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Abstract: It is increasingly recognized that specialized subsets of endothelial cells carry out unique
functions in specific organs and regions of the vascular tree. Perhaps the most striking example of
this specialization is the ability to contribute to the generation of the blood system, in which a distinct
population of “hemogenic” endothelial cells in the embryo transforms irreversibly into hematopoietic
stem and progenitor cells that produce circulating erythroid, myeloid and lymphoid cells for the
lifetime of an animal. This review will focus on recent advances made in the zebrafish model organism
uncovering the extrinsic and environmental factors that facilitate hemogenic commitment and the
process of endothelial-to-hematopoietic transition that produces blood stem cells. We highlight in
particular biomechanical influences of hemodynamic forces and the extracellular matrix, metabolic
and sterile inflammatory cues present during this developmental stage, and outline new avenues
opened by transcriptomic-based approaches to decipher cell–cell communication mechanisms as
examples of key signals in the embryonic niche that regulate hematopoiesis.
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1. Introduction

Endothelial cells of the vascular tree represent the primary interface between the
organs of the body and the blood, which supplies tissues with nutrients, oxygen and other
compounds from the environment to maintain homeostasis. The cellular constituents of
the blood, oxygen-carrying erythrocytes and the lympho-myeloid cells of the immune
system, are generated and replenished throughout life by a population of multipotent
hematopoietic stem and progenitor cells (HSPCs). The relationship between blood and
vessel is intimate indeed: during embryonic development of vertebrates, definitive HSPCs
are derived from hemogenic endothelium (HE) of select large arteries via a morphological
and transcriptional transformation termed the endothelial-to-hematopoietic transition
(EHT). Given the clinical value of hematopoietic stem cells (HSCs), which can reconstitute
the full blood system upon transplant in a number of human disease states, much effort
has been devoted to understanding the cellular and molecular mechanisms governing EHT
to allow development of rational protocols to expand patient HSC numbers or derive them
de novo from induced pluripotent stem cell (iPSC) sources. The zebrafish model has been
a cornerstone of this effort, owing to the high degree of conservation with mammalian
systems and the ability to perform large-scale genetic and chemical screens that have
revealed both intrinsic and extrinsic factors necessary for vertebrate hematopoiesis.

2. The Endothelial Origin of HSCs
2.1. Definitive Hematopoiesis in the Embryo

Endothelial and blood cells share a common ontogeny during development, arising
from the mesodermal germ layer after gastrulation. Here, we will emphasize zebrafish-
specific developmental stages, timing and markers to highlight areas of high conservation
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with other vertebrates as well as aspects peculiar to the zebrafish model to underscore the
current state of our understanding of this process. All blood and vascular lineages are de-
rived from cells in the lateral plate mesoderm (LPM). These structures are present as stripes
in the zebrafish embryo (Figure 1) from ~11–14 h post fertilization (hpf) [1]. Positional
information helps to specify different mesodermal derivatives along the A-P axis, but in
zebrafish the cloche/npasl4 transcription factor (TF) has been shown to be essential for the
proper development of both blood and endothelial cells from this tissue [2]. LPM cells mi-
grate to the midline where vascular progenitors will segregate and coalesce to form the two
primary axial vessels: the dorsal aorta (DA) and posterior cardinal vein (PCV). Restricted
blood progenitors from the LPM produce primitive erythrocytes to fill these new vessels,
while the embryo is patrolled by the first innate immune cells, macrophages and neu-
trophils. These first blood cells descend from committed progenitors that are restricted to
either the erythroid or myeloid lineages, and this event is referred to as the primitive wave
of hematopoiesis [3]. In contrast, from ~24–48 hpf HSPCs will be produced exclusively
from arterial endothelium by an EHT or hematopoietic “budding” event. In mammals,
EHT-dependent HSPC production occurs primarily along the DA within the aorta-gonad-
mesonephros (AGM) region, analogous to zebrafish, with contributions from additional
embryonic and extraembryonic arteries [4]; blood production at this stage is referred to as
the definitive wave of hematopoiesis. HE cells are restricted to the ventral wall of the DA,
and expression of the same hematopoietic TFs that orchestrate the transcriptional program
driving EHT in mice, including Gata2 [5], Runx1 [6], and cMyb [7], can be used to identify
HE in zebrafish. The capacity of cells formed via EHT to renew themselves or generate
cells of the erythroid, myeloid and lymphoid lineages throughout the lifetime of the animal
distinguishes select progenitors as HSCs. It is important to note that more lineage-restricted
definitive progenitors have been documented to arise via EHT events both before and
concurrent with HSC emergence, and new transcriptomic and lineage-tracing data from
zebrafish suggests that embryonic blood production primarily occurs from these cell types
(with the HSC pool being drawn on later in adult life) [8]. These include lymphoid progen-
itors from the caudal DA in zebrafish [9,10], murine lympho-myeloid progenitors [11,12]
and erythro-myeloid restricted progenitors (EMPs) in the zebrafish trunk [13] and from
yolk sac arteries in mice [14]. A recent report even suggests that yolk-sac derived EMPs
may produce endothelial cells that can incorporate back into the developing embryonic vas-
culature [15]. Thus, taken together it is clear that the development of the hemato-vascular
system involves plastic and not necessarily unidirectional fate decisions. Over the next few
days of development, HSCs produced during the definitive wave will colonize embryonic
niches to expand and reside for lifelong blood production: these sites include the caudal
hematopoietic tissue (CHT), the thymus and kidney marrow [16]. As assays currently
available in zebrafish to determine the multi-lineage and self-renewal potential of a given
blood stem cell are somewhat limited, the more conservative term HSPCs is often applied
to the populations residing in these embryonic niches.

