully onboard [103].

5.1.2. Biofouling in Food and Beverage Industries

In the food industry, biofouling is prominent in processing appliances and pip-
ing systems, which gives rise to contamination, poor hygiene standards, corrosion of
food equipment, food spoilage, decreased shelf-life of food products, and foodborne dis-
eases [102,116,117]. This in turn generates functional and hygienic complications with
pronounced financial losses and risks to human health [118]. These foodborne illnesses are
a high risk for those who mostly consume raw food or ready-to-eat (RTE) products [119].
The severity of the diseases can range from mild gastroenteritis to life-threatening compli-
cations including liver abnormalities, meningitis, thrombotic thrombocytopenic purpura,
and many others. The various environmental parameters as well as the EPS favors the
persistence of biofilms in food industries, causing the overall deterioration of biofouling-
susceptible appliances (pipelines, tanks, packing tools, storage materials, dispensing tubes,
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and pasteurizer plates) that are made of metals and alloys [120]. Sixty percent of foodborne
infections were due to biofilm transfer from food-processing equipment to processed food
items (which are then consumed by unsuspecting individuals) [121]. Furthermore, these
surface-attached microorganisms cannot be easily eliminated as they are highly resistant to
antimicrobials, ultimately contributing to severe health risks [102]. Among the various bac-
teria that form biofilms, Escherichia coli has been reported as the most tenacious foodborne
pathogen commonly found in meat industries, vegetable processing industries, and pre-
served products [118]. Other notable bacteria that form resilient biofilms on food surfaces
and are potential foodborne pathogens include L. monocytogenes, S. enterica, C. jejuni, C. coli,
S. typhimurium, S. enteritidis, B. cereus, and Pseudomonas spp. [118–132]. Table 2 summarizes
the various foodborne infections caused by biofilms in different types of food industry.

Table 2. Effects of biofouling in food and beverage industries.

Type of Food Industry Prominent Bacteria Effects References

Dairy Industry

L. monocytogenes
S. typhimurium and S.

enteritidis
E. coli (STEC)

B. cereus

Gastroenteritis or listeriosis
Gastroenteritis

Enterohemorrhagic gastroenteritis or
hemolytic uremic syndrome (HUS)

Gastroenteritis or occasionally acute liver
failure

[120,122,126,129,131]

Poultry Industry S. enterica
C. jejuni and C. coli

Gastroenteritis or septicemia
Enterocolitis or gastroenteritis [120,123,128]

Meat Industry
E. coli O157:H7

L. Monocytogenes
Salmonella spp.

Hemorrhagic colitis or thrombotic
thrombocytopenic purpura (TTP)

Gastroenteritis or listeriosis
Salmonellosis

[118,124,127,130,132]

Fish and Seafood Industry
Vibrio cholerae

Aeromonas spp.
Pseudomonas spp.

Cholera or gastroenteritis
Epizootic ulcerative syndrome (EUS) [119,121,122,125]

5.1.3. Biofouling in Medical Industries

In medical industries, biofouling can occur in medical devices including urinary
catheters, contact lenses, prosthetic implants, breast implants, dental implants, tissue
fillers, cerebrospinal fluid shunts, and biosensors. As the use of these medical devices
increases, the risk of biofilm infections has also increased [133]. Most of these medical
devices are made of polymers, ceramics, and composites materials [18]. Biofouling in
implanted devices initiates soon after the insertion of device, whereby the host-derived
adhesins form a conditional layer and attracts the planktonic cells to attach onto the implant
surface. Following the stages on how biofilm forms, signaling occurs, and the bacteria
persists [134]. Figure 6 shows an example of how biofouling can develop on implanted
medical devices. Biofilms on medical devices can arise from the patient’s skin, healthcare
workers, or the surrounding environment [135]. This can cause various detrimental effects
of medical biofouling, especially implant-related diseases, malfunction of devices, and
implant rejection [103,136].

