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The mammalian circadian clock is well-known to be important for our
sleep–wake cycles, as well as other daily rhythms such as temperature regu-
lation, hormone release or feeding–fasting cycles. Under normal conditions,
these daily cyclic events follow 24 h limit cycle oscillations, but under some
circumstances, more complex nonlinear phenomena, such as the emergence
of chaos, or the splitting of physiological dynamics into oscillations with
two different periods, can be observed. These nonlinear events have been
described at the organismic and tissue level, but whether they occur at the
cellular level is still unknown. Our results show that period-doubling,
chaos and splitting appear in different models of the mammalian circadian
clock with interlocked feedback loops and in the absence of external forcing.
We find that changes in the degradation of clock genes and proteins greatly
alter the dynamics of the system and can induce complex nonlinear events.
Our findings highlight the role of degradation rates in determining
the oscillatory behaviour of clock components, and can contribute to the
understanding of molecular mechanisms of circadian dysregulation.
1. Introduction
Circadian clocks are important in the coordination of physiological rhythms in
many organisms including cyanobacteria, fungi, plants, insects and mammals
[1,2]. The period of the circadian clock is approximately 24 h [3], but ranges
from 19 to 20 h in some spider species [4] to more than 24 h in humans [5,6].
Importantly, the circadian clock can be synchronized to external Zeitgebers,
such as light–dark and temperature cycles. The resulting entrainment provides
evolutionary advantages, for example by enabling organisms to adapt to the
24 h day–night rhythm [7,8]. Molecular circadian rhythms are generated by
gene-regulatory feedback loops [9,10], which are even observed in single cells
[11,12]. Such single cell circadian oscillators are organized into tissue networks
which are then hierarchically arranged to constitute the mammalian circadian
timing system.

Mammalian circadian clocks can be regarded as a systemof coupled nonlinear
oscillators. It is well-known from the theory of nonlinear dynamics that coupled
oscillators can generate limit cycles, tori, period-doubling and even chaos [13–15].
Although, strictly speaking, limit cycles are inherently nonlinear phenomena,
we use this term to refer to more complex dynamics, namely toroidal oscillations,
period-doubling and chaotic dynamics. The quantification of complex nonlinear
phenomena, such as beating envelopes or chaotic oscillations, is difficult in
chronobiology because of the need of long-term recordings,which are a limitation
in most experimental setups. Thus, in the absence of accurate long-term and
stationary recordings, it is challenging to apply established attractor theory
and analysis [16–20]. Most circadian clock models have focused on the
mechanisms of rhythm generation [21–25], on synchronization [26,27] and on
entrainment to Zeitgeber signals [28–32]. Only a few modelling studies have
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Figure 1. Dissociation or ‘splitting’ of circadian rhythms. (a) Dissociation of circadian rhythms, indicated by the two clocks, has been shown to occur under some
circumstances both at the organismic and tissue level [2,3,33,36–40], but still requires validation at the molecular level. (b) Evidence for rhythm dissociation in
mouse neonatal SCN. Simulated sine waves with the period values obtained from Bmal1-ELuc and Per1-luc rhythms in mouse neonatal SCN harbouring two repor-
ters, namely 22.7 h (Bmal1-Eluc) and 23.1 h (Per1-luc) [39]. Reporter rhythms have been simulated to appear initially in phase, so that the period difference
becomes more evident.
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been devoted to characterize experimentally observed tori,
period-doubling and chaos, yet still in the presence of external
forcing [28,32–35].

On the organismic level, chronobiological research has
revealed certain complex nonlinear phenomena in unforced
systems. Some examples are the dissociation of activity
rhythms from oscillations in melatonin, body temperature
and urine production [2,6,36], or the coexistence of two periods
in behavioural activity recordings, which is termed ‘splitting’
in the literature (figure 1a) [33,37,38]. Nevertheless, complex
nonlinear phenomena at the molecular level in mammalian
circadian clocks have only been suggested. Experimental
and computational studies have shown that rhythmic clock
reporter signals, which apparently should have the same
period over time, dissociate in the SCN at least transiently
(figure 1b) [31,39,40]. Moreover, it has been suggested that
the divergent rhythms might be traced back to single cells, in
which different feedback loops could be responsible for the dis-
tinct periods [31,39]. The observations on splitting, however,
still require validation, ideally with double-transgenic cellular
systems harbouring two reporters of different colours.