As in many fields of study, unique advantages of the zebrafish model have propelled
the investigation of hematopoiesis. The external fertilization and optical clarity of zebrafish
embryos in particular allowed the first ever capture of the dynamic components of blood
development. Live-imaging studies elegantly showed the migration of LPM cells to the
midline to form blood and vessels [17–19], previously inferred from static images of gene
expression [20]. Further work has shown that cues are provided from the somitic tissue and
other nearby cell types during this migration that impact on later HSPC production [21–23].
Live-imaging in zebrafish was also able to unequivocally demonstrate the generation
of HSPCs from aortic endothelium via EHT: time-lapses document the physical and fate
changes of Flk1+ aortic endothelial cells as they round up, express hematopoietic transgenes,
detach from the adjacent endothelium and transmigrate through the neighboring PCV to
circulate through the embryo [24,25]. This process is well conserved in mammals, and
can be imaged in situ following terminal embryonic dissection in mice [26]. Aside from
live-imaging, the fruitfulness of large-scale genetic screens for isolating anemic mutants
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and substantial genetic and cellular conservation between zebrafish and mammals has
identified many of the molecular players involved in all stages of blood development [27,28].
Importantly, many of the growth factors that are responsible for vascular development
and patterning also play roles in HSPC production in zebrafish, including VEGF [29],
BMP [30,31], FGF [32,33], WNT [34] and TGFβ [35]. Likewise, secreted factors such as cKit
and OncostatinM, which are linked specifically to hematopoietic development in mammals,
were recently shown to exhibit a pro-hematopoietic function via knockdown studies in
zebrafish [36].
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Figure 1. Stages and anatomical locations of hematopoietic development in zebrafish. (A) In the first 
24 h of development, mesoderm is specified from which all subsequent blood and endothelial cells 
will emerge (see gene lists for markers of different mesodermal populations). The primitive wave 
of hematopoiesis generates early red blood cell and immune populations. (B) Over the next two 
days in a definitive wave of hematopoiesis, HSCs will be produced from HE in the dorsal aorta by 
EHT and seed distant hematopoietic niches for expansion and lifelong blood production. EHT 
endothelial-to-hematopoietic transition, CHT caudal hematopoietic tissue, CVP caudal vein plexus, 
DA dorsal aorta, PCV posterior cardinal vein. Figure created with biorender.com. 
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Figure 1. Stages and anatomical locations of hematopoietic development in zebrafish. (A) In the first 24 h of development,
mesoderm is specified from which all subsequent blood and endothelial cells will emerge (see gene lists for markers of
different mesodermal populations). The primitive wave of hematopoiesis generates early red blood cell and immune
populations. (B) Over the next two days in a definitive wave of hematopoiesis, HSCs will be produced from HE in the
dorsal aorta by EHT and seed distant hematopoietic niches for expansion and lifelong blood production. EHT endothelial-
to-hematopoietic transition, CHT caudal hematopoietic tissue, CVP caudal vein plexus, DA dorsal aorta, PCV posterior
cardinal vein. Figure created with BioRender.com.

2.2. Importance, and Limits, of Intrinsic Factors

The importance of cell intrinsic regulators, particularly TFs, in generating HSCs
from HE cannot be overstated. Indeed, the master regulator Runx1 is required for EHT:
mice [6,37] and zebrafish [38] deficient for Runx1 fail to undergo budding and produce
definitive HSCs. Several key hematopoietic TFs work in concert to orchestrate the tran-
scriptional rewiring from endothelial to hematopoietic identity [39]. In zebrafish, recent
studies have clarified roles for gata2a [40], gata2b [41], gfi1aa and gfi1b [42], and Notch
receptors [43,44] in specifying a competent population of HE in the embryonic DA. A
summary of the proposed transcriptional hierarchy in zebrafish HE from these studies is
as follows: a Notch-responsive population of gata2a-expressing arterial endothelium in the
ventral wall of the DA acquires the expression of gata2b (in a gata2a-dependent fashion).
This TF in turn promotes runx1 expression, which itself induces cmyb expression. Runx1
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and cmyb together ensure a downregulation of the arterial transcriptional program, an
enduring commitment to hematopoietic fate and the successful completion of EHT. This hi-
erarchy, and ultimate ‘arterial-to-hematopoietic’ transcriptional shift, is broadly conserved
in murine hematopoiesis [45]. Notably, the distinct biology of embryonic zebrafish can
reveal molecular potential difficult to study in mouse embryos due to embryonic lethality
and in utero development. For example, although Runx1 loss of function is lethal in mice,
up to 20% of homozygous runx1 -/- zebrafish can make it to adulthood under the right labo-
ratory conditions [46]. Due to their small size, passive diffusion of O2 from aqueous growth
medium can allow zebrafish embryos to survive cardiovascular and hematopoietic insult
that would kill mammalian embryos [47]. Recent data suggest that, in the absence of runx1,
the gata2a and gata2b genes in zebrafish can coordinate a form of ‘salvage hematopoiesis’
to produce enough blood progenitors to enable the survival of runx1 -/- animals [48]. The
authors show that mouse adult HSPCs also upregulate Gata2 when Runx1 is lost, sug-
gesting the transcriptional logic may be conserved. In parallel to studies of hematopoietic
TFs, morpholino and mutagenesis screens in zebrafish have investigated the functions of
epigenetic regulators and chromatin factors in creating a permissive nuclear environment
for hematopoietic TFs to successfully direct EHT. The DNA methyltransferases dnmt1 [49],
dnmt3bb.1 [50], histone deacetylases hdac1 [51], hdac6 and hdac9a/b [52], chromatin remod-
eler smarca5 [53] and members of the polycomb repressive complexes 1 [54] and 2 [55,56]
all have zebrafish data supporting their roles in the regulation of EHT genes.