The malfunction of medical implanted devices results in costly surgical removal
and replacement procedures [137,138]. According to Bixler and Bhushan [103], approxi-
mately 45% of nosocomial infections are attributed to implant-related diseases with over
5000 deaths per annum. The mortality rates associated with these diseases are especially
high for those with contaminated cardiovascular implants i.e., prosthetic heart valves and
aortic grafts [134]. In a US survey, results showed that almost 25% of blood infection-related
mortality resulted from implanted vascular catheters [135]. For the most part, surgical
removal is required for those implants infected by different organisms [134]. In fact, ap-
proximately two-thirds of medical implant-related infections are a result of S. aureus or the
coagulase negative Staphylococci [134].
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Figure 6. Biofouling on medical implant devices.

Apart from that, both the Gram-positive and Gram-negative bacteria can adhere
onto medical devices and form biofilms. Some notable and well-known biofilm-forming
bacteria that can cause medical implant infections include E. coli, P. aeruginosa, C. albicans, K.
pneumoniae, S. aureus, and S. epidermidis [18,103,135]. An adherent biofilm can develop and
lead to acute fungemia. Several studies have shown that the cells detach from a biofilm are
related to mortality and cytotoxicity. Infections caused by Candida spp. are very common
in devices like catheters. Aspergillus spp. are commonly attributed to infections involving
cardiac pacemakers, joint replacements, breast implants, and cardiac valves. Cryptococcus
neoformans can also colonize devices similar to the aforementioned examples and cause
severe infections [139].

5.2. Biofilm-Related Infections

Approximately 65% of infections that are caused by bacteria are associated with
biofilms [17]. Some of the common non-device-related biofilm infections are discussed in
the following subsections.

5.2.1. Periodontitis

Periodontitis is an infection of the gums whereby the soft tissues and the bones
supporting the teeth gets damaged as a result of the infection. This could develop due to
poor oral hygiene, which may also result in tooth loss. The infectious agents behind this
infection are Pseudomonas aerobicus and Fusobacterium nucleatum [17]. These bacteria can
form biofilms in the mucosal surfaces of the mouth. Through this way, they can invade
the cells, release their toxins, and form plaques in a couple of weeks [17]. Moreover, the
formation of lesions may be present due to the infection. The result of the treatment may
be influenced by the size of the lesion [140]. Antimicrobial treatment is enough in the case
of minor infections, but special treatment may be required when the infection becomes
severe [141].

5.2.2. Rhinosinusitis

The inflammation of the paranasal sinuses is referred to as sinusitis or rhinosinusitis.
Depending on the severity of the infection, it can be classified as acute or chronic. It is said
that most of this infection is caused by the colonization of bacteria. However, some studies
have also stated that fungal biofilms might also be involved. Both Aspergillus fumigatus and
Staphylococcus aureus have been discovered to be involved in causing rhinosinusitis [142]. It
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has also been stated that the patients that have undergone surgical procedures are more
likely to be infected with the infection related to biofilms. Biofilms are formed in the
presence of more eosinophil cells. Moreover, bacteria such as P. aeruginosa, S. pneumoniae,
S. aureus, and H. influenza are also involved in causing chronic rhinosinusitis [143]. The
most dominant species is S. aureus, which was proven in a study conducted by Schur-
mann et al. [144]. It was further concluded that most of the chronic rhinosinusitis infections
are associated with microbiomes comprising of multiple different species.

5.2.3. Cystic Fibrosis (CF)

Cystic fibrosis is an autosomal recessive disease caused by a mutation in the gene
coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The
most affected areas are the gut and pancreas in which there is a failure to remove the
mucous secretions. It mainly involves constant coughing, and the lungs tend to be more
prone to infections [145]. Almost 80% of infections seen in cystic fibrosis are related to
biofilms. The lung environment of a CF patient is favorable to P. aeruginosa and that is why
the bacterium is able to dominate in the airways. Their resistance to antibiotics occurs due
to increased production of EPS [146]. Studies have shown that the presence of the microbial
agent leads to poor prognosis in CF patients. P. aeruginosa is able to form drug-resistant
biofilms, which makes antibacterial therapy useless [147,148].

