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Abstract: Surprisingly, the local structure of electrolyte solutions in electric double layers is primarily
determined by the solvent. This is initially unexpected as the solvent is usually a neutral species and
not a subject to dominant Coulombic interactions. Part of the solvent dominance in determining the
local structure is simply due to the much larger number of solvent molecules in a typical electrolyte
solution.The dominant local packing of solvent then creates a space left for the charged species.
Our classical density functional theory work demonstrates that the solvent structural effect strongly
couples to the surface chemistry, which governs the charge and potential. In this article we address
some outstanding questions relating double layer modeling. Firstly, we address the role of ion-ion
correlations that go beyond mean field correlations. Secondly we consider the effects of a density
dependent dielectric constant which is crucial in the description of a electrolyte-vapor interface.
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1. Introduction

The occurrence of electrolyte solutions meeting solid (or liquid), materials is ubiquitous.
The behavior of the resulting interfaces is key in the fields of surface and colloid science,
electrochemistry and corrosion and soft materials and biomaterials. These interfaces are subject to
both physical and chemical interactions with the fluid. Examples include chemical reactions between
surface terminal groups and certain solution components, physical adsorption or desorption of charges
at the interface [1,2]. All these interfacial phenomena may manifest themselves in the accumulation of
surface charge at the interface. Consequently, the electrostatic surface potential will change. As a result,
mobile charges in the vicinity will redistribute to lower the total free energy. Thus, surface chemistry
effects propagate into the neighboring phase. The entire system, consisting of charged interface and
locally distributed mobile charges and electrostatic potential is referred to as the electric double layer
(EDL). The double layer name has historical roots, reflecting the initial notion that the charged interface
with the electrolyte solution can be represented by a simple capacitor, where the surface charges and
the solution counter-charges are placed on two well-defined planes in space [3]. This is certainly not
an accurate representation of the physical situation, as entropic effects cause the charges to distribute
themselves in space, away from a strict capacitor plane. An alternative description was suggested
by both Gouy and Chapman [4–6] who realized that the EDL had diffuse aspects. They suggested a
model based on Maxwell theory of electrodynamics, relating the potential Ψ(r) to the charge density
distribution ρe(r).
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In parts of this paper we account for the presence of the solvent but we stress that this accounting
is incomplete. It captures the important basic aspects of (1) excluded volume and (2) solvent-ion
attractions (i.e., ion solvation) through the the Lennard-Jones (LJ) interactions. For instance, the effects
of solvent orientation and solvent polarizability are not included in any detail, but rather mimicked
through an effective LJ interaction. Similarly, the network structure of a solvent like water, say,
including the quantum nature of hydrogen bonding are not captured at this time with current
classical density functional theory (cDFT) techniques. Some authors have criticized models that do not
include all known aspects of the solvent. We point out that there is always great value in the usage of
simple models as their strength is to highlight and explore fundamental aspects and to provide insight
into the phenomena of interest (e.g., the behavior of EDLs). In addition, there are recent approaches
(see References [7–9]) that use experimentally measured ion solvation energies to improve the values
used to approximate the LJ interactions, say. Such a strategy can address ion-specific effects that
experiments have established.

The inclusion of more detail is then made when it becomes clear that the simple model approach
fails. A nice illustration of such a situation can be found in the work of Wilson and Madden [10],
who showed that to obtain the correct crystal structure for simple divalent salts like MX2 it is necessary
to include ion polarizability into the lowest free energy calculation.

Having recognized the strengths and weaknesses of density functional theory (DFT) it is
worthwhile to stress that molecular simulation is the more convenient approach to explore the effects
of solvation details including polarizability, orientation, hydrogen bonding and quantum effects.