Discovery of the endothelial origin of definitive blood stem cells in vertebrates has
raised key questions regarding the necessity and sufficiency of the endothelial state passed
by mesodermal cells destined for hematopoietic specification. Findings from in vitro
reprogramming provide provocative indications that hematopoietic progenitors can be
generated from non-endothelial sources [57,58], or without passing through arterial inter-
mediate states [59,60]. However, strategies that bypass normal developmental ontogeny
of HSCs produce cells that fail to fully recapitulate the transcriptional signatures of their
in vivo counterparts [61], and simple overexpression of TF cocktails yields modest numbers
of hematopoietic cells from iPSCs, which have limited engraftment and reconstitution po-
tential [62,63]. Recent data support that a Dll4+, Notch-responsive endothelial population
is most effective at producing multipotent blood cells in culture [64,65], and these data
together highlight that intrinsic factors alone cannot fully recapitulate the complex cell–cell
and cell–environment interactions that occur to generate HSCs during EHT. The zebrafish
model has been successfully leveraged to fill this gap in knowledge and identify several
extrinsic cues in the embryonic environment that might improve efforts to generate and
expand HSCs. Admittedly, a notable deficit in the investigational toolbox for zebrafish
researchers is that of standardized reprogramming or differentiation protocols that yield
zebrafish hematopoietic cell types under defined conditions in vitro. One technical reason
for this is the species-specific divergence in structure and function of crucial cytokines,
which is known to underlie differential requirements for particular ligands and receptors
between murine and human immunological systems [66]. It is possible to successfully
culture zebrafish blood progenitors (either adult or embryonic) on preparations of zebrafish
kidney marrow stromal cells to provide a supportive signaling milieu [67], or apply colony-
based assays to quantify clonal progenitor potential using recombinant zebrafish cytokines
in growth media supplemented with a fish serum [68,69]. However, currently, there is
not broad commercial support for these resources, inhibiting their widespread dissemi-
nation and application. Limitations notwithstanding, attempts to import factors deemed
to govern zebrafish HSC development in vivo to the more established non-fish culture
systems as a means of determining conservation and function have proven successful. One
such effort yielding promising biomedical translation was a chemical-screening approach
that identified prostaglandin E2 as a positive regulator of HSPC production in zebrafish
embryos [70], leading to subsequent clinical trials and therapeutic use for human HSC
transplantation [71]. We review here some of the many other extrinsic signals guiding HSC
development that have emerged in the last 10 years.
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3. Extrinsic Cues: Mechanical Forces in the Environment
3.1. Influence of the Extracellular Matrix in EHT

The biophysical properties of a cell’s microenvironment or substrate are known to
impact differentiation capacity and cell fate. These properties are a function of the com-
position of the extracellular matrix (ECM) in which the cell is embedded or adjacent [72].
Likewise, the intrinsic physical properties of a (stem) cell and its ability to exert forces
against the ECM and/or other external stimuli can play a role in homeostatic and bio-
logical functions [73]. For example, HSCs of global mouse protein tyrosine phosphatase
Ptpn21 mutants have decreased cell stiffness and are more easily deformed, manifesting
in hematopoietic phenotypes of enhanced egress from the bone marrow and failure to
reconstitute the blood upon transplantation [74]. These biomechanical and physiological
defects can be restored upon overexpression of a non-phosphorylatable variant of the
Ptpn21 target, Septin 1, highlighting that physical stimuli are relevant cues throughout the
life of an HSC.

During the EHT process, the nascent HSCs produced from the DA delaminate from
their neighbors, assemble into clusters of hematopoietic cells and ultimately break intercel-
lular adhesive bonds to enter circulation as single cells, Figure 2. This extrusion requires
detachment from, and remodeling of, the ECM as well. Using zebrafish, Theodore and
colleagues [75] showed functions for the matrix metalloproteinases Mmp2 and Mmp9
in regulating developmental hematopoiesis. They found that knockdown of mmp2 led
to accumulation of cells in hematopoietic aortic clusters, due to an overabundance of
fibronectin-rich ECM. Subsequently, Mmp9 controls retention of HSPCs in the CHT niche
by degrading the chemokine Cxcl12. Another metalloproteinase, Adam8, functions at even
earlier stages, promoting the detachment of the first primitive erythrocytes from the vessel
wall in zebrafish to establish blood circulation [76].

Membrane-bound integrins are key molecules interfacing between both cell–cell
contacts and cell–ECM adhesion, and mediate physical effects of both inputs on HE cells.
They can participate in adhesion with hundreds of ligands, including other integrins
and surface proteins on neighboring cells to form epithelial sheets and facilitate immune
cell capture and extravasation, as well as many of the secreted proteins that make up
the ECM [77]. A role for itgb1b in proper HE specification has been demonstrated in
zebrafish. As previously mentioned, during the migration of LPM cells toward the midline
signaling from the somitic tissue instructs some degree of hematopoietic competence in
select endothelial cells before they coalesce and form the axial vessels. The strength of
this signal is thought to be controlled, in part, by the strength of the adhesion of the Flk1+

mesoderm to the somite [22]. In a meticulous characterization of zebrafish mutants for the
Rap1b GTPase, Rho et al. [78] showed defects in Runx1+ HE, as well as reduction in levels
of the early HE marker gata2b. They could show that these effects were phenocopied in
zebrafish itgb1b mutants as well and propose a mechanism whereby Rap1b activity induces
Itgb1b-dependent adhesion to fibronectin to mediate close association of LPM cells with
the somite and ensure a sufficiently strong induction of Notch signaling to specify HE.
More recently, Li et al. used live-imaging and genetic analysis to show a requirement for
itga4 in HSPCs to allow their arrest and retention in the caudal hematopoietic tissue (CHT)
in the embryo at 72 hpf [79], via interaction with VCAM1+ macrophages. Further study
will likely clarify which integrins are required during the EHT process itself, and through
what ECM components these effects are dependent.
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Figure 2. Mechanical cues in the aortic microenvironment impacting HSC production via EHT. (A) With the onset of blood
circulation in the dorsal aorta, Runx1-expressing hemogenic endothelial cells are subject to the perpendicular hemodynamic
forces of wall shear stress and cyclic stretch. Additional cues are presented by the extracellular matrix, which must be
remodeled to allow the extravasation of newly minted HSCs and the completion of EHT. Other mechanical stimuli may
be mediated by the content of the plasma itself, i.e., blood viscosity and cellular composition, but this requires further
investigation. (B) WSS and CS have unique intracellular effects in HE. WSS upregulates expression of the TF KLF2A, which
promotes expression of nitric oxide synthases. WSS also stimulates production of prostaglandin E2 and calcium influx, both
with pro-hematopoietic effects on EHT. CS directly induces nuclear localization of the YAP TF, stimulating expression of
its canonical target genes via mechanotransduction. Other genes that might be regulated by these TFs to orchestrate EHT
remain to be identified. CS cyclic stretch, EHT endothelial-to-hematopoietic-transition, HEC hemogenic endothelial cell,
HSC hematopoietic stem cell, MMP matrix metalloproteinase, TF transcription factor, WSS wall shear stress. Figure created
with BioRender.com.