6. Use of Bioactive Compounds as Antibiofilm Agents

The vital principle in developing strategies to control biofilms is by first understanding
the mechanisms involved in biofilm resistance [149,150]. Biofilms are difficult to control
due to their ‘resistant’ nature that can develop from the attachment phase and increase as
they age (varies among different microorganisms) [151–153]. More so, the antimicrobial
resistance in biofilms is 100 to 1000 times more than their correspondent planktonic cell
forms [154]. There are various mechanisms responsible for antimicrobial resistance in
biofilms. Donlan [155] inferred in his study the different means by which biofilm develop
resistance and these included the changes in cellular growth rate, whereby the growth
of sessile cells is much slower than the planktonic cells during formation, and this pro-
duces the dormant cells, which recede the antimicrobial uptakes. He added the relative
impermeability of antimicrobial molecules due to the matrix materials; acting as a barrier
which results in antimicrobial hinderance. A good example is in CF patients, in which
P. aeruginosa overproduces EPS and forms a sticky mucoid biofilm that protects the cells
from opsonization by host antibodies and also prevents the diffusion of antimicrobials
to the target cells. Other factors may include the phenomenon of persister cells, which
form a subpopulation of persistent cells that are multi-drug resistant [153]. For instance,
Candida albicans predominant in oral thrush biofilms have high persister (hip) mutants
that resists antimicrobial therapies [156]. In addition, Del Pozo and Patel [149] stated that
horizontal gene transfer plays a role in multidrug resistance within biofilms, and they also
described how stress-response genes may be upregulated (forming resistant phenotypes)
due to changes in environmental conditions (such as nutrients, oxygen, pH, and temper-
ature). To illustrate, Pseudomonas aeruginosa develops antimicrobial resistance to cationic
antimicrobials e.g., Polymyxin B (PXB) due to nutritional loss of magnesium ions as well as
β–lactam resistance in Escherichia coli due to iron limitations [157]. Figure 7 summarizes
the four main mechanisms that are involved in antimicrobial resistance in biofilms.

The conventional physical and chemical methods applied in treating biofilms have
been rendered ineffective and result in environmental pollution. There is a need for new
strategies against biofilm due to their increased resistance against antimicrobials and host
immune system [158]. Biological control of biofilms employs certain mechanisms (from
living matter, microorganisms, or microbes within the biofilm itself) in order to interfere
with their existence [118]. This strategy is mainly to target the QS, degrade the extracel-
lular matrix, inhibit microbial adherence, and eliminate persister cells. Various natural
compounds are of great interest in drug discovery due to their enormous advantages and
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are derived from plants, fungi, bacteria, and other animals [159]. Table 3 summarizes the
types of bioactive compounds, sources, target bacteria, and their respective strategies in
inhibiting biofilm formation. The subsequent subsections focus on the use of non-toxic and
natural antibiofilm agents as a promising biological control method for biofilm inhibition.

Figure 7. Mechanisms of antimicrobial resistance in biofilms.

6.1. Plant-Derived Bioactive Compounds
6.1.1. Phenolics and Polyphenolics
Flavonoids

Flavonoids are phenolic compounds (predominant in photosynthesizing cells) that
are mostly found in fruits, vegetables, nuts, flowers, wine, and tea [159,160]. Their basic
structure comprises two benzene rings linked by three carbon atoms, which forms an
oxygenated heterocyclic ring. Flavonoids are further divided into sub-classes based on their
type of heterocyclic ring, including isoflavonoids, 3-phenyl-benzopyrans, neoflavonoids,
and 4-phenyl-benzopyrans [161]. It is well-established and evidently documented that
flavonoids exhibit various bioactive effects such as antibacterial, antifungal, antiviral, and
antiprotozoal activities [162,163]. They have been utilized as therapeutics used to treat a
number of diseases [160]. It is known that their activity is a result of their capability to
bind with extracellular and soluble proteins, which increases their permeability to bind to
bacterial cell walls [159]. In fact, those with high lipophilic content also disrupt bacterial
membranes. Kaempferol and naringenin (flavonoids present in citrus plant) are effective as
QS inhibitors against Escherichia coli O157:H7 and Vibrio harveyi BB120 by interfering with
AHLs and their receptors [164,165]. Another possible mechanism of biofilm inhibition by
flavonoids is reported by Valsaraj [166], whereby 7-hydroxy-3,4-(methylenedioxy) flavan
derived from the fruit peel of Terminalia bellirica had an antifungal property against Candida
albicans by interfering with their metabolism. Catechin derived from green tea has also
exhibited antibacterial activity that interfere with biofilm formation of Porphyromonas
gingivalis by forming complexes with bacterial cell walls of the microorganisms [167].
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Phloretins that are isolated from apples have been reported to inhibit biofilm-forming
E. coli O157:H7 without inhibiting planktonic cells growth [168].