At the single cell level, the molecular circadian clock
is explained by auto-regulatory transcription–translation
feedback loops, in which protein products regulate the tran-
scription of their own genes, either alone or in combination
with other clock proteins. The clock proteins that were initially
found as primary generators of mammalian circadian rhythms
were BMAL1, CLOCK, PERs and CRYs [10]. BMAL1 and
CLOCK are usually defined as activators that induce the
transcription of PERs and CRYs, while these proteins in turn
repress the CLOCK : BMAL1 complex and thus establish nega-
tive feedback loops [9,10]. A numberof studies have focused on
the roles of CLOCK : BMAL1 and PER : CRY in the generation
of oscillations.Nevertheless, in the last decades, additional core
clock proteins have been identified such as REVERBs, RORs
and E4BP4, among others. These clock proteins interact with
each other by different positive and negative feedback loops,
including the BMAL1-REVERB loop in addition to the well-
known PER-CRY loop [25,41–43]. Interestingly, several studies
have pointed to the fact that the relevance of specific loops in
rhythm generation might be tissue-dependent [44–46]. The
growing pool of identified regulators for circadian oscillations
and their corresponding feedback loops stress the fundamental
importance of synergistic loops, that seem to confer robustness
to the clock [35].

Experimental evidence has shown that expression of clock
genes occurs via a regulated interaction of clock proteins
with promoter regions of their target genes, namely D-boxes,
REVERB/ROR-binding elements (RREs) and E-boxes, the
so-called clock-controlled elements (CCEs) [43,47–49]. Binding
of clock proteins to the different CCEs results in activation
or repression of promoter elements, and consequently in the
establishment of an intricate network of feedback loops
[50–52]. Activation and repression of the distinct CCEs has
been demonstrated to play an important role in the regulation
of amplitude and transcriptional delay required for the gener-
ation of approximately 24 h oscillations [43]. Moreover, both
timing and the order of regulation of such promoter elements
seem to be critical for the phase of circadian oscillations [53].

Here, we address the question of whether the well-known
coexistence of multiple feedback loops can generate complex
nonlinear phenomena. We study data-driven models of gene-
regulatory networks representing the mammalian circadian
clock at the molecular level. As alterations in protein degra-
dation rates are known to play a role in the oscillator’s
properties [41,54–56], we perform comprehensive bifurcation
analyses to determine how changes in degradation rates
affect oscillation dynamics. Using physiologically relevant
parameters, we find that the interaction of multiple feedback
loops can generate period-doubling, tori and deterministic
chaos even in the absence of external forcing.
2. Results
2.1. Core-clock models exhibit multiple negative