The remainder of this paper is arranged as follows. In the next section we introduce the chemical
boundary condition known as charge regulation and then in the next section we introduce the details
of density functional theory that includes a neutral solvent component. We then discuss the role of
screening ion-ion correlations that go beyond mean field. Finally, we address the role of the dielectric
permittivity at an interface and introduce the Oleksy-Hansen method of a permittivity that depends on
the local (coarse-grained) density. In the results section we illustrate the effects of charge regulation and
the solvent inclusion by looking at the net charge distribution in a double layer and the corresponding
electric potential distribution for three different wetting cases. We then illustrate the effects of including
screening ion correlations for the primitive model and show how it can produce charge inversion.
The latter is an impossibility in the Poisson-Boltzmann approximation. Finally, we illustrate the effects
of ion correlations on fluid flow. The paper then concludes with a conclusions section.

2. Charge Regulation

Poisson’s equation [11] is an example of a second-order partial differential equation (pde),

∇2Ψ = − ρe

εrε0
. (1)

When the right-hand side is equal to zero the equation is reduced to Laplace’s equation.
Poisson’s equation describes the variation of the electrostatic potential, Ψ, in space, given a spatial
distribution of charges, ρe(r). In the study of electrolyte solutions the situation is slightly different,
there we seek to find the equilibrium distribution of charges.

This is a far more complex problem. Two familiar examples are the ionic distribution in a
bulk electrolyte fluid and the distribution of ions in an electrical double layer. The first allows the
determination of ionic activity coefficients whereas the second example leads to the prediction of forces
acting between charged surfaces, as encountered in colloid stability studies.

To make progress with solving the Poisson equation one requires a simplification. This can
be accomplished by postulating a relationship between the charge distribution and the electrostatic
potential. Inspired by an ideal gas in an external field the approximation used stipulates that the
density distribution is proportional to the Boltzmann factor of the potential. This approximation
becomes exact in the low-density limit. Substituting this expression into the Poisson equation produces
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the so-called Poisson-Boltzmann (PB) equation, a nonlinear second order partial differential equation
for the potential:

ρe = ∑
i

ρ0
i qi exp

(
−qiΨ
kBT

)
, (2)

where ρ0
i is the number density of ionic species i and qi is the ionic charge including the sign (in units

of e). The charge screening is characterized by the inverse Debye length κ is defined as,

κ2 =
1

εrε0kBT ∑
i

q2
i ρ0

i . (3)

Debye and Huckel solved the linearized PB equation for an electrolyte solution whereas Gouy and
Chapman solved the linearized PE equation for a charged surface. To solve the latter PB equation
requires a boundary condition (bc). Natural and numerically convenient choices for bc are the potential
at the surface (i.e., Dirichlet condition) or the spatial derivative of the potential at the surface (i.e.,
the surface charge, known as the Neumann condition).

In 1971, Parsegian and Ninham [12] proposed a radically different approach that is more true to
the actual local chemistry. They drew attention to the fact that charged surfaces acquire their surface
as a result of an ionizable surface group. That ionization is, ultimately, a chemical reaction where a
neutral surface group splits of an ion leaving a charged surface group. A simple example would be a
deprotonation of a surface group AH, viz.

AH+
2 + BH ⇀↽ AH + BH+

2 , pK+ = − log10 K+ (4)

AH + BH ⇀↽ A− + BH+
2 , pK− = − log10 K−.

This leaves a negatively charged surface. An equilibrium constant K (or equivalently a Gibbs free
energy change of reaction, ∆G) relates the local concentrations of the reactants, here AH, A− and H+,
where it is understood that both AH and A− are surface bound. In what follows, ∆G will typically be
taken from the literature or set equal to the value in the bulk.

The relevant local concentration of the proton is that at the surface. If the surface is represented
by a hard wall then this can be the contact density at the wall. On the other hand, if the wall is manifested
as a smooth potential there is no contact density and a choice needs to be made. In previous work we
have selected a density average over a narrow range, we shall employ that definition here. Alternatively,
one could consider a profile based equivalent to the bulk y-function (i.e., y(r) = g(r) exp(φ(r)/kT)) [13],
that is

y(z) = ρ(z)eVext(z)/kT . (5)

This is simply a smooth and continuous extension of the profile into the wall region. The contact
density must then be measured at an effective hard wall position. The reader is referred to Reference [2]
for more details regarding the use of the y-function in reactive systems and the use of y(z) in
interfacial systems.

