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Objectives: To investigate the performance of radiomic-based quantitative analysis

on CT images in predicting invasiveness of lung adenocarcinoma manifesting as pure

ground-glass nodules (pGGNs).

Methods: A total of 275 lung adenocarcinoma cases, with 322 pGGNs resected

surgically and confirmed pathologically, from January 2015 to October 2017 were

enrolled in this retrospective study. All nodules were split into training and test cohorts

randomly with a ratio of 4:1 to establish models to predict between pGGN-like

adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) and invasive

adenocarcinoma (IVA). Radiomic feature extraction was performed using Pyradiomics

with semi-automatically segmented tumor regions on CT scans that were contoured

with an in-house plugin for 3D-Slicer. Random forest (RF) and support vector machine

(SVM) were used for feature selection and predictive model building in the training cohort.

Three different predictive models containing conventional, radiomic, and combined

models were built on the basis of the selected clinical, radiological, and radiomic

features. The predictive performance of each model was evaluated through the receiver

operating characteristic curve (ROC) and the area under the curve (AUC). The predictive

performance of two radiologists (A and B) and our radiomic predictive model were

further investigated in the test cohort to see if radiomic predictive model could improve

radiologists’ performance in prediction between pGGN-like AIS/MIA and IVA.

Results: Among 322 nodules, 48 (14.9%) were AIS and 102 (31.7%) were MIA with

172 (53.4%) for IVA. Age, diameter, density, and nine meaningful radiomic features were

selected for model building in the training cohort. Three predictive models showed good

performance in prediction between pGGN-like AIS/MIA and IVA (AUC > 0.8, P < 0.05)

in both training and test cohorts. The AUC values in the test cohort were 0.824 (95%

CI, 0.723–0.924), 0.833 (95% CI, 0.733–0.934), and 0.848 (95% CI, 0.750–0.946) for

conventional, radiomic, and combinedmodels, respectively. The predictive accuracy was
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73.44 and 59.38% for radiologist A and radiologist B in the test cohort and was improved

dramatically to 79.69 and 75.00% with the aid of our radiomic predictive model.

Conclusion: The predictive models built in our study showed good predictive

power with good accuracy and sensitivity, which provided a non-invasive, convenient,

economic, and repeatable way for the prediction between IVA and AIS/MIA representing

as pGGNs. The radiomic predictive model outperformed two radiologists in predicting

pGGN-like AIS/MIA and IVA, and could significantly improve the predictive performance

of the two radiologists, especially radiologist B with less experience in medical imaging

diagnosis. The selected radiomic features in our research did not provide more useful

information to improve the combined predictive model’s performance.

Keywords: radiomics, lung cancer, adenocarcinoma, computed tomography, machine learning

BACKGROUND

A new classification for lung adenocarcinoma was proposed
in 2011 by the International Association for the Study of
Lung Cancer/American Thoracic Society/European Respiratory
Society (IASLC/ATS/ERS) (1), which was also issued as the 4th
edition WHO lung cancer classification in 2015 (2). According
to the new classification, lung adenocarcinoma can be divided
into preinvasive lesion, minimally invasive adenocarcinoma
(MIA), and invasive adenocarcinoma (IVA), and preinvasive
lesion includes atypical adenomatous hyperplasia (AAH) and
adenocarcinoma in situ (AIS) (1). The improvement of medical
technology and the generalization of lung cancer screening
project have led more attention to pure ground-glass nodules
(pGGNs) detected on computed tomography (CT) images (3, 4).

Approximately 20% of lung adenocarcinoma including AIS,
MIA, and even some early-stage IVA could present as pGGNs
on CT images (4), which makes it quite difficult for radiologists
and clinicians to make a precise diagnosis with conventional
radiological parameters like size, density, etc. Kakinuma et al.
reported that growth was observed in approximately 10% of
pGGNs ≤5mm, of which 1% would develop into IVA or MIA in
their study (5). In another study, 57.8% of pGGNs showed growth
during follow-up and 26.3% of them were adenocarcinoma (6).
Eguchi et al. examined 124 cases with pGGNs, and 64 pGGNs
(51.6%) showed growth during their 2-year follow-up (7). Several
previous research revealed that nearly 50% of pGGNs were
invasive lesions (3, 8–10). In clinical practice, pGGNs are usually
prescribed to be followed up but data above demonstrated that
more detailed diagnosis and more individualized management
should be made for pGGNs.