3.2. Role of Blood Flow in Promoting EHT

The two landmark studies that first established the importance of hemodynamic
forces as a cue that regulates hematopoiesis from endothelial cells in mice and zebrafish
both identified nitric oxide (NO) as a potent small molecule induced by shear stress that
promotes HSC development [80,81]. A battery of publications from these labs, and others,
further described prostaglandin E2 [82], PKA activation [83] and adenosine receptor expres-
sion [84] as cellular responses downstream of blood flow that have positive effects on HSC
production. Excellent quantitative measurements of blood flow parameters in the zebrafish
DA throughout early developmental stages have been generated in recent years [85–87]. At
the relatively low-intensity shear stress levels found in the arterial tree during the window
of EHT, primary cilia of endothelial cells participate in force-sensing, and the importance
of this organelle to definitive hematopoiesis has been comprehensively shown in zebrafish
using chemical, knockdown and knockout strategies of cilia ablation [88]. Nevertheless,
understanding of the full range of force sensors in HE that respond to the physical forces of
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blood flow, or how this information is transduced into gene expression changes to promote
EHT, is far from complete.

In 2011, Wang et al. [89] used morpholino experiments in zebrafish to position the
transcriptional regulator Klf2a downstream of NO in regulating runx1 expression in the DA.
Full genetic knockout zebrafish for klf2a are viable and do not recapitulate these hematopoi-
etic defects [90], though a comprehensive analysis of simultaneous knockout of klf2a and
the zebrafish orthologue klf2b would be required to address possible compensation [91]. A
zinc-finger TF, Klf2 is one of the most highly upregulated genes in endothelial cells exposed
to laminar shear stress [92], and its loss leads to embryonic lethality in mice which present
with hemorrhaging, vascular defects and high-output heart failure. Curiously, a study
revisiting the lethality of Klf2-/- mice revealed that the proximal cause was likely defective
heart valve formation. Goddard et al. [93] concluded that flow-induced Klf2 expression in
the endocardium of the heart valves at E9.5 in mice led to the expression of Wnt9 which
influenced non-cell autonomous proliferation and morphogenesis of the underlying mes-
enchymal cells in the cardiac cushion. In this study, control of wnt9b expression by Klf2a
was conserved during zebrafish heart development as well, where Klf2a is also known to
regulate fibronectin synthesis [94]. Notably, the WNT ligand Wnt9a was recently shown
to be essential for the “amplification” of hemogenic endothelial cells in the zebrafish DA,
via binding to the Fzd9b receptor [95,96]. While these studies clearly demonstrated that
Wnt9b did not influence HE expansion and that the presumptive source of ligand were the
somites, it is striking that the window of “amplification” is precisely from the beginning
of blood flow onwards. Future studies may indeed identify Klf2-regulated growth factor
expression from endothelial cells exposed to blood flow that act in an autocrine fashion to
control hematopoiesis from the endothelium.

The YAP and TAZ TFs of the Hippo pathway are also well-positioned to transduce
biomechanical signals from blood flow, given their known nuclear translocation following
mechanical stimulus [97]. Although sustained laminar flow in adult vessels suppresses
YAP nuclear localization [98], elegant chemical/genetic manipulation of the Hippo path-
way and blood flow in zebrafish shows YAP nuclear localization in endothelial cells of
the DA receiving the kinds of flow magnitude present during the EHT window [99].
In adult mice, genetic approaches have shown that neither overexpression of constitu-
tively active YAP (driven by Mx1:Cre induction following polyI:C administration) [100]
or combined deletion of YAP/TAZ in HSCs transplanted into otherwise WT irradiated
hosts [101] appear to affect the number or function of cells in the stem cell compartment.
Conversely, YAP is essential for the production of definitive HSCs via EHT during devel-
opment. Goode et al. [102] employed a range of ‘omics approaches to curate an atlas of
transcriptional and regulatory signatures across several developmental stages of murine
embryonic stem cells cultured in vitro through hematopoietic differentiation toward a
macrophage fate. Stage-specific analysis of enriched motifs at promoters indicated an
increased signature of the DNA-binding protein TEAD (a canonical YAP cofactor) during
the endothelial stages of hematopoietic differentiation. Functionally, blocking YAP/TEAD
interactions with verteporfin inhibited the production of hematopoietic progenitors (HPs)
from embryoid bodies in vitro or AGM-derived Flk1+ endothelium cultured ex vivo. Im-
portantly, treatment of HPs themselves with verteporfin did not affect their numbers or
survival, similar to observations in adult mice and indicating a requirement for YAP/TEAD
in the endothelium prior to EHT. Using a novel ‘organ-on-a-chip’ platform for culture of
human CD34+ endothelial cells and pharmacologic/genetic manipulation in zebrafish em-
bryos, our group recently showed that cyclic stretching of the endothelium from embryonic
blood flow activates YAP via Rho GTPases, leading to the expression of Runx1 and the
production of HSPCs [103]. Critically, our in vivo experiments demonstrate that YAP is not
absolutely required for the specification of hemogenic endothelium in the aorta or initiation
of Runx1 expression, but that in the absence of YAP the hematopoietic program cannot be
maintained. These effects are conserved across species and suggest that mimicking physical
forces by chemical stimulation of YAP mechanotransduction may improve the generation
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of hematopoietic cells in culture. In support of this notion, a similar enhancement of
HSPC numbers in the mouse DA and function in CFU assays was observed upon Mll1
overexpression, which was attributed to an increased transcriptional signature of Rho/Rac
signaling [104].