The Parsegian and Ninham approach replaces a physical bc (constant surface charge or constant
surface potential) with a chemical bc, expressed in terms of a surface reaction’s equilibrium constant
(Ka or pKa). It is known as charge regulation (CR) as the surface charge is regulated by Ka (or pKa).
This implies that both the surface charge and the surface potential are no longer input parameters but
instead found from the solution of the electrostatic double layer problem. CR was originally proposed
for a PB approach to double layers. More recently, Fleharty et al. [14] took the step to implement
charge regulation in a DFT formulation of a double layer.
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3. The Grand Thermodynamic Potential

EDLs involve multicomponent solutions, containing charged (ionic) and, if included,
neutral (solvent) species. These species are subjected to the effects of the field exerted by the interface
with the substrate. The field has electrostatic and van der Waals components, which lead to a variety
of interactions with the fluid. In addition, the solution components (M) in the fluid interact with each
other. All of these interactions are easily incorporated in a cDFT model.

The electrolyte solution is described in terms of a grand thermodynamic potential functional,
which for single flat EDL reads [14–20]

Ω [{ρi(z)}] = Fid[{ρi(z)}] + Fex
HS[{ρi(z)}] + Fex

long[{ρi(z)}] + FSC[{ρi(z)}]+

2π
M

∑
i=1

∫
RdR

∫
dz ρi(R, z)

[
Vext

i (R, z)− µi
]

. (6)

The first term on the right hand side of Equation (6) corresponds to the ideal contribution to the
free energy,

Fid[{ρi(z)}] = 2π kBT
M

∑
i=1

∫
RdR

∫
dz ρi(R, z)

{
ln
[
λ3

i ρi(R, z)
]
− 1
}

, (7)

where λ =
√

h2/(2πmikBT) is the thermal de Broglie wavelength, h is Planck’s constant, mi is the
mass of species “i” and ρi(z) is the local density of component “i” along the z coordinate normal to the
wall. The radial coordinateR runs parallel to the EDL interface with the substrate.

The excess free energy consists of hard-sphere and long-range parts. The hard-sphere contribution
is based on the derivation of Rosenfeld [21,22] and reads

Fex
HS[{ρi(z)}] = 2π kBT

∫
RdR

∫
dz ΦHS {nα(R, z)} . (8)

ΦHS {nα(R, z)} is the hard-sphere reduced free energy and nα(R, z′) = nα(r) (r being the position
vector) is the weighted local density.

ΦHS {nα(r)} = −n0 log(1− n3) +
n1n2 − n1 · n2

1− n3
+

n3
2 − 3n2n2 · n2

24(1− n3)2 . (9)

Remarkably, the functional form of the reduced free energy ΦHS {nα(R, z)} is independent of the
number components M. It is the weighted densities nα(r) exhibit such a dependence and are defined by

nα(r) =
M

∑
i=1

∫
d3r′ρi(r′)ωi

α(r− r′)), (10)

and the weighting functions ωi
α(r) are

ωi
3(r) = Θ(Ri − r), ωi

2(r) = δ(Ri − r), ωi
1(r) =

ωi
2(r)

4πRi
, ωi

0(r) =
ωi

2(r)
4πR2

i
, ωi

2(r) =
r
r

Θ(Ri − r),

ωi
1(r) =

ωi
2(r)

4πri
. (11)

Here Θ and δ denote the Heaviside step function and Dirac delta function, respectively.
The long-range contribution to the free energy functional is
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Fex
long[{ρi(z)}] =

π

2

M

∑
i=1

M

∑
j=1

∫
RdR

∫
dz×

∫
dz′ρi(R, z)ρj(R, z′)ΦLR(R, |z− z′|), (12)

where ΦLR(R, |z − z′|) is the long-range interactions contribution of the reduced free energy.
Equation (12) indicates that the long range interactions are accounted for in a mean-field limit [23].
The term FSC[{ρi(z)}] refers to the free energy due to ion-ion correlations and is discussed in detail below.