feedback loops
We chose recent models of the mammalian core clock of
different mathematical structure and complexity that included
at least two negative feedback loops as well as the core
clock genes BMAL1, PER and REVERB. Figure 2a shows a
protein-based model of the molecular mammalian circadian
clockwork, including activation and inhibition of different
CCEs. This model was developed by Almeida et al. [57] and
is described by eight ordinary differential equations (ODEs)
(appendix A) [57]. Here, BMAL1 (in complex with other pro-
teins) drives the E-box dependent expression of clock genes,
including PER, CRY, REVERB, ROR and DBP. CRY, alone
and in complex with PER, inhibits BMAL1 activity (and
other E-box containing genes) after a time delay [58,59]. At
the same time, the BMAL1 and PER : CRY complexes can be
inactivated and degraded [50,51]. Following translation, ROR
and REVERB proteins compete to bind RREs at promoter
regions of BMAL1. ROR acts as an activator and REVERB
as an inhibitor. In short, the model in figure 2a contains
three negative feedback loops, exerted by CRY, REVERB and
PER : CRY on BMAL1, and one positive feedback loop
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Figure 2. Circadian clock models exhibit multiple feedback loops. (a) Molecular mechanisms of the mammalian circadian clock in a schematic overview, as published
by Almeida et al. [57]. (b) Simplification of the model in (a) to its core motif (details in appendix B). All names in (a) and (b) represent proteins, coloured arrows
indicate positive (green) and negative (red) regulations of proteins on expression of other proteins. (c) Scheme of the transcription-based DDE model published by
Schmal et al. [31], names represent different gene products. See the main text for details.
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mediated by ROR and BMAL1. Figure 2b shows a condensed
representation of the model in figure 2a, where variables
and feedback loops that are not required for rhythm generation
are removed [25,57] (details of the model reduction are
found in appendix B). The result is a four ODE model with
only two negative feedback loops (BMAL1–REVERB and
BMAL1–PER:CRY).

In order to validate whether nonlinear phenomena can
arise in models of the molecular circadian clockwork, we
took a third model of different complexity and mathematical
structure. The model in figure 2c is a transcription-based
model, displaying two negative feedback loops described in
three delay differential equations (DDEs). This model is
motivated by indications of an autonomous regulation of
the Per-loop, independently of the Bmal1–RevErb loop [31].
Despite their differences, all models contain at least two nega-
tive feedback loops, long delays and nonlinearities, three
features that are essential for rhythm generation [30,60,61].

2.2. Different circadian clock models exhibit
self-sustained oscillations with a circadian period

We numerically simulated the ODEmodels with the published
parameter values [57], and performed control analysis on the
eight ODE model to assess the effect of parameter changes on
the oscillation period (appendix C). We found that the
oscillation period strongly depended on the degradation rates
of REVERB, E4BP4 and DBP (figure 10). Since the period of
the ODE models was approximately 20 h [57], we tuned the
degradation rate of REVERB (γREV) to set the period to approxi-
mately 24 h. Simulations of the three DDE model with the
published parameter set yielded 24 h oscillations [31]. The
time series solutions of the eight ODE and three DDE models
are shown in figure 3. The phase relationship between proteins
(figure 3a) or transcripts (figure 3b) is in agreement with
previous ChIP-Seq and proteomics results [53,62].
2.3. Bifurcation analyses reveal period-doubling and
deterministic chaos in the complex ODE model
but not in the reduced ODE model

Experimental and computational experiments have shown
that alterations in clock protein and mRNA metabolism
highly influence the oscillatory behaviour of the cellular circa-
dian oscillator [22,63]. For example, familial advanced sleep
phase syndrome (FASPS), a sleep disorder characterized by
recurrent patterns of early evening sleepiness and early
morning awakening, is associated with a mutation in PER2
that leads to its faster degradation and a shorter circadian
period [54,64]. To analyse whether changes in degradation
rates had an effect on the nonlinear behaviour of oscillations,
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Figure 3. Different circadian clock models exhibit self-sustained oscillations with a circadian period. (a) Limit cycle oscillations obtained by numerical integration of
the eight ODE model (equations shown in appendix A). The oscillation period is 24.8 h for the following parameter values: VR = 44.4 h−1, kR = 3.54, kRr = 80.1,
VE = 30.3 h−1, kE = 214, kEr = 1.24, VD = 202 h−1, kD = 5.32, kDr = 94.7, γror = 2.55 h−1, γrev = 0.4 h−1, γp = 0.844 h−1, γc = 2.34 h−1, γdb = 0.156 h−1, γE4 =
0.295 h−1, γpc = 0.19 h−1, γcp = 0.141 h−1 and γbp = 2.58 h−1. (b) Limit cycle oscillations obtained by numerical integration of the three DDE model (equations
shown in appendix A). The oscillation period is 24 h for the following parameter values: dP = 0.25 h−1, dB = 0.26 h−1, dR = 0.29 h−1, vP = 1, vB = 0.9, vR = 0.6,
kP = 0.1, kB = 0.05, kR = 0.9, cP = 0.1, cR = 35, bP = 1, bR = 8, TP = 8.333 h, TR = 1.52 h and TB = 3.652 h. All time series are normalized to their means.
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bifurcation analyses were performed on all model parameters
using continuation software [65].