3.3. Cell Contractility and Aortic Architecture during EHT

A number of outstanding but interesting questions remain to be resolved concerning
cell intrinsic mechanics, the effects of external blood flow forces on EHT and the overall
preservation of aortic patency whilst maintaining production of HSCs. Zebrafish treated
with the ROCK inhibitor Y-27632, which decreases cellular contractility, were shown to have
increased cMyb:EGFP+ HSPCs in the DA [105]. More recently, a detailed live-imaging study
from Lancino and colleagues [106] concluded that actomyosin contractility is essential for
successful EHT; they describe the formation of an anisotropic circumferential actomyosin
belt and local enrichments of tight junction protein ZO-1 as extruding HE cells bring
together non-hemogenic endothelial cells and facilitate new tri-junctional contacts before
complete separation. In their study, knockdown of the myosin light chain proteins myl9a
and myl9b reduced CD41:EGFP+ HSPC numbers in the embryo. These discrepancies
may relate to the different transgenes used for quantification, which identify slightly
different stages of hematopoietic commitment. Alternatively, they could be explained by
the chemical vs. genetic approaches, and interpretations of fate vs. migration phenotypes.
Curiously, manipulation of blood flow in the Lancino study led to the conclusion that the
‘no flow’ condition in silent heart morphants caused fewer EHT events to occur, and to
actually reverse in direction in some cases (into the luminal space of the aorta instead of
toward the vein). Seemingly contradictory results were obtained by Camphino et al. [107]
while studying the cellular architecture and behavior of aortic endothelial cells in zebrafish.
They found that extrusion events were slightly increased in embryos with no flow, but
that overall physical movement and rearrangements of cells from the dorsal to ventral
aorta were impaired. They identified the stretch channel Pkd2 as essential for the flow-
dependent kinetics of extrusion, and propose that controlling the speed of this process
might increase the time HE cells spend exposed to hemodynamic forces while they undergo
a transcriptional fate change. Excitingly, empirical data from live imaging in zebrafish are
being combined with mathematical modeling to predict tissue mechanics in the DA during
HSPC formation which may instruct where these events occur [108,109]. Additionally, cell
tracing studies, such as those recently described by Ulloa et al. [8], can help distinguish
whether the different types of stem and progenitor populations that are produced by EHT
may be differentially impacted by blood flow and/or intra- and extracellular structural
dynamics. Future work may also clarify exactly when the flow-dependence of the EHT
process is relieved, and precisely when the contractile machinery is used for morphogenetic
movements vs. fate acquisition.

4. Extrinsic Cues: Metabolic, Hormonal and Inflammatory Signals
4.1. Glucose and Other Metabolites

Endothelial cells regulate diverse intracellular metabolic pathways to carry out their
specialized functions during angiogenesis, vessel remodeling/maturation and quies-
cence/homeostasis of the adult vasculature [110]. It is notable that endothelial cells rely
on glycolysis for the bulk of their energy production, despite direct contact with the O2-
carrying blood. In addition to these observations in non-hemogenic endothelium, it has
become clear that glucose metabolism has strong effects on the production of HSCs from
HE. In 2013, Harris et al. [111] demonstrated that exposure to elevated glucose levels
during development caused significant increases in HSPC production in zebrafish embryos,
together with increases in cell cycling and acceleration of the acquisition of hematopoietic
gene expression in the DA. These pro-hematopoietic effects were shown to be dependent on
both glycolysis and aerobic respiration, and chemical/morpholino-inhibition experiments
indicated that stimulation of the Hif1a TF by reactive oxygen species (ROS) generated
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during glucose metabolism is a driver of HSPC production in this setting. These findings,
with respect to Hif1a, were recently replicated in TALEN/CRISPR-generated zebrafish
mutants: homozygous hif-1aa/ab double mutants show reduced hematopoietic gene expres-
sion, and the authors could show additionally that hif-2aa/ab also contribute to EHT [112].
Endothelial-specific deletion of Hif1a in mice compromises HSC production in the AGM,
demonstrating conservation across species [113]. Free glucose is not the only metabolic
avenue by which HSPC production is regulated. Secretion of ApoA-I binding protein
2 from the somites promotes EHT in HE cells by increasing the activity and expression of
the cholesterol synthesis master regulating TF, srebf2 [114]. Mutants unable to deposit the
m6A RNA modification [115] or with ribosome biogenesis deficiencies [116] have reduced
HSPC output.

Last year, the Nicoli Laboratory published a comprehensive profile of the N-glycome
in zebrafish endothelial cells. In order to explain the previously observed increase in
HSPC numbers in microRNA miR-223 mutants [117], the authors compared transcriptomic
data on sorted miR-223 reporter-positive endothelial cells from wildtype and miR-223 null
embryos. They observed that several of the most significantly upregulated genes in the
mutants, that also themselves contain miR-223 binding sites in the RNA transcript, were
enzymes that regulate N-glycosylation of proteins [118]. Extraction and mass spectrometry
of glycoproteins from sorted zebrafish endothelial cells showed that the N-glycan land-
scape was dysregulated, with a shift from high mannose- to high sialic acid-containing
N-glycosylated proteins, and that the metalloprotease Adam10a was one such affected
protein in zebrafish that regulates EHT. This study is an excellent example of layering
proteomics on top of the transcriptomic and live-imaging data which are so readily ob-
tained in the zebrafish model; future efforts in this space will likely push metabolomic and
proteomic profiling of HE further to understand the cellular physiology underpinning the
EHT process.