Tannins

Tannins are one of the major phytochemicals distributed in various parts of plants
such as bark, wood, leaves, fruits, and roots [159]. The pharmacological effect of tannins
lies in the type of plant, evidently utilized as antibacterial, antiviral, antioxidant, and
antihelminth remedies [169]. Based on their physiochemical properties, tannins are divided
into either hydrolysable or condensed types. Antibacterial properties of tannins have been
described as bactericidal and bacteriostatic against common pathogens including E. coli,
Salmonella spp., Pseudomonas spp., Streptococcus spp., and Staphylococcus spp. [159]. Tannins
primarily inhibit bacteria by forming complexes with their polysaccharides. In addition,
the mechanism of tannins in biofilm inhibition is the inactivation of microbial adhesins,
enzymes, and membrane proteins [159]. A study by Lee et al. [170] found that tannic
acids (TAs) can inhibit biofilm formation of S. aureus by suppressing the genes (agrA, icaA,
and icaD) that are responsible for bacterial adhesion. Hamamelitannins (isolated from
Hamamelis virginiana leaves) were also found to have antibiofilm activity against medical
implanted device-related infections through QS regulator RNAIII inhibition [171].

Phenolic Acids

Phenolic or phenol carboxylic acids are found in a variety of plant-based foods es-
pecially seeds, fruit peels, and vegetable leaves, which consist of the highest amounts.
They can be classified into hydroxycinnamic acids (caffeic and sinapic acids) and hydroxy-
benzoic acids (vanillic and syringic acids). Phenolic acids have diverse biomedical uses
including antioxidant, anticancer, antimicrobial, and anti-inflammatory [172]. The potential
of bacterial inhibition is based on the number and position of the hydroxyl groups on their
aromatic rings [159]. The antibacterial activity of phenolic acids is due to their capability
to inhibit nucleic acid synthesis, inhibit bacterial enzymes, and penetrate cytoplasmic
membranes of bacteria [159]. Research by Sánchez-Maldonado et al. [173] discussed the
use of hydroxycinnamic and hydroxybenzoic acids as an effective antibacterial against
lactic acid bacteria, L.fermentum, L.plantaruma, and L.brevis in which their activity was
dependent on number of hydroxyl groups. Besides that, gallic and ferulic acids were also
shown to be effective against P. aeruginosa, E. coli, L. monocytogenes, and methicillin-resistant
Staphylococcus aureus (MRSA) [173].

Coumarins

Coumarins (naturally found in numerous plants) are volatile active compounds,
which comprise fused benzene and pyrone rings [174]. These compounds have many
important bioactive properties, including antimicrobial, analgesic, and anti-inflammatory
activities [175]. Some common coumarins (including esculetin, scopoletin, coladonin,
psoralen, umbelliferone) have been reported to inhibit the formation of P. aeruginosa.
Moreover, umbelliferones were found to display antibiofilm activity against E. coli 0157:H7
but they do not inhibit planktonic growth [176]. Furocoumarins from grape juice could
inhibit autoinducer-1 and autoinducer-2 signaling against TN5 mutants of Vibrio harveyi
and they are also able to repress E. coli biofilm formation through QS inhibition [177]. Some
of the coumarins have also been reported to have inhibitory effects against Candida albicans
and can be used to cure vaginal candidiasis [174].

6.1.2. Alkaloids

Alkaloids are heterocyclic nitrogen compounds produced by several plants. The first
clinically relevant alkaloid was discovered in 1805 from the opium P. somniferum, which
was widely applied in treating medical conditions [159,174]. Berberine isolated from the
roots and stems of berberis has been used as a folk medicine due to its antibacterial, anti-
fungal, antiviral, and antiprotozoal properties. It is known to target the RNA polymerases
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and nucleic acids of several microorganisms [178,179]. Indole alkaloids derived from
ethanolic extracts of Terminalia chebula was proven to be an effective antibacterial against
most common multi-drug resistant (MDR) strains such as P. aeruginosa, E. coli, S. aureus,
A. tumefaciens, and B. subtilis. [180].