Compared with IVA, AIS, andMIA are considered as indolent
lung adenocarcinoma because of the excellent prognosis (11, 12).
AIS/MIA could be followed up or treated with sublobar resection
while more aggressive surgical interventions should be taken for
IVA (13, 14). Several previous studies revealed that the 5-year
survival rates of AIS and MIA could be 100% and near 100%
with a complete resection while that of IVA in stage Ia is no more
than 75% (11, 13, 14). Thus, it might provide some guidance for
clinical therapeutic decision-making if pGGN-like IVA could be
figured out on preoperative CT images.

There were many studies investigating the difference in
radiological features among lung adenocarcinoma subtypes.
Wang et al. found that the mean CT attenuation and lesion
size differed significantly between MIA and non-invasive lesions
and internal air bronchograms were more often seen in
adenocarcinoma (15). Several investigations reported that the
notched signs, spiculations, bubbly lucencies, and rapid volume
expansion were more common in IVA (15–17). However, those
radiological features could be subtly different because of the small
size of pGGN-like adenocarcinoma. Furthermore, the assessment
of those parameters tends to be subjective, which could be
influenced by radiologists’ experience and diagnostic ability.
Percutaneous biopsy is one method used in clinical practice
to determine the nature of pulmonary nodules, which could
provide relatively accurate pathological information. However,
percutaneous biopsy is an invasive operation, and patients may
have some operation-related complications (18, 19). Considering
the heterogeneity in adenocarcinoma, small pieces of tissue
obtained by biopsy cannot represent the characteristics of the
whole lesion (20). What is more, in some cases, it is difficult
to complete biopsy due to patient’s physical condition and bad
cooperation as well as the location and size of nodules (20, 21).
Thus, the accurate diagnosis of pGGNs remains a key point and
a challenge in the field of medical imaging diagnosis.

Radiomics is an emerging subject that could extract a
large amount of invisible features from medical images
for clinical decision-making (20, 22). Radiomics has had
remarkable progress in central nervous system malignancies,
thoracic imaging diagnosis, discrimination of hepatic mass,
and some other diseases (23–26). Chaddad et al. performed
retrospective analysis involving 315 patients diagnosed as non-
small cell lung cancer (NSCLC) and significant correlation
was observed between radiomic features and survival (27).
Also, radiomics’ promising performance in the distinction of
benign andmalignant pulmonary nodules and the discrimination
of adenocarcinoma subtypes had been validated in several
researches (11, 28, 29). However, in most previous radiomic
studies, all types of pulmonary nodules including solid and
subsolid nodules were recruited as the study population. Few
studies focused on the use of machine learning in early-stage lung
adenocarcinoma representing as pGGNs, which are usually very
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difficult to manage. Since the diagnosis of solid components in
pulmonary nodules on CT images is relatively uncomplicated
while pGGNs remain a big challenge for medical imaging
diagnosis, we aimed to explore the potential value of radiomic-
based quantitative analysis to predict the invasiveness of pGGN-
like adenocarcinoma to establish a comprehensive predictive
model for clinical decision-making.

MATERIALS AND METHODS

This retrospective study was approved by the institutional review
committee of the Sir Run Run Shaw Hospital (No. 20190520-
162) with an abstention of informed consents from all the
patients involved according to the guidelines of the Council for
International Organizations of Medical Science (CIOMS).

Patients
We reviewed all the materials of 1,610 patients undergoing
surgical resection for primary lung adenocarcinoma with
complete clinical data and preoperative CT images from January
2015 to October 2017 in Sir Run Run Shaw Hospital, and
reinterpreted the preoperative CT images from the Picture
Archiving and Communication Systems (PACS) one by one.
Clinical data like age, gender, and smoking status of all cases
were collected from digital records. Patients who met any one
of the following criteria were excluded: (1) nodules with solid
components (n = 776), (2) nodule diameter >3 cm (n = 292),
(3) patients with a history of other malignant diseases (n =

87), (4) CT images with bad quality (n = 70), and (5) patients
who accepted thoracic surgical intervention, radiation, or any
chemotherapeutics (n= 110).

Finally, 275 patients (72 men and 203 women, age range,
25∼78 years) with 322 pGGNs (82 men and 240 women, age
range, 25∼78 years) were enrolled into this retrospective study
(detailed in Figure 1 and Table 1). The median time from the last
preoperative CT scan to surgery was 6 (0–92) days.