4.2. Hormones

A number of diffusible small molecules have been shown to affect HSPC production
from HE in zebrafish by stimulating nuclear hormone receptors and downstream signal-
ing, Figure 3. Yolk-derived estrogen limits hematopoiesis by antagonizing Vegf signaling,
helping demarcate the anatomical region of the aorta for HE specification [119]. Metabo-
lites of vitamin D have differential effects on EHT. Unprocessed cholecalciferol (vitamin
D3) restricts runx1 and cmyb expression in the zebrafish by reducing the strength of the
Hedgehog-Notch signaling axis independent of the vitamin D receptor (VDR) [120], while
the biologically active metabolite 1,25(OH)D3 promotes HSPC production in zebrafish
embryos and the function of human cord blood CD34+ cells in hematopoietic colony
forming unit assays by the VDR-dependent upregulation of the chemokine Cxcl8 [121].
Thyroid hormone [122], cannabinoids [123] and glucocorticoids [124] have all been shown
to modulate HSPC production in zebrafish models.

Another hormone-like compound with an emerging role in developmental
hematopoiesis is the vitamin A metabolite, retinoic acid (RA). In brief, RA is a lipid-soluble
signaling molecule that is synthesized in cells from vitamin A derivatives by retinaldehyde
dehydrogenases (RALDH) and degraded by CYP26 enzymes [125]. RA binds and activates
a class of nuclear hormone receptors that regulate transcription through RA-responsive
DNA enhancers of target genes, including a number of HOX and CDX genes. In 2013,
compelling evidence was provided for the tissue-specific necessity of RA synthesis by
Raldh2 in the endothelium to produce definitive HSCs in mice [126]. Intriguingly, the
original studies on RA signaling in zebrafish showed a limiting effect of exogenous RA
specifically on the production of primitive blood-forming cells [127,128]. More recently,
Pillay and colleagues concluded that RA signaling reduction in aldh1a2-deficient zebrafish
(achieved by morpholino-knockdown or chemical inhibition of enzymatic activity) have
reduced cmyb and thymic rag1/ikaros expression, consistent with compromised definitive
blood stem cell production [129]. All of these studies relied on morpholino-based gene
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disruption, precluding temporal control of gene inactivation or dissection of contributions
(by null allele analysis) from different RALDH enzymes or retinoic acid receptors. Future
efforts should attempt to integrate these conflicting zebrafish data with recent advances
related to the RA target HOX and CDX genes, and their potential to improve in vitro
hematopoietic differentiation. The Sturgeon Lab has shown that CDX4 is required for the
definitive potential of human pluripotent stem cell-derived HE in vitro [130]. Similarly, in
fish, cdx1a and cdx4 act redundantly to promote primitive blood cell development [131,132],
at odds with the idea of them being RA targets in this context. The mechanisms delineating
the “pro-definitive” and “anti-primitive” functions of RA exposure in zebrafish will likely
require careful temporal- and tissue-specific pathway modulation with detailed analysis
of cell fate and dynamic behaviors in live embryos to further clarify how this hormone
instructs HSPC formation in vivo.
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4.3. Sterile Inflammation

One of the most important roles of HSCs is ultimately the production and main-
tenance of the innate and adaptive immune system in vertebrates. Prolonged immune
challenges and subsequent inflammatory responses in the adult can skew HSC differenti-
ation in different hematopoietic lineages and affect the self-renewal capacity of the HSC
pool. In the mid 2010′s, a windfall of publications provided zebrafish data establishing
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a role for non-pathogenic sterile inflammatory signaling promoting HSC production in
the embryo. Implicated molecules included Tnfa/Tnfr2 [133], Interferon Gamma [134,135],
and Tlr4/NfKB [136]. Ongoing efforts in this area have focused on identifying the full
range of cytokines and endogenous processes that stimulate these inflammatory networks.

Recent progress has been made in linking glucose metabolism to the production of
a number of inflammatory cytokines in promoting HSC development. Lim et al. demon-
strated that glucose-associated Hif1a activity exerts its functions partially by inducing Il6
expression in HE downstream of Pdgfb [137]. A related study has delineated a mechanism
for metabolism-directed inflammasome activation in the production and processing of the
cytokine Il1b with positive effects on HSPC formation. By a combination of knockdown,
knockout and chemical modulation of the NLRP3 inflammasome, Frame et al. [138] show
that HSPC production in the zebrafish embryo is dependent on IL1B, with involvement of
the inflammasome machinery in HE and macrophages to process this cytokine into its active
form. Pharmacologic activation of the inflammasome with the compound nigericin from
24–120 hpf increased macrophage, neutrophil and T-lymphocyte populations in zebrafish
embryos at the expense of a decreased erythrocyte pool. Notably, nigericin treatment was
able to enhance multi-potent hematopoietic colony formation from in vitro human iPS-
derived CD34+ cells in culture. An independent investigation similarly observed aberrant
skewing of differentiation from HSPCs in zebrafish embryos exposed to inflammasome
inhibition, namely a reduction in neutrophils and macrophages with a concomitant increase
in erythropoiesis; however, these effects appeared to occur with no significant alterations
in HSPC number [139]. This discrepancy may be attributable to differences in transgenic
lines used for HSPC quantification and precise timepoints of analysis. Nevertheless, the
NLRP3 inflammasome clearly can impact hematopoietic output from HE.

Exciting data from zebrafish have also emerged positioning nucleic acids as putative
ligands to trigger sterile inflammatory regulation of hematopoiesis. Last year Lefkopou-
los et al. [140] published that RIG-I-like receptors (RLRs) in HE cells are activated by
transcribed RNAs from retroelements, inducing an inflammatory transcriptional signature
via NfKB that buffers HSPC production from the aorta. RLRs function as RNA helicases
and are known to respond to viral RNAs in pathogenic settings. The authors show that in
zebrafish, knockdown of the RLRs rig-l and mda5 reduces the number of HSPCs and the
inflammatory gene signature in sorted HE cells. By analysis of retroelements expressed
in HE gain-of-function experiments using sine3-1a RNA injections, they conclude that
RNA from retroelements can positively regulate HSPC numbers via an RLR-dependent
mechanism. A third RLR, Lgp2, serves to dampen HSPC production in the embryo via
an unknown mechanism that does not involve inflammatory signaling. R-loops are yet
another class of nucleic acid species shown this year to regulate hematopoiesis via in-
flammatory cues. R-loops are an entity consisting of a DNA:RNA hybrid and ssDNA, a
byproduct of genomic transcription. The Bowman Lab demonstrated that the DEAD-box
helicase Ddx41 limits HSPC production in zebrafish by clearing R-loops in the nucleus
of HE cells, thereby preventing initiation of a cGAS/STING inflammation cascade [141].
Ddx41 mutant zebrafish have enhanced HSPC numbers in the embryo, together with quan-
tifiable increases in cellular R-loops. This phenotype could be restored by overexpression of
RNASEH to reduce R-loops, or by knockdown of the cGAS/STING proteins, an inflamma-
tory signaling axis upregulated in ddx41 mutants. Collectively, these studies provide more
clarity as to the physiological mechanisms underlying the sterile inflammatory regulation
of hematopoiesis, potentially allowing these cues to be more finely tuned during in vitro
hematopoietic differentiation to drive HSC production or expansion.
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5. Extrinsic Cues: Finding New Relationships with ‘Omics Approaches
5.1. Bulk RNA-Sequencing: Hematopoietic Roles for GPCRs