The bifurcation plots of the eight ODE model are shown in
figure 11 (appendix D). Most of the parameter changes resulted
in classical supercritical Hopf bifurcations, in which the system
changed from a stable steady state into a stable limit cycle.
However, changes in the degradation rate of CRY (γc) revealed
more complex nonlinear phenomena (figure 4, electronic sup-
plementary material, video A1). CRY plays an essential role in
the circadian clock: by itself, it represses E-boxes; and together
with PER, it contributes to the inhibition of CLOCK : BMAL1
by a number of post-translational processes and nuclear
export of the macromolecular complex [53,58,59]. Moreover,
the differential role of homologues (CRY1, CRY2) as well as
the severe arrhythmic phenotypes of CRY mutants stresses
the biological relevance of CRY in the regulation of circadian
oscillations [35,58]. This motivated us to analyse the effect of
changes in γc on the oscillatory behaviour of the model. The
results in figure 4a show how the dynamics of the different
model species change with γc. We found period-doubling in
the eight ODE model for γc = 1.4 h−1 (middle panel), and
chaos for γc = 1.1 h−1 (bottom panel). We illustrate the dynamic
behaviour in four different ways, namely as time series (first
panels from left to right), as phase portraits (second panels),
as return maps (third panels) [66] or as power spectra (right
panels). Furthermore, a one-dimensional bifurcation diagram
for γc and two-dimensional bifurcation plot exploring the γc–
γREV parameter space are depicted in figure 4b,c, respectively.
Figure 4c shows the regions in which nonlinear phenomena,
namely period-doubling (magenta), period-quadrupling
(cyan) and chaos (orange), occur.

To determine if interlocked feedback loops are required
for complex nonlinear phenomena to arise, we performed
bifurcation analyses on the simplified four ODE model. To
our surprise, and despite the similarities of the two ODE
models, we did not observe period-doubling cascades or chao-
tic attractors (figure 5, figure 12, appendix E). Nevertheless,
the oscillation onset via subcritical Hopf bifurcations when
changing most of the parameters indicated that stable steady
states and stable limit cycles coexist in certain parameter ranges
(figure 12, appendix E). Taken together, our results suggest that
the cooperating feedback loops of the eight ODE model are
essential for the development of nonlinear phenomena.

2.4. Bifurcation analysis reveals that the dynamics of
clock proteins can ‘split’ in the three DDE model

In order to gain insights into how nonlinear phenomenamight
arise, and thus investigate whether such phenomena might be
a common feature of circadian clock models or rather model-
specific, we examined the simpler DDE model. Using compre-
hensive bifurcation and power spectral analyses, we studied
how changes in parameters affected the dynamics of the
three variables. The bifurcation analyses revealed the existence
of robust tori upon variations in the degradation rates of Bmal1
(dB), RevErb (dR) and upon changes in the rate of activation of
RevErb expression (kR). The results of dB are shown in figure 6a,
again as time series, phase portraits, return maps and power
spectra, and in electronic supplementary material, video A2.

Toroidal dynamics are generated by two limit cycles of
different frequencies. They are characterized by doughnut-
shaped phase portraits and circular return maps [13]. Regard-
ing power spectra, limit cycles can be distinguished from tori
by the number of frequency peaks found in the spectrum.
Whereas limit cycles show just one peak (and its subsequent
harmonics), tori show more than one, which is why the litera-
ture also uses the term ‘splitting of periods’ [33,67].