Histological Evaluation
All surgical specimens were fixed with formalin and stained
with hematoxylin–eosin (HE). Two pathologists evaluated all
slides using a multi-headed microscope and discussed about
the diagnosis until a consensus was reached. According to
the classification of lung adenocarcinoma issued in the 4th
edition WHO lung cancer classification in 2015, each nodule
was classified as AIS, MIA, and IVA (26, 30). Each histological
pattern presented in targeted lesion including lepidic, acinar,
solid, papillary, and micropapillary patterns was recorded in 5%
increments (30, 31).

Image Acquisition
All the plain CT images were obtained using multidetector
computed tomography scanners (Siemens SOMATOM
Definition Flash, Siemens FORCE CT, Siemens Sensation
16, Siemens Definition AS 40, and GE LightSpeed VCT).
The protocol parameters for each scanning were detailed in
Supplemental Table 1. Plain spiral acquisitions were obtained

from thoracic inlet to lung bases on patients accepting breath-
hold training. Images were reconstructed using a standard
reconstruction kernels in lung window settings (mean,
−500 HU; width, 1,500 HU). All images underwent multi-
planar reconstruction (MPR) including coronal and sagittal
reconstruction utilizing the post-processing station.

Nodule Analysis and Segmentation
All transverse CT images were interpreted jointly by two
radiologists who were both blind to the clinical and pathological
information of all cases (radiologist A, with 10 years’ experience
in thoracic imaging diagnosis; radiologist B, with 2 years’
experience in medical imaging diagnosis) on our professional
reading screen. Conventional quantitative radiological features
that were widely used in clinical diagnosis involving diameter
(cm) and density (Hounsfield Unit, HU) were determined for
each nodule. Nodule diameter was measured on the average of
long- and short-axis diameters, both of which should be obtained
on the same transverse revealing the greatest dimensions. The
nodule density was measured at three different parts of each
nodule avoiding vessels and bronchus and the mean value of
the three results was calculated. The mean value of diameter
and density measured by the two radiologists was calculated for
our study.

Segmentation data consisted of all the 322 pGGNs. Plain
CT images were loaded into 3D-slicer (http://www.slicer.org)
(32), an open source image processing software, implemented
with in-house algorithm for automatic nodule detection and
segmentation. Radiologist B would verify the regions of interest
(ROIs) of automatic segmentation and made some modifications
when the ROIs were not satisfactory. Radiologist A would have
a second review for the results of radiologist B’s semi-automatic
segmentation. A consensus would be achieved via negotiation
between two radiologists for each case when meeting a collision
on reviewing. While modifying ROIs, two radiologists would
delineate manually around the nodule boundary on each section
avoiding the bronchus and vessels as much as they could.

Radiomic Feature Extraction and
Predictive Models Building
Segmentation data were analyzed with Pyradiomics to extract
radiomic features describing tumor phenotypes (33). All the
segmentation data had a voxel resampling of 0.7 × 0.7 ×

0.7 mm3 for standardization to reduce the impact from the
heterogeneity of image acquisition. In the end, we obtained
nine types totaling 960 radiomic features for each nodule,
which have been listed in Supplemental Table 2. Features
are commonly grouped as follows: (1) first-order statistical
features: these describe the voxel intensity distribution in the
delineated ROI. They are usually calculated on the basis of
the intensity histogram, including energy, entropy, standard
deviation, skewness, kurtosis, uniformity, mean, minimum, and
maximum intensity values and so on (20, 26). (2) Shape-based
features: descriptors of the two- and three-dimensional size and
shape of the ROI. (3) Textural features: these contain gray level
co-occurrence matrix (GLCM), gray level run length matrix
(GLRLM), gray level size zone matrix (GLSZM), neighboring
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FIGURE 1 | The flowchart of patient selection.

gray size zone matrix (NGZDM), and gray-level dependence
matrix (GLDM). They are computed on the analysis of the three-
dimensional directions within the tumor and the consideration of
the spatial location of each voxel in the ROI (26). (4) Transformed
features: features in the first and third groups extracted from
images applied with a series of wavelet or Laplacian-of-
Gaussian filtration.

Random forest (RF) and support vector machine (SVM) with
cross-validation (CV) was used for radiomic feature selection
and predictive model building to distinct pGGN-like IVA from
indolent adenocarcinoma (AIS/MIA). Multivariate models were
made in training cohort and were tested in a separate test cohort.
All pGGNs were split into training and test cohorts randomly
by a ratio of 4:1. Three predictive models were created in our
research: (1) Conventional (selected clinical and radiological
quantitative features), (2) Radiomic (selected radiomic features),
and (3) Combined (selected conventional and radiomic features)
predictive models. Subsequently, a binary analysis in which
pGGN-like IVA was set as positive while AIS/MIA was thought
as negative was applied to compare the predictive performance

between radiomic predictive model and two radiologists (A
and B) in the test cohort. Two weeks later, two radiologists,
knowing the performance of our radiomic predictive model and
its diagnosis for each pGGN in the test cohort, reevaluated all
pGGNs in the test cohort.