Knowledge of the transcriptional profile of HE has been essential for identifying
accurate markers of this population and in determining the molecular dysfunction at play
during experimental conditions that perturb EHT (Table 1). RNA sequencing of immuno-
phenotypic endothelial cells, HE, and HSCs in mice revealed a role for the cell surface
receptor Gpr56 during EHT [142]. This gene was progressively expressed during the
endothelial-HE-HSC trajectory, and knockdown of the homologous gene in zebrafish led
to reduction in HSPCs in the embryo. These effects could be rescued by mRNA injection of
either the zebrafish or mouse Gpr56 gene product. Maglitto et al. [143] have recently added
to this story by showing a functional redundancy in the mouse for the Gpr56 and Gpr97
genes, bolstered by the ability of mouse Gpr97 to rescue Gpr56 knockdown in zebrafish.

A similar high-quality transcriptomic dataset of zebrafish endothelium, HE and HSPCs
was generated by Zhang et al. [144] in 2015. The authors created a novel GFP reporter in
zebrafish driven by a mouse Runx1-responsive hematopoietic enhancer. By combining this
transgene with a pan-endothelial Tg(flk1:mcherry) line, a FACS enrichment strategy was
used to isolate and sequence endothelial cells (GFP−, mCherry+), HE (GFP+, mCherry+)
and HSPCs (GFP+, mCherry−) from the micro-dissected zebrafish trunk. In this study the
gpr183 gene was identified due to its relatively higher expression in the HE population,
and Crispr/Cas9 mutagenesis demonstrated that zebrafish loss-of-function mutants had a
reduction in cMyb-expressing cells around the timepoint of EHT and failure to acquire Rag1-
expressing thymocytes at later timepoints. This group also showed conserved expression
dynamics and function in mouse HE, in part by observing reduced hematopoietic output
from explanted AGMs treated with a chemical inhibitor of the endogenous Gpr183 ligand.

Such datasets have been a powerful tool within the community to evaluate new
experiments against and test hypotheses. Just last year, Kwon et al. [145] reported a
hematopoietic role for yet another GPCR in zebrafish, Gpr182. They observed clear vascular
expression of gpr182 by whole mount in situ hybridization and determined from the Zhang
dataset that transcript levels were particularly enriched in HE. RNA sequencing analysis
of mutant endothelial cells and a chemical screen were used to identify LeukotrieneB4 as
a putative ligand for this GPCR, and quantification of HSPC numbers in gpr182 mutants
showed increases over wildtype embryos, with a concomitant enhancement of myeloid
differentiation. Together, these studies show how transcriptomic approaches have been
employed to identify GPCRs in HE with both positive and negative effects on EHT and
HSPC formation.

5.2. Tomo-Seq, scRNA-Seq and Ligand/Receptor Predictions

The previous studies identified cell intrinsic receptors (with extrinsic ligands) by bulk
RNA sequencing of enriched HE cells. Limitations of this approach include an inability to
parse cellular heterogeneity within the target population or identify genetically encoded
extrinsic factors in the complex multicellular environment in which EHT occurs. Rapid
progress has been made employing Tomo-seq and scRNA-seq technologies in zebrafish
to gather regional and cell-type specific transcriptomic data and make computational
predictions of cellular crosstalk in hematopoiesis.

One of the first applications of this approach in zebrafish was used to predict lig-
and/receptor crosstalk in the CHT niche. By laser microdissection and sequencing of
regions of the CHT, Xue et al. [146] made predictions of ligand/receptor interactions by
identifying endothelial-enriched receptors and cognate ligands on nearby tissue. Together
with bulk and single-cell sequencing approaches, they uncovered Ctgfa/Itgb2 as a func-
tional pair dampening HSPC expansion in this embryonic niche. In a cross-species effort
aiming to specifically identify ligand/receptor interactions that regulate EHT, Yvernogeau
and colleagues performed RNA tomography (Tomo-seq) on the AGM from stage-matched
human, chick, mouse and zebrafish embryos [147]. They were able to then identify puta-
tive ligand/receptor pairs by conservation and endothelial expression between at least
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2 or more species and could show in zebrafish novel hematopoietic functions for the
Adm/Ramp2 ligand/receptor pair and the secreted growth factor Svep1. These studies
provide exciting proof-of-concept for such computational predictions, and harbor as yet
unvalidated ligand/receptor pairs that may regulate EHT.

5.3. Future Directions: Integrating Extrinsic Cues with Gene Regulatory Networks by Sequencing

scRNA-sequencing in particular has been used to identify rare populations of stem
cells and infer differentiation trajectories and cellular states along the hematopoietic con-
tinuum from HE to HSCs and their progeny [148–151]. Transcriptomic profiling can
therefore serve as a ‘quality control’ check, to determine how transcriptionally similar
in vitro-derived or manipulated HSPCs might be to the native cell type; algorithms like
CellNet [61], CellRouter [152], FateID [153] and SingleCellNet [154] are designed to provide
such an analysis. High quality datasets from in vivo models are therefore essential. A
number of groups have used scRNA-sequencing to profile zebrafish adult whole kidney
marrow cells, providing a molecular atlas and gene signature for zebrafish HSCs and their
derivatives [155–157]. This has been extended to HSPCs in the CHT as well [158].