6.1.3. Terpenoids and Essential Oils

Terpenoids or terpenes are among the largest groups of phytochemicals, which can
be further divided to monoterpenoids, diterpenoids, and sesquiterpenoids, among others
based on their carbon building blocks. They are the main class of the constituents of
essential oils (EO), which are reported frequently over the years due to their diverse
bioactivities [159]. These EOs (when comprised with oxygen synthesized from acetate
units) make up the terpenoids, which share a common origin with fatty acids [174]. Their
mechanism against biofilms is not fully understood but some studies have postulated that
it is a result of membrane disruption by the lipophilic components. This in turn elevates
membrane permeability and change of ion transport processes in both Gram-negative and
Gram-positive bacteria [159,160]. Thymoquinone, a constituent of black seed oil isolated
from Nigella sativa, is more inclined towards Gram-positive biofilm inhibition of S. aureus
and L. monocytogenes as compared to Gram-negative biofilms. This is discussed in a similar
study done by Szczepanski and Lipski [181] that have reported no inhibition of Gram-
negative proteobacteria such as S. enterica and P. aeruginosa by EOs. Gossypols derived from
cotton seeds have been reported to inhibit Gram-negative bacteria including P. vulgaris,
E. coli, and P. aeruginosa as well as several Gram-positive bacteria including S. epidermidis,
B. subtilis, and B. cereus [159].

6.1.4. Lectins

Lectins are carbohydrate-binding proteins comprising of disulfide bonds occurring
in multiple plants tissues such as the leaves, barks, bulbs, fruits, and flowers. Their mech-
anism is attributed to the formation of ion channels in mitochondrial membrane [174].
The families of lectins include the legume, chitin-binding, mannose-binding, and jacalin-
related lectins, which do not share a common structure but rather differ in structures,
sizes, molecular organization, and active sites although having the same activity of bind-
ing to carbohydrates promoting antibacterial effects [159]. Their mechanism of action is
through the interaction with bacterial cellular wall components including peptidoglycans,
lipopolysaccharides (LPS), teichoic, and teichuronic acids [182–184]. When they interact
with bacteria, lectins affect their adherence and therefore interferes with biofilm formation
(as well as planktonic growth). Lectins extracted from the seaweed Solieria filiformis have
been reported to reduce the growth of planktonic cells of P. aeruginosa as well as other
Gram-negative species. Moreover, lectins can also be isolated from algae and show similar
results. To reinforce, lectins derived from the red algae B. triquetrum are able to inhibit
Streptococcus spp. through attachment to their pellicle [185]. Furthermore, some lectins are
non-selective in their inhibitory effects towards Gram-positive and Gram-negative bacteria
including E. coli, S. aureus, B. subtilis, P. aeruginosa, and Klebsiella spp. Some researchers
have reported that lectins isolated from Myracrodruon urundeuva had increased specificity
for N-acetylglucosamine, indicating more antibacterial effects against Gram-positive than
Gram-negative bacteria [186].

6.1.5. Peptides

Antimicrobial peptides (AMPs) are short (15 to 30 amino acids) and positively charged
peptides that are present in all living organisms [159,187]. With regard to their size, pri-
mary structure, and cysteine content, plant AMPs can be divided into distinct families
such as thionins, lipid transfer proteins, defensins, snakins, hevein, and knottin-like pro-
teins [188–190]. Many AMPs exhibit a wide range of antimicrobial activity against bacteria,
fungi, viruses, and protozoa. They display strong antibiofilm activity against the MDR
strains as well as various clinically isolated pathogens [191].
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Their mechanism of action mainly involves the interaction with membranes of bacteria,
disruption of membrane, and intracellular targets within bacterial cells [187]. AMPs target
the intracellular structures, which result in the alteration of metabolic processes, including
protein synthesis and cytosolic enzyme activity inhibition [192,193]. In order to penetrate
bacterial membranes, the length, hydrophobicity, charge, and amphipathic structure of
AMPs are taken into consideration [194,195]. Since AMPs are mostly cationic, they interact
with negatively charged components of bacteria, including lipopolysaccharides and teichoic
acids. Most membrane-active AMPs that eliminate planktonic growth also have effect
on biofilm formation at low concentrations. The partial replacement of L form to D form
amino acids is known to increase antibacterial activity against planktonic cells since it
tends to promote peptide resistance against protease degradation and reduce hemolytic
activity [196]. This is evident in the inhibition of biofilms in every stage throughout their
development cycle. There is great attention paid to the use of AMPs (such as LL-37) as
therapeutic agents due to their capability to inhibit biofilm formation [197].