Statistical Analysis
All the statistical analysis was applied using SPSS 25.0 (IBM,
Armonk, NY, USA) and MedCalc 15.8 (MedCalc Software,
Acacialaan 22, Ostend, Belgium). Tables and figures in our study
were made with GraphPad Prism 5 (GraphPad Software Inc.,
San Diego, CA, USA) and Microsoft Office 2019 (Microsoft,
Redmond, WDC, USA).

Thirty pGGNs were selected randomly to test the repeatability
of nodule diameter and density measurement. Radiologist A and
B did the measurement work of those 30 pGGNs, respectively.
Two weeks later, radiologist Bmeasured the diameter and density
of these 30 pGGNs, again according to the same measurement
criteria. Inter-/intra-observer correlation coefficient (ICC) was
calculated for repeatability assessment.
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For the assessment of clinical, quantitative radiological,
and selected radiomic features, chi-square test or Fisher exact
probability test was utilized for categorical variables. Two-sample
t-test was adopted, if the continuous variables met the normal
test and variance homogeneity test; otherwise, Wilcoxon signed-
rank test was used. Predictive power of each predictive model was
evaluated using receiver operating characteristic (ROC) curve
and area under the curve (AUC). Models with an AUC > 0.50
and a P < 0.05 were thought to be predictive. McNemar’s test
and Kappa analysis were used to compare the binary diagnosis of
two radiologists and radiomic predictive model.

RESULTS

Themeasurement of nodule diameter and density between senior
radiologist A and junior radiologist B was highly consistent
(ICC > 0.9, P < 0.05). Two weeks later, radiologist B did the
measurement for the 30 selected pGGNs, and the ICC values were
up to 0.955 (P < 0.05) and 0.984 (P < 0.05) for diameter and
density measurement.

Clinical Data and Conventional Image
Features
A total of 322 pGGNs were recruited into this study with 80%
in the training cohort and 20% in the test cohort. The analysis
of clinical and quantitative radiological features in the training
and test cohort were listed in Table 1. In the training cohort,
the median age was 53 years (age range, 25–78 years) and the
majority of cases were female (72.9%) with 28 (10.9%) having
a smoking history. In the test cohort, 52 (81.3%) were female
with a median age of 54 years (age range, 30–72 years) and 59
(92.2%) never smoke. Diameter showed statistical discrepancy
between AIS/MIA and IVA in both training and test cohort (P
< 0.001) while nothing significantly different existed in gender
and smoking status between the two groups. Age and density
exhibited evident difference in training cohort between AIS/MIA
and IVA (P = 0.01 and P < 0.001), but no significant difference
(P > 0.05) appeared between the two groups in test cohort.

Radiomic Feature Selection and Predictive
Model Building
A RF algorithm with 4-fold cross-validation was taken to
calculate the contribution value of each radiomic feature in
the training cohort for the prediction of pGGN-like IVA from
AIS/MIA. Predictive model building was performed using SVM
also combined with 4-fold cross-validation. All the extracted
radiomic features were listed in descending order by the
contribution value for the classifier and were added one by one
as the input for the SVM model training in each iteration of
cross-validation calculation (detailed in Figure 2). In the process
of gradual accumulation of model training, the overall accuracy
of the training cohort was recorded. When sequencing extracted
radiomic features by their contribution value for the classifier
in each iteration, we found that the first 20 radiomic features
contributed much more than other features whose contribution
values were <0.01 and even close to 0. Meanwhile, the first
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FIGURE 2 | The flowchart of the whole study.

TABLE 2 | Nine selected radiomic features.

Selected radiomic feature Radiomic group Filter associated

R1 Maximum probability GLCM wavelet-LLL

R2 Joint entropy GLCM None

R3 Sum entropy GLCM wavelet-LLL

R4 Joint energy GLCM None

R5 Gray level Non-uniformity GLSZM log-sigma-1-0-mm-3D

R6 Gray level Non-uniformity GLSZM wavelet-LLH

R7 Gray level Non-uniformity GLSZM log-sigma-3-0-mm-3D

R8 Size zone Non-uniformity GLSZM None

R9 Low gray level run emphasis GLRLM log-sigma-3-0-mm-3D

GLCM, gray level co-occurrence matrix; GLSZM, gray level size zone matrix; GLRLM, gray

level run length matrix.