The last term in Equation (6) is the Lagrangian constraint, which accounts for the external fields
Vext

i and fixed chemical potentials µi for all species.
The densities of all components ρi(z) are found by minimizing the functional [15,24]

δΩ [{ρi(z)}]
δρi(z)

= 0. (13)

which produces the so-called Euler-Lagrange equations. Typically, these are solved for the unknown
component profiles, ρi(z), by an iterative method.

The charge density distribution in the EDL is derived by summing over the individual charged
species, taking into account the charge numbers with their sign

ρe(z) =
M

∑
i=1

qiρi(z). (14)

This approach includes the contributions of the interactions between the solutions species,
which are present in the terms Fex

HS[{ρi(z)}] [21,22], which accounts for the excluded volume effects
and Fex

long[{ρi(z)}], which captures long-range interactions. In our model, these interactions are of the
Lennard-Jones (LJ) [25]

ΦLJ
(
rij
)
= 4εij

(dij

rij

)12

−
(

dij

rij

)6
 , rij > dij (15)

and Coulombic

Φel
(
rij
)
=

qiqj

4πεε0rij
, rij > dij, (16)

type [14,17–20], where dij = (di + dj)/2, di is the diameter of component “i” and rij(R, z) is the distance
between species “i” and “j”. All non-Coulombic interactions of a molecule (or ion) of type “i” with the
interface are assumed to be of the “hard wall” type, that is, only the excluded volume effects are taken
into account. The only exception is our analysis of the solvent-wall interactions presented in Section
3.3 below, where the LJ (9-3) potential [25]

ΦLJ (z) = εs−w

[
2

15

(
ds

z

)9
−
(

ds

z

)3
]

, z > ds/2 (17)

is used in the analysis. The electrostatic interaction of the ions with the interface is

Φel (z) =
qiσz
2εε0

, z > di/2. (18)

Other choices for the attractive interactions are also available. For example, Oleksy and Hansen [26–28]
used a Yukawa potential to account for the long-range attraction between the solution species.
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4. Higher Order Electrostatic Correlations

In the results presented so far, the electrostatic contribution to the energetic components in the
cDFT formalism has been treated only at the mean field level; that is, no electrostatic correlations
between the ions have been included except that they feel the average electrostatic potential. However,
higher order electrostatic correlations beyond the mean field can be quite significant. This is especially
true for multivalent ions but these correlations also play a role for monovalent ions. In this section,
we review the origin and effect of these higher order electrostatic correlations.

To give an intuitive description of the origin of the electrostatic correlations, consider a
homogeneous (bulk) electrolyte solution. There, the ions interact via the Coulomb potential,
perhaps moderated by the dielectric constant of the solvent. Because the system is homogeneous,
the mean electrostatic potential is identically zero; averaging over a sufficiently long period of time,
there is charge neutrality everywhere. However, the nanoscale structure of how the ions arrange around
each other (i.e., how the screen each other) depends strongly on the electrolyte concentration and the
charges on the ions. Specifically, the length scale of screening decreases as either the concentration or
the ion valences increase. This is reflected in the Debye length, the most commonly used estimate of
the screening length. If ions are generally closer to each other when they are at high concentration or
when one species is multivalent and this is not reflected in the mean electrostatic potential, then there
must be an energy term in the cDFT formalism (Equation (6)) that accounts for these correlations
between the ions. We call this the screening term, denoted with SC.

Virtually all modern cDFT formulations of the screening energy term are based on the Mean
Spherical Approximation (MSA). The MSA is a theory of homogeneous electrolytes that extends the
classical Debye-Hückel theory to include the size of the ions [29–31]. Other theories like the Hypernetted
Chain approach are more accurate [31] but the MSA has the advantage of explicit analytic formulas,
which makes it particularly convenient to generalize it to inhomogeneous electrolytes in cDFT.