We illustrate that such period-splitting phenomenon can
occur for Bmal1 and RevErb dynamics in the DDE model in
figure 6b and figure 13. In brief, figure 6b shows power spectra
for numerical simulations which are run for different dB values
(shown in the x-axis). Power spectra are colour coded, and thus,
each vertical coloured line from the figure (i.e. each column)
represents one power spectral density plot, for a certain par-
ameter value. Below a certain parameter value threshold,
variations in degradation rates of Bmal1 (dB), RevErb (dR) and
changes in kR, did not affect the robust rhythms, and the
three variables oscillated with a 24 h period. However,
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when the threshold was reached (dB∼ 0.36 in figure 6b), we
observed the splitting of the dynamics. A second frequency,
different to the 24 h period, appeared to dominate RevErb
and Bmal1 dynamics, resulting in the toroidal dynamics of
the two variables. Per rhythms did not split, and thus Per
kept displaying 24 h limit cycle oscillations (figure 6b). The
splitting dynamics observed for Bmal1 and RevErb indicate
that under some conditions (dB > 0.36, dR > 0.65 or kR > 1.38)
the three DDE model can be ‘split’ into two individual oscil-
lators, namely the autonomous Per oscillator and the Bmal1-
RevErb oscillator (figure 2c).

3. Discussion
The presented results show that complex oscillatory phenom-
ena can occur in realistic models of the circadian clock.
Although chaotic dynamics were found to be theoretically
possible in a model of the Drosophila clock [21], we have also
found indications for such dynamic behaviour in the
mammalian molecular circadian clock, even in the absence of
external forcing. Nonlinear oscillatory phenomena, including
chaos, are known to arise from the periodic forcing of a
system. Indeed, chaos has been found in models that were
forced by periodic light–dark cycles [30,32,34,35,68–70]. Here,
in contrast, we focused on the case where nonlinear phenom-
ena occur for circadian oscillations in constant conditions, in
the absence of periodic stimuli.

It is known that single-loop negative feedback systems
with a time delay can display limit cycle oscillations but do
not exhibit chaos [14]. More complex dynamics, including
period-doubling bifurcations leading to chaos, can appear in
delayed negative systems with more than one negative feed-
back [71,72]. Although previous Drosophila clock models
have reported chaotic dynamics [21,68] and, strictly speaking,
contain only one negative feedback loop, one could argue
in the lines of [73] that saturated degradation can be
regarded as additional positive feedback loops. Thus, the
number of loops increases and the complex nonlinear
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phenomena that appear are in agreement with theoretical pre-
dictions [14,71,72]. In our study, with comprehensive
bifurcation analyses, we have detected robust tori in the two
negative feedback loop DDE model and period-doubling cas-
cades and chaos in the three negative feedback loop eight
ODE model, supporting that multiple loops might be a
common root of complex dynamic phenomena. Our results
are of particular interest for biological systemswith interlocked
feedback loops, sincewe predict that tori, period-doubling cas-
cades or chaotic dynamicsmight arise in such networks aswell.

Bifurcation analyses on a manifold of clock models have
shown that parameter changes can lead to transitions between
stable equilibrium points and periodic limit cycle oscillations
[41,74,75]. In this study, we have found that more complex
bifurcations, such as subcritical Hopf bifurcations, period-
doubling cascades that lead to chaos or bifurcations that
result in toroidal oscillations, can occur in simple, yet compre-
hensive models of the mammalian circadian clock. Whereas
arrhythmic behaviour at the molecular level usually arises
from the deletion of clock genes [42,76], our results suggest
that changes in a control parameter can also lead to transitions
between periodic and chaotic oscillations.