20 radiomic features could increase the classifying performance
dramatically while inclusion of extra features did not make a
big difference to the performance of the SVM classifier in each
iteration. To improve the generalization of our predictive model,
only radiomic features appearing more than three times in the
first 20 of contribution value rank in four iterations of the
4-fold cross validation were selected for final model building.
Those radiomic features that were used for final predictive model
building incorporated four from GLCM, four from GLSZM,
and one from GLRLM. All the nine features are detailed in
Table 2.

We first investigated whether the nine advanced radiomic
features could discriminate IVA from indolent adenocarcinoma

(AIS/MIA) representing as pGGNs. Figure 3 shows the
comparison of those nine radiomic features for the distinction
of pGGN-like AIS/MIA and IVA in training and test cohorts.
All the selected radiomic features revealed significant difference
between AIS/MIA and IVA in both training and test cohorts
(P < 0.001). Among the nine radiomic features, three (Maximum
Probability, Joint Energy, and Low Gray Level Run Emphasis)
had larger median values for AIS/MIA while the median values
of six other features (Joint Entropy, Sum Entropy, Gray Level
Non-Uniformity, and Three Different Filtered Size Zone Non-
Uniformity) were higher for IVA than that for AIS/MIA in both
training and test cohorts (detailed in Supplemental Table 3).

Multivariate predictive models were created for each
set of features, involving conventional (age, diameter, and
density), radiomic (nine predictive features), and the combined
(conventional and selected radiomic features) sets. The three
different models presented good predictive power (AUC > 0.8, P
< 0.05) in both training and test cohorts as shown in Figure 4,
Supplemental Table 4. Then, DeLong’s test (34, 35) was applied
to complete the pairwise predictive performance comparison
among the three models, in which no significant difference was
observed (P> 0.05). Figure 5 showed comprehensive parameters
including accuracy, sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), misdiagnosis
rate (MR), and missed diagnosis rate (MDR) of the three
predictive models’ and two radiologists’ binary diagnosis in the
test cohort (detailed in Supplemental Table 5). The accuracy
was 76.56, 71.88, and 78.13% for radiomic, conventional, and
combined predictive models but no big difference was noted in
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FIGURE 3 | (A–I) Selected radiomic features in training and test cohort. Nine selected radiomic features showed significant difference between AIS/MIA and IVA in

both training and test cohorts. Maximum Probability, Joint Energy, and Low Gray Level Run Emphasis had larger median values for AIS/MIA, while the median values

of Joint Entropy, Sum Entropy, Gray Level Non-Uniformity, and Size Zone Non-uniformity were higher for IVA in both training and test cohorts.

FIGURE 4 | The ROC analysis of the three different predictive model. Three predictive models presented good performance in discrimination between pGGN-like IVA

and AIS/MIA. (A), the predictive performance of three models in the 693 training cohort; (B), the predictive performance of three models in the testing cohort.

comprehensive assessment among the three models (Figure 5),
which was consistent with the results of DeLong’s test above. In
a word, no matter what features were used for model training

(conventional or radiomic features), predictive models built
with machine learning algorithm could predict pGGN-like IVA
from AIS/MIA well. The combination of conventional and
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FIGURE 5 | The binary diagnosis of predictive models and two radiologists. (A), the first binary diagnosis of the senior radiologist A with 10-year experience in thoracic

imaging diagnosis in test cohort; (B), the first binary diagnosis of the junior radiologist B with 2-year experience in medical imaging diagnosis in test cohort; R, the

binary diagnosis of radiomic predictive model in test cohort; A+R, the second binary diagnosis of radiologist A in test cohort with the aid of radiomic predictive model;

B+R, the second binary diagnosis of radiologist B in test cohort with the aid of radiomic predictive model. PPV, positive predictive value; NPV, negative predictive

value; MR, misdiagnosis rate; MDR, missed diagnosis rate.

TABLE 3 | Performance comparison between radiomic predictive model and two

radiologists in test cohort.