Here, we do not focus on different cDFT formulations that have been created to approximate
this term but rather the effect the screening term has on EDL structure. A number of different
expressions have been derived for the screening term over the last 30 years. These provide different
levels of trade-off between accuracy (EDL structure compared to Monte Carlo simulations) and
computational speed. For the results shown here, we use the Reference Fluid Density functional of
Gillespie et al. [32,33], which remains the most accurate one to date. Other cDFT formulations include
the bulk reference Taylor expansion [34,35] and the functionalized MSA [36]. The relative accuracies of
these three approaches was recently catalogued [37].

5. Molecular Interactions, Solvent Polarity Effects and Dielectric Permittivity

Electric double layers typically form at interface of substrates with electrolyte solutions. Hence,
the Coulombic interactions that involve the ionic species are of primary importance. However,
the existence of a stable liquid phase requires the presence of attractive forces forces between the
solvent molecules. The solvent molecules also interact with ions, which accounts for the ionic
solvation. Depending on the solvent polarity, its molecules may be involved in isotropic attractive
(e.g., Lennard-Jones, Yukawa, etc.) or dipole interactions. In addition, all species have finite size and
that leads to a short-ranged repulsive force, which plays a major role for the liquid structure at the
molecular scale.

A simple description of electrolytes and EDLs can be accomplished by ignoring all interactions
except for the Coulombic (and in some cases the short-range repulsion) between the ionic species.
Such models are colloquially referred to as “primitive” [38]. The primitive models [36,39–44] consider
the solvent to be a structureless continuum, characterized by a uniform relative dielectric permittivity
εr. The model reflects the ionic interaction contributions but fails to capture the structural effects caused
by the presence of the neutral solvent. At the opposite extreme are the “civilized” models [45–53]
that account for the presence of all solutions components and all possible interactions between
them—Coulombic, van der Waals, dipole-dipole, ion-dipole and so forth. The inclusion of the
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dipole effects, that are due to the solvent polarity, requires an additional integration to properly
average all dipole orientations. Such a step needs significantly greater computational resources
and time. A reasonable compromise is offered by the “semi-primitive” models, which explicitly
account for the presence of solvent molecules but ignore the effects due to the their polarity.
This approximation means that the solvent molecules exhibit short-range repulsive forces and isotropic
attractions (necessary to ensure the existence of a stable liquid phase) but are not involved in any
orientation-dependent dipole-dipole or ion-dipole interactions. The semi-primitive models proved
themselves helpful in demonstrating the effect of the liquid structure on the properties of charged
electrolyte interfaces [14,17–20,54–59]. Since the semi-primitive approach does not account for any
dipole effects, the dielectric permittivity has to be added ad hoc in order to properly scale all Coulombic
terms. A very insightful analysis of the problem was recently offered by Oleksy and Hansen [26,27],
who argued that this approximation is quite reasonable and can be further improved by introducing a
dielectric permittivity that depends on the local weighted solvent density ρ̃0(z) defined by

ρ̃0(z) =
6

πd3
0

∫ ∞

0
dz′ρ0(z′)[

d2
0

4
− (z− z′)2]Θ(

d0

2
− |z− z′|). (19)

The local weighted solvent density density can then be used to calculate the local dielectric
permittivity εr(z). An example is the Clausius-Mossotti equation

εr(z) =
(8π/9kBT)m2ρ̃0(z) + 1
(4π/9kBT)m2ρ̃0(z)− 1

, (20)

where m is the molecular dipole moment. The Clausius-Mossotti equation can be derived using a
mean-field cDFT model of dipolar hard sphere fluid [28]. Unfortunately it fails for high dipole moments
and cannot be used for liquids such as water [27,28]. For such cases, Oleksy and Hansen [26,27]
proposed the empirical expression

εr(z) = 1 +
f (T)

1 + exp[−a(ρ̃0(z)d3
0 − ρ0m(T)d3

0]
. (21)

The function ρ0m(T) = [ρ
g
0(T) + ρl

0(T)]/2 is the mid-point fluid density between coexisting gas
and liquid phases [with densities ρ

g
0(T) and ρl

0(T), respectively], while ρ̃0(z) is given by Equation (19).
The empirical function f (T) = 88 − 0.37T, was designed to conform to experimental data for
water permittivity.