Data for gene regulatory network (GRN) reconstruction are just beginning to be
generated in human, mouse and zebrafish models. Bulk sequencing strategies for RNA
transcripts and chromatin histone marks in mouse HE implicated hematopoietic roles for
Sp3 and Maz TFs, with a conserved function shown for the zebrafish orthologs [159]. Bulk
sequencing of zebrafish HE together with ATAC-seq by Bonkhofer et al. [160] provides
strong molecular data reinforcing a transcriptional role for Runx1 in ultimately repressing
the arterial fate in select HE cells to complete EHT. New algorithms are being developed to
computationally predict ligand/receptor interactions occurring in tissues based on scRNA-
seq data [161,162], but these tools have not been rigorously applied to hematopoietic
development. Future efforts will likely focus on comprehensive integration of predicted
extracellular cues (like ligand/receptor interactions or mechanical inputs) to GRNs in HE
implied by the cell intrinsic TF milieu and chromatin landscape. Given the fruitfulness
of cross-species comparison in the endeavor thus far, and the relative ease of functional
validation, the need for high quality datasets in the zebrafish model is evident.
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Table 1. RNA sequencing datasets of hemogenic endothelium and other hematopoietic tissues.

Last Author, Year Species Type of Sequencing Sorted Population(s) Accession
Number(s) Ref.

Zhang et al., 2015 zebrafish bulk RNAseq flk1:mCherry+ (ECs), flk1:mCherry+/ runx1en:GFP+ (HE); and
runx1en:GFP+(HSPCs) N/A [144]

Kartalaei et al., 2015 mouse bulk RNAseq
E10.5 AGM ECs(CD31+, cKit−,Ly6aGFP−), HE (CD31+,

cKit−,Ly6aGFP+), HSCs(CD31+, cKit+,Ly6aGF+) and HPs( CD31+,
cKit+,Ly6aGF+)

GSE63316 [142]

Bonkhofer et al., 2019 zebrafish bulk RNAseq
and ATACseq

TgBAC(runx1P2:Citrine);Tg(kdrl: mCherry) to sort for HE, non-HE
arterial ECs and venous ECs, including runx1 morphants

GSE132259,
GSE132258 [160]

Baron et al., 2018 mouse scRNA-seq CD31+, cKit+ cells from E10 and E11 aorta after intra-aortic antibody
staining, together with other aortic subfractions by surface markers GSE112642 [148]

Zeng et al., 2019 human scRNA-seq Dissected AGM from ~30-day old human embryo (depleted of red
blood cells) GSE135202 [149]

Yvernogeau et al., 2020 zebrafish, mouse,
chicken, human Tomo-seq

zebrafish Tg(kdrl:mCherry/cd41:EGFP) at 28- and 40-hpf for HE/HSPC
identification through trunk; E10.5 and E11.5 mouse trunk, E3 chicken

embryo trunk, 35-day-old human embryo trunk
N/A [147]

Chen et al., 2020 mouse scRNA-seq Lin−, cKit+ cells with both Runx1-mKO2 and Ly6a-GFP transgenic
reporters (HSCs) GSE145638 [150]

Zhu et al., 2020 mouse scRNA-seq Purified EC, HE and intra-aortic cluster cells with surface markers and
Runx1-GFP expression GSE137117 [163]

Oatley et al., 2020 mouse scRNA-seq VE-cadherin+ cells from E10 AGM E-MTAB-6987 [164]

Kasper et al., 2020 zebrafish scRNA-seq
Dissected trunks from 27hpf wildtype and miR-223 mutants, sorted on

Tg(kdrl:mCherry) ECs (also has miR-223 GFP+ population
for clustering)

GSE135246 [118]

Soto et al., 2021 zebrafish scRNA-seq Tg(kdrl:EGFP) ECs at 30hpf from ezh1 wildtype, heterozygous and
homozygous mutants GSE173972 [56]

AGM: aorta-gonad-mesonephros, EC endothelial cell, HE hemogenic endothelium, HP hematopoietic progenitor, HSC hematopoietic stem cell, HSPC hematopoietic stem/progenitor cells.
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6. Conclusions

Endothelial cell heterogeneity is now understood to contribute to the functions of
organ-specific vasculature and underlies the mechanisms by which the vascular tree is
grown and shaped during development. Furthermore, much is known about the essential
role of canonical developmental signaling and regulatory cascades (Notch, VEGF, WNT,
TGF β/BMP, FGF, etc.) in the process of vascular specification and patterning, including
that of hemogenic fate [165]. In this review, we have focused on the extrinsic signals
derived from the hematopoietic niche microenvironment that further influence and modify
cellular commitment to transition from vascular identity to blood formation. It is important
to note, whereas this review has not covered the unique supportive functions of endothelial
cells for HSC maintenance and function in adult and developmental niches, they remain
a critical influence on the hematopoietic system. For example, bone marrow sinusoidal
Apelin+ endothelial cells are required in mice for proper HSC number during steady-
state and post-irradiation, transplantation-derived regenerative hematopoiesis [166]. In
zebrafish, endothelial cells of the CHT have been observed to “cuddle” nascent HSPCs
that are expanding in this transient embryonic stem cell niche [167], and the endothelium
of this vascular bed expresses abundant growth factors to control retention, growth and
development of stem cells [168]. In summary, we propose that hemogenic endothelium, and
the developmental process of endothelial-to-hematopoietic transition, represents one of the
most extreme specializations of an endothelial cell type, which when coaxed and presented
with the right extrinsic and environmental cues will abandon the classical endothelial
identity program completely to adopt a blood stem cell fate. Ongoing work in zebrafish
and other systems stands to further decipher the molecular characteristics of the unique
hemogenic endothelial cells and refine methods to recapitulate developmental processes to
procure HSCs from this population, in vivo and in vitro.
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