McNemar’s test Kappa analysis

χ
2 P κ P

A vs. B 0 1.000 0.316 0.018

A vs. R 7.563 0.004 0.517 <0.001

B vs. R 4 0.043 0.241 0.070

A vs. A+R 4.9 0.021 0.690 <0.001

B vs. B+R 5.042 0.023 0.275 0.022

A+R vs. B+R 1.455 0.227 0.654 <0.001

A, the first binary diagnosis of the senior radiologist A with 10-year experience in thoracic

imaging diagnosis in test cohort; B, the first binary diagnosis of the junior radiologist B with

2-year experience in medical imaging diagnosis in test cohort; R, the binary diagnosis of

radiomic predictive model in test cohort; A+R, the second binary diagnosis of radiologist

A in the test cohort with the aid of radiomic predictive model; B+R, the second binary

diagnosis of radiologist B in the test cohort with the aid of radiomic predictive model.

radiomic features could further improve the diagnosis accuracy
of predictive model, but the improvement was not statistically
significant in our study.

To investigate whether the radiomic predictive model could
help radiologists improve their predictive performance, we then
compared the diagnosis of radiomic predictive model and two
radiologists (Figure 5, Table 3). Radiologist A performed better
than radiologist B with higher diagnostic accuracy, sensitivity,
specificity, PPV, and NPV. Either accuracy or sensitivity,
radiomic predictive model outperformed radiologist A with the

cost of decreased specificity. Significant difference was observed
between the binary diagnosis of radiomic predictive model and
that of two radiologists (A vs. R, χ

2
= 7.563, P = 0.004, B vs.

R, χ2
= 4, P = 0.043). Generally speaking, Radiomic predictive

model showed better performance than two radiologists in
the prediction between pGGN-like IVA and AIS/MIA. Two
radiologists dramatically improved their diagnostic accuracy to
79.69 and 75.00% with the aid of radiomic predictive model (A
vs. A+R, χ2

= 4.9, P= 0.021, B vs. B+R, χ2
= 5.042, P= 0.023).

The comparison of the second diagnosis of two radiologists
revealed that when having the guidance from radiomic predictive
model, no statistical difference existed between two radiologists
in prediction of pGGN-like IVA and AIS/MIA (A+R vs. B+R,
χ
2
= 1.455, P = 0.227).

DISCUSSION

When it comes to pure ground-glass pulmonary nodules,
clinicians tend to choose follow-up as their first choice for
management. However, according to previous studies (4, 5,
31), a certain proportion of IVA that needs surgical treatment
could be pGGNs on CT scans. If a pGGN-like IVA was
misdiagnosed as a benign lesion or indolent adenocarcinoma
and was given a prescription of follow-up, it might progress
during the interval or even metastasize and miss the optimal
time for surgical intervention. Conventional radiological features
like lobulated signs, spiculations, bubble lucencies, and pleura
traction have been demonstrated to be helpful to differentiate
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the malignancy of pulmonary nodules and the invasiveness
of lung adenocarcinoma (36, 37). However, pGGN-like lung
adenocarcinoma tends to be in small volume with a large
similarity in morphological characteristics and the assessment
of the conventional radiological features is easy to be affected
by the subjectivity of doctors, it remains a challenge to make
a precise judgement for pGGNs without surgical intervention.
Percutaneous biopsies may be helpful in determining the
nature of pulmonary nodules. Nevertheless, it is an invasive
tissue extraction method with the possibility of postoperative
complications, and due to the tumor heterogeneity, it is not
persuasive to represent the characteristics of the entire lesion with
only a tiny tissue (20, 38). In some cases, because of nodules’
location and size, percutaneous biopsiesmay not be a good choice
for diagnosis. Thus, the diagnosis of pGGNs remains a thorny
point for clinical research.

Heidinger et al. reported that two-dimensional diameter
could provide enough information for pulmonary nodule risk
classification in their quantitative analysis based on CT images (4,
39). In our study, the diameter of pGGNs showed a significantly
different distribution between IVA and indolent adenocarcinoma
(AIS/MIA), which was consistent with previous reports. Kitami
et al. acclaimed that almost all the pGGNs with a diameter
<10mm and a density of no more than −600 HU were
demonstrated to be preinvasive lesions in their study (40). The
medians of density in our training and test cohort were −583.0
and−525.8 HU, both slightly higher than−600 HU, whichmight
have something to do with the difference in lung adenocarcinoma
classification. We classified MIA into indolent adenocarcinoma,
which might lead to the increase in density medians.