A recent study has shown that RsAFP2 plant defensins (isolated from the seeds of
Raphanus sativus) are effective against C. albicans biofilm formation. The same study found
that TnAFP1 (from Trapa natans, water chestnut) can also inhibit C. tropicalis biofilm for-
mation in a concentration-dependent manner [198]. Circulins A-B (derived from Chassalia
parviflora) and cyclopsychotride A (from Psychotria longipes) were documented to have
antimicrobial activity against many common pathogenic bacteria such as Klebsiella spp.,
E. coli, S. aureus, P. vulgaris, and M. luteus [199–201].

6.2. Animal-Derived Bioactive Compounds
6.2.1. Chitosan

Chitosans are polyaminosacchrides derived from the deacetylation of chitin, which nat-
urally occurs in the exoskeleton of shellfish such as crab, lobster, shrimp, and prawn [202].
Owing to its biocompatibility and biodegradability properties, chitosan is known for its
antimicrobial properties (bacteriostatic and bactericidal effects) against the majority of
bacteria. More so, it exhibits antibiofilm activity through several mechanisms such as the
inhibition of protein synthesis, binding to the bacterial cell wall, and the suppression of
bacterial growth by external barrier formation [203,204]. The cationic nature of chitosan
allows it to penetrate and interact with the negatively charged cell membrane surface,
subsequently interfering with biofilm formation [203]. As explained by Goy et al. [205],
the inhibition of protein synthesis occurs through the penetration of chitosan into the
nuclei of microorganisms where these chitosan oligomers can then be observed inside the
bacteria through a confocal laser scanning microscope. The mode of suppression of spore
elements and binding to vital nutrients help inhibit the bacterial growth as reported. The
extent of chitosan biological activity depends on the molecular weight and the degree of
acetylation [205]. To illustrate, studies conducted with differences in molecular weight on
E. coli, S. aureus, S. enterica, B. subtilis, B. cereus, and K. pneumoniae showed that a lower
chitosan molecular weight resulted in increased growth inhibition. Likewise, a lower
degree of acetylation resulted in increased antimicrobial activity [205]. Research by Orgaz
and coworkers [206] was done to exploit the effectiveness of chitosan against four mature
biofilms and their planktonic cells including S. enterica, S. aureus, L. monocytogenes, and
B. cereus. The results showed higher susceptibility for the biofilm cells as compared to
planktonic cells except for S. aureus. Chitosan and its derivatives have been applied in the
protection of implanted medical devices (made of pure titanium) against biofilm-forming
microorganisms, in which S. epidermidis and S. aureus have shown complete shrinkage of
the bacterial cells [207]. Some studies have also proposed the use of chitosan as a carrier
for antibiofilm drugs since it can enable the effective, prolonged, and controlled release of
the aforesaid drugs [207].
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Table 3. Types of bioactive compounds and their strategies in biofilm inhibition.