Our results show that the cascade of period-doubling bifur-
cations leading to chaos is confinedwithin a narrow domain in
the γc parameter space from the eight ODE model (figure 4b
and figure 11). Toroidal oscillations, however, occur for a
wider parameter range (figure 6b and figure 13). Tori are
related to the phenomenon of rhythm splitting [77], which
refers to the separation of two rhythms, of initially the same
period, into two rhythms of markedly different periods. Such
a frequency separation could be due to the operation of two
different oscillators that progressively lose synchrony. It is
thus tempting to speculate that the design principles of the
three DDE model might be two oscillators (Per loop and
Bmal1–RevErb loop) that over time drift apart and lose their
1 : 1 synchrony. Despite the relatively small size of the domains
in parameter space in which complex oscillatory phenomena
occur, the presence of chaos and splitting in the presented (rea-
listic) models suggests that such phenomena might not be too
uncommon in biological oscillatory systems, given that these
systems are usually controlled by multiple mechanisms of cel-
lular regulation.

Nonlinear phenomena in the absence of Zeitgeber stimuli
have (experimentally) been shown to occur at the organismic
level under certain conditions of circadian dysfunction. Some
examples are the circadian desynchronization of organs and
arrhythmic melatonin release [6,36]. However, the existence
of such phenomena at the molecular level has not yet
been confirmed. There have been some pioneering studies
suggesting that rhythms of different reporter genes could
dissociate in the SCN ([31,39,40], figure 1b), but the detailed
mechanisms remain to be elucidated.

In vivo and in vitro degradation of clock proteins is described
to be important in the regulation of circadian oscillations
[41,54,78,79], as protein degradation rates modulate the length
of the negative feedback loop needed for rhythm generation.
For example, the PER2 mutation in FASPS is associated with a
faster PER2 degradation and a shorter circadian period
[54,63,80]. In addition, interfering with CRY degradation by
knock-down of specific proteases results in longer periods [63].
Computational studies have also added to this picture, showing
that changes inproteindegradation rates can simulate knock-out
and overexpression studies. This emphasizes the biological
relevance of our bifurcation analyses [41]. A recent study by
Pett et al. [45] suggested that different interlocked feedback
loops might coexist and generate tissue-specific circadian
rhythms. Taken together, the findings of potential tissue-specific
clocks with the conditions under which nonlinear phenomena
occur might contribute to the further understanding of
organismic circadian desynchronization.

The interaction between changes in clock gene expression
and the rise of arrhythmicities under some conditions illus-
trates the need for mathematical models to understand the
underlying processes. Although a full representation of the
biological systems is hard to reach due to modelling limit-
ations, the presented nonlinear phenomena might help to
understand how complex oscillatory dynamics occur at the
molecular level and how the interactions result in arrhythmi-
cities on the organismic level. However, experimental data
will have to validate such nonlinear phenomena on the
molecular level of the circadian clock in vitro and in vivo.
4. Material and methods
4.1. Model simulations and analyses
Temporal simulations and analyses from ODE models were
performed in Python, using the odeint integrator from the
scipy module; bifurcation analyses were done with the XPP-
AUTO continuation software. Temporal simulations and ana-
lyses from the DDE model were performed in R, using the
deSolve package. Computational results were stored and plotted
with the matplotlib module from Python. Codes are available on
request. Figure 1 was plotted with BioRender.
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Appendix A. Equations for the eight ODE and
three DDE models
To investigate whether nonlinear phenomena appear in the
mammalian molecular clock, we analysed two recent
models of the mammalian circadian clockwork published
by Almeida et al. [57] and Schmal et al. [31]. The model
equations are shown in figures 7 and 8. In figure 7, the first
three equations describe the regulation of the different
CCEs (E-box, RRE and D-box), with their corresponding



Figure 7. Equations of the eight ODE model, published by Almeida et al. [57]. Equations (1–3) describe activation/repression of the regulatory CCEs (E-box, RRE and D-
box); equations (4–11) are the eight ODEs from the system, modelled with mass-action kinetics. Parameter values used for the numerical simulations are provided in figure

Figure 8. Equations of the three DDE model, published by Schmal et al. [31]. The equations describe the gene expression dynamics of Per, Bmal1 and RevErb
(equations 1–3), using delay-differential equations. Parameter values used for numerical simulations are provided in figure 3b.
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activators and repressors. Complex formation reactions,
needed for the activation of promoter regions, are described
by Michaelis–Menten-like terms and a Hill equation with