Radiomics is a new quantitative image analysis approach that
allows thorough exploration in medical images and has attracted
more and more attention in the field of medicine in recent years.
In this study, we obtained plenty of quantitative radiomic features
(960 for each nodule) from routine thoracic CT images using
machine learning techniques and completed the quantitative
analysis of pGGN-like adenocarcinoma classification on the
basis of conventional clinical, quantitative radiological, and
selected radiomic features. Nine selected radiomic features
demonstrated good performance in distinction of the IVA and
indolent adenocarcinoma representing pGGNs on unenhanced
CT images. Nine selected radiomic features in our study
consisted of four GLCM-based features, four GLSZM-based
features, and one GLRLM-based feature, which were analyzed
as follows:

(1) Four radiomic features from GLCM: Maximum
Probability, Joint Entropy, Sum Entropy, and Joint Energy.
GLCM was used to compare the gray level correlation between
two points in a certain distance in a spatial position, which
reflects the comprehensive information about pixel distribution
including direction, distance, gray value, and the pattern of gray
level arrangement (41, 42). Maximum Probability refers to a pair
of pixels with the highest frequency in a GLCM (43, 44). Entropy
is a parameter describing the complexity of an image, which
means the larger the entropy value of an image is, the more
complex the image is (43). Energy is related to the uniformity
of gray level distribution and the roughness of image texture

with a larger energy indicating a more regular and more stable
texture (42, 43). In our study, Maximum Probability and Joint
Energy got higher median values for AIS/MIA in the training
as well as test cohort while Joint Entropy and Sum Entropy in
IVA were higher than that in AIS/MIA in both training and test
cohort. This might have something to do with that AIS/MIA
tend to be homogeneous, which results in a higher probability of
finding pixels with same distribution pattern in AIS/MIA and the
different entropy and energy values between AIS/MIA and IVA.

(2) Four radiomic features from GLSZM and one from
GLRLM: Gray Level Non-Uniformity filtered with LOG or
wavelet algorithm, Size Zone Non-Uniformity, and Low Gray
Level Run Emphasis. GLSZM refers to the number of pixels that
share the same gray level intensity and the same arrangement
pattern in an image while GLRLM calculates the number of
pixels with the same gray level value and distribution pattern in
a certain direction (45–47). Gray Level Non-Uniformity and Size
Zone Non-Uniformity indicate the variability of gray level and
size zone volumes in an image, with a higher value referring to
more heterogeneity in ROIs (46, 47). In our study, the median
values of Gray Level Non-Uniformity and Size Zone Non-
Uniformity were higher for IVA, which might be related to the
fact that IVA tends to be more heterogeneous. Low Gray Level
Run Emphasis analyzes the distribution of low gray level values
in an image (47). The homogeneity and relatively lower average
density of AIS/MIAmight lead to the highermedian value of Low
Gray Level Run Emphasis for AIS/MIA in our study.

Chen et al. picked 76 features meaningful for the distinction of
malignancy of pulmonary nodules from 750 extracted radiomic
features and built a predictive model whose accuracy was up to
84% using four selected advanced features (20). Yagi et al. carried
out the texture analysis of high-resolution computed tomography
(HRCT) and found that 90th percentile and entropy performed
well in discrimination between AIS/MIA and IVA with an
AUC value of 0.90 (95% CI: 0.84–0.95) (13). Three different
predictive models set with clinical, radiological, and nine selected
radiomic features from 960 features extracted from unenhanced
CT images in our study all presented good predictive power in
the discrimination betweenAIS/MIA (indolent adenocarcinoma)
and IVA (AUC > 0.8, P < 0.05). She et al. extracted radiomic
features from radiological data of 402 cases (207 for training
and 195 for test) diagnosed with lung adenocarcinoma and
selected five meaningful radiomic features to build a predictive
model that outperformed significantly the predictive model only
built with conventional radiological features including nodule
diameter for the discrimination between IVA and AIS/MIA (11).
However, no apparent difference existed between conventional
and radiomic predictive models in our study (P > 0.05).
Combining conventional and radiomic features could improve
the AUC value of combined predictive model, but it was not
statistically significant. This might be caused by the difference of
our study population. All types of pulmonary nodules including
solid and subsolid nodules, which have heterogeneous internal
density in lesions, were used for She’s study. Therefore, compared
with conventional radiological features such as diameter and
density, radiomic features could more thoroughly analyze the
variability and distribution of gray level intensity in ROI, which
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would provide more valuable information for improvement
in diagnostic performance of predictive models. However, the
relatively obscure variability of gray level intensity in pGGNs
might result in the limited reference value for radiomic features
in prediction between pGGN-like IVA and AIS/MIA, which
potentially led to the similar diagnostic performance among
our three predictive models. Nevertheless, predictive models
built using either radiomic or conventional radiological features
presented good performance in distinction between pGGN-
like IVA and AIS/MIA, which further confirmed the possibility
of machine learning methods for the differentiation of the
invasion of pGGN-like lung adenocarcinoma. In conclusion, the
predictive models established in our study could still provide
certain guidance for clinicians to make accurate diagnosis.