Type of Compound Class/Subclass Source Target Microorganism Antibiofilm Strategy References

Flavonoids

Kaempferol and Naringenin Citrus plants E. coli O157:H7, QS inhibition by interfering with AHL
and their receptors [164,165]V. harveyi BB120

7-hydroxy-3,4-
(methylenedioxy)

flavan
Terminalia bellirica fruits C. albicans Metabolism inhibition [166]

Catechin Green tea P. gingivalis Forms complexes with bacterial cell
walls of microorganisms [167]

Phloretin Apple E. coli O157:H7 - [168]

Tannins
Tannic acid Tea S. aureus Suppression of QS genes involved [170]

Hamamelitannin Hamamelis virginiana leaves - QS regulator RNAIII inhibition [171]

Phenolic Acids

Hydroxycinnamic and
hydroxybenzoic acids - L. fermentum, L. plantaruma, L. brevi Dependent on number of hydroxyl

groups [173]

Gallic and ferulic acids -
P. aeruginosa, E. coli, L. monocytogenes,

methicillin-resistant Staphylococcus aureus
(MRSA)

- [173]

Coumarins
Umbelliferone - E. coli O157:H7 - [176]

Furocoumarins Grape juice Vibrio harveyi, E. coli O157:H7 Inhibition of QS molecules, AI-1 and
AI-2 [177]

Alkaloids

Indole alkaloids Terminalia chebula P. aeruginosa, E. coli, S. aureus, A.
tumeficaens, B. subtilis, - [180]

Berberine Berberis roots and stems - Target the RNA polymerases and
nucleic acids of microorganisms [178,179]

Terpenoids and
Essential Oils

Thymoquinone Nigella sativa S. aureus, L. monocytogenes - [181]

Gossypols Cotton seeds P. vulgaris, E. coli, P. aeruginosa, S.
epidermidis, B. subtilis, B. cereus - [159]

Lectins
- Solieria filiformis P. aeruginosa - [185]

- B. triquetrum Streptococcus spp. Attachment to the pellicle [185]
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Table 3. Cont.

Type of Compound Class/Subclass Source Target Microorganism Antibiofilm Strategy References

Peptides
RsAFP2 Rhapanus sativus seeds C. albicans - [198]
TnAFP1 Trapanatan fruits C. tropicalis

Peptides
Circulins A-B Chassalia parviflora Klebsiella spp., E. coli, S. aureus, P. vulgaris,

M. luteus
- [199–201]

Cyclopsychotride A Psychotria longipes

Chitosan Chitin Shell of shrimp, lobster, crab
and prawns

S. enterica, S. aureus, S. epidermidis, L.
monocytogenes, B. cereus.

Inhibition of the protein synthesis,
binding to the bacterial cell wall and
suppression of bacterial growth by

external barrier formation

[203,204,206]

Hyaluronic Acid - - S. epidermidis Inhibition of microbial adherence [208]
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6.2.2. Hyaluronic Acid

Hyaluronic acid (HA) is a glycosaminoglycan consisting of glucuronic and N-acetylgl-
ucosamine disaccharide blocks that are mostly abundant in skin and connective tis-
sues [208]. Based on its concentration and molecular weight, HA has the ability to in-
terrupt bacterial adherence and biofilm formation. A study to report the biofilm activity
of hyaluronic acid was done against S. epidermidis whereby it was able to disrupt the
bacterial adherence and exhibited antifouling properties [208]. Another study reported
that the concentration of HA greatly influences its biofilm activity and results inferred
S. aureus biofilm to be sensitive against HA action as compared to other respiratory tract
pathogens [209]. Although there is not much research done on hyaluronic acid, HA is
utilized for the coating of implanted medical devices that acts as a protective barrier against
biofilm-related diseases, thereby reducing the chances of biofouling. In addition to that,
some studies have reported the bacteriostatic effects of HA against various oral cavity
pathogens [210,211].

7. Conclusions and Future Perspectives

There is a crucial need for developing new therapeutic strategies that can be effective
against biofilm-related infections as well as biofouling in industries. The extent of biofilm-
associated effects result in enormous costs to society, approximately billions of dollars
per annum, and in severe cases, the related infections may lead to death. Since then, the
conventional methods used have been rendered ineffective due to the increased multi-
drug resistance of microorganisms. Understanding the mechanisms involved in MDR
assists in developing compounds to specifically target those mechanisms and thus prevent
and control biofilm formation in general. The use of plant- and animal-derived bioactive
compounds have shown to be effective against Gram-positive and Gram-negative bacteria
as well as other biofilm organisms, which is considered to be safer as compared to physical
and chemical control methods. In the future, we hope that these bioactive compounds
can be translated into potential antibiofilm drugs, which could act as promising models in
combatting the various biofilm/biofouling organisms.
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