3a.
 an exponent of n = 2. Equations (4–11) describe the rates of
change in protein concentrations with ODEs and mass
action kinetics.
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Appendix B. Reduction of the eight ODE model
to a four ODE model
In order to identify the proteins/model components that are
necessary and sufficient to generate oscillations, we simulated
the constitutive expression of the different proteins by assum-
ing that their concentration did not change over time. Thus,
we sequentially set the change in each protein over time to
zero (quasi-steady state assumption, i.e. left-hand side of
equations (4–11) from figure 7 equal to zero), a strategy that
has been termed clamping [25,81]. If oscillations disappeared
after clamping a variable, we concluded that the clamped vari-
ablewas necessary for rhythmgeneration. If, on the other hand,
the system still oscillated, we concluded that the clamped vari-
able was not necessary for the generation of oscillations and
subsequently removed the variable. By removing equations
that were not essential for oscillations, the model was reduced
from eight to four ODEs. The equations describing CCE regu-
lation were accordingly modified by removing the pulled-out
variables [82]. Equations of the simplifiedmodel and the corre-
sponding oscillations are shown in figure 9.
Appendix C. Period sensitivity analyses and
tuning of the model
To analyse how sensitive the period of the eightODEmodelwas
towards parameter changes, we increased and decreased all
model parameters by 20% and quantified the effect of such
change on the period of BMAL1 oscillations. The effect of
changes in most of the degradation rates was opposite to
the effect of changes in activating CCE parameters
(figure 10a). The model published by Almeida et al. [57]
showed oscillations with a period of approximately 20 h. Since
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the control analysis revealed that the period of the oscillations
was relatively sensitive to changes in the degradation rate of
REVERB (γREV), we tuned the period of the oscillations to a
more circadianly relevant value, namely 24.8 h, by changing
γREV from 0.241 to 0.4 h−1 (figure 10b). The other parameter
values remained unchanged.
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Appendix D. Bifurcation analyses of the eight
ODE model
To investigate the presence of nonlinear phenomena in the eight
ODE model, we performed one-dimensional bifurcation ana-
lyses for all model parameters. Most bifurcation diagrams
displayed supercritical Hopf bifurcations, but nevertheless,
changes in γc (seemain text) and kDr resulted in period-doubling
cascades and chaotic dynamics. Results are shown in figure 11.

Appendix E. Bifurcation analyses of the four ODE
model
To examinewhether all feedback loops of the eight ODEmodel
were required for the development of complex nonlinear
phenomena, we performed bifurcation analyses on the reduced
fourODEmodel.We did not find neither chaos nor period-dou-
bling, suggesting that interlocked feedback loops are required
for thesephenomenatoemerge.Results aredepicted in figure12.

The onset of limit cycle oscillations occurred via subcriti-
cal Hopf bifurcations for many parameter changes, indicating
that two attractors coexist for a narrow range of parameter
values (VR∼ 27.70–28.42 h−1, kRr∼ 8.24–10.10 and 171.58–
172.13, VB∼ 0.26–0.29 h−1, γdb ∼ 0.01–0.03 h−1 and γbp∼
0.12–0.13 h−1), namely limit cycle and stable steady state.

Appendix F. Bifurcation analyses of the three DDE
model
In order to investigate whether complex nonlinear phenomena
were a common feature of circadian clock models or rather
model-specific, we examined the presence of nonlinear
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phenomena on the three DDE model. Using period spectral
analysis and three-dimensional-phase portraits, we investi-
gated the effect of parameter changes on the period. Changes
in kR and dR revealed that under a certain parameter value
(kR < 1.38, dR < 0.65), 24 h rhythms dominate the time series
of Bmal1 and RevErb oscillations, as seen by the high power
peak at 24 h and its harmonics (figure 13). Nevertheless,
when these critical values are reached, period splitting occurs
and toroidal oscillations arise (electronic supplementary
material, video A2).
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