To assess whether the radiomic predictive model could
improve radiologists’ performance in diagnosis of pGGN-like
lung adenocarcinoma, we further compared the dichotomous
diagnosis of the radiomic predictive model and two radiologists.
There was a dramatic difference between radiologist A and
radiologist B in the values of diagnostic accuracy, sensitivity,
and specificity. The Kappa analysis revealed bad consistency
between the results of the two radiologists (κ = 0.316, P =

0.018) while McNemar’s test between that of two radiologists
showed no significant difference (P < 0.05). This was related to
the mechanisms of two statistical methods. McNemar’s test only
compares results with collision in two diagnosticmethods instead
of using comprehensive data acquired in a study while Kappa
analysis calculates the consistency in all data (48–50). Figure 6
shows the mechanism of McNemar’s test and the formula for
calculating the value of χ

2. A small (b – c) leads to a small χ
2-

value, which results in a P-value of more than 0.05 no matter
whether the data have actual clinical significance or not. In our
test cohort, 32.8% (21/64) of the pGGNs had diverse diagnoses
from two radiologists, while the value of (b – c) is only 1,
which resulted in a value of 0 for χ

2. In this special situation,
McNemar’s test and Kappa analysis should be combined with
actual data distribution to complete the comparison of two
radiologists’ diagnosis. The comprehensive analysis showed that

the diagnostic ability of senior radiologist A was higher than
that of junior radiologist B and the radiomic predictive model
outperformed two radiologists. When having the diagnosis of the
radiomic predictive model for reference, two radiologists could
significantly improve their performance in prediction pGGN-
like IVA from AIS/MIA. What is more, no significant difference
existed between the second diagnosis from two radiologists
with the aid of the radiomic predictive model. The predictive
model built using selected radiomic features in our research
could obviously improve the ability of radiologists in prediction
between pGGN-like IVA and AIS/MIA, especially for the junior
radiologist; it could help radiologist B reach the level of the senior
radiologist A’s diagnostic ability, which had certain potential
clinical meaning.

There were also some limitations in our study. First, this
was a retrospective study in which all the cases were sorted
according to rigorous exclusion criteria. There was certain
inherent selection bias in it. Meanwhile, 322 pGGNs were not
large enough for this quantitative study, compared with 960
features for each nodule. Further data collection including data
from other clinic centers would be done to evaluate these
models’ predictive reproducibility. Second, the feature selection
driven by restrictive algorithm (<1% features remaining after)
might lead to a certain loss of potential predictive features for
distinction. Despite the significant feature reduction, we were
still able to find predictive features with high robustness. Third,
limitations of this trial included the lack of standardization
in image acquisition completed on various CT scanners. A
voxel-resampling was applied to reduce the influence from the
variability in image acquisition protocols in our study, but the
above problem may still have a certain impact on the feature
selection and model building. Thus, the standardization of image
acquisition and establishment of database with high quality are
urgently required for radiomic research. Finally, we chose a semi-
automatic method to complete the pGGN segmentation. Though
consistent segmentation for each pGGN had been reached
through negotiation by two radiologists, there was still some
interobserver difference existing in this procedure. A reliable

FIGURE 6 | (A) The mechanism of McNemar’s test. (B) The calculation formula for χ
2-value. Formula (1) would be used if (b + c) ≥40; otherwise, formula (2) should

be chosen.
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automatic segmentation algorithm that can be applied in clinical
practice is still to be developed.

CONCLUSION

Nine selected radiomic features in our research showed different
distribution between IVA and AIS/MIA, which could provide
some guidance for clinical practice. The predictive models
established using conventional clinical, radiological, or radiomic
features could help to distinguish the invasiveness of pGGN-
like lung adenocarcinoma, but radiomic features could not
offer more meaningful information to improve the performance
of the combined model created in our study. The diagnostic
performance of the radiomic predictive model established in
our study was better than that of the two radiologists, and
the predictive model could provide auxiliary information for
radiologists (especially for junior radiologists) to improve their
diagnostic ability in discrimination between pGGN-like IVA
and AIS/MIA.
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