The Oleksy-Hansen approach is particularly useful when the semi-primitive cDFT model is
applied to wetting electrolyte liquid films in coexistence with a gas phase. In such cases, the dielectric
permittivities in the liquid and gas phases may vary by more than an order of magnitude and that
is adequately captured by Equation (21) above. This model was tested against the civilized cDFT
model proposed by Biben et al. [52], which fully accounted for the dipole effects at the molecular
level and showed a very good agreement. Single phase liquids are less challenging since the dielectric
permittivity does not experience such abrupt changes. Still, the local dielectric permittivity in a liquid
solution is perturbed by the presence of charge (i.e., an ion or charged group.) This perturbation decays
with distance and after a few molecular diameters the permittivity resumes its bulk value [51,52].
Hence, the detailed solvent polarity effect on the local dielectric constant may be neglected for low
to moderately concentrated electrolyte solutions. For example each two ions in a 0.01 M solution are
separated, on the average, by more than 30 solvent molecules, which is more than sufficient distance for
the permittivity to relax to its bulk value. At higher electrolyte concentrations and/or in the presence
of multivalent ions the local variations in the local dielectric permittivity should be taken into account
either using the Olesky-Hansen approach (see Equation (21)) or by developing a full-scale civilized
model including all possible interactions (van der Waals, Coulombic, dipolar, etc.). Another feature of
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concentrated electrolyte solutions is that the ionic screening correlations become important and need
to be properly taken into consideration [36,44].

6. Results and Discussion

6.1. Solvent Effects

As an illustration of the importance of including the solvent in cDFT we consider an EDL in
a situation where the solvent is attracted to the wall with three different wettability conditions.
Thus, we mimick a solvophilic wall, a solvophobic wall and a partially wetting wall that we will
refer to as a neutral wall. The wetting variations are accomplished by varying the strength of the
LJ interactions (i.e., through εs−w—see Equation (17)) between the wall and the solvent component.
We vary εs−w/kBT from 0 to 1 to 2. Note, that for the ion species the value is held constant at 1
throughout. Although we can be sure that the case εs−w/kBT = 0 produces complete drying at
liquid-vapor coexistence, the other two values are merely inspired guesses and we are not implying
that (at liquid-vapor coexistence) they would produce complete wetting for εs−w/kBT = 2 or a contact
angle of 90 degrees for the neutral wall. The results for the spatial net charge distributions are shown
in Figure 1. These are the results for a symmetric monovalent electrolyte at fairly low molarity (0.01 M).
The bulk pH is set at 4 and the charge regulation parameters are set at pK+ = −2 and pK− = 6.
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Figure 1. Fluid charge density ρe for three different cases of solvent-wall interactions: the blue curve is
for εs−w = 0 (solvophobic), the black is for εs−w = 1kBT (neutral, where the energy is the same as the
bulk LJ attraction). The red curve is for εs−w = 2kBT (solvophilic).

The solvophilic (red) curve, εs−w/kBT = 2, shows the most pronounced build-up of positive
charge variation in the EDL. Note that all three wetting states display a pronounced layering oscillation
with a period of 1 solvent diameter. As mentioned this is due to the packing of the solvent molecules.
The increased number of solvent molecules at the wall prevents the PDIs form approaching and
neutralizing the negative surface charge. Hence, the more negative interface attracts the positive
counterions in the EDL. This layering modulation is carried over to the positive and negative ions and
hence is reflected in the profiles of the net charge (ρe(z)).

The corresponding profiles for the electrostatic potential is shown in Figure 2. As expected the
largest value for the surface potential (i.e., the potential value at z = 0) occurs for the solvophilic
case, εs−w/kBT = 2. It is interesting to see that the electrostatic potential is monotonic throughout
the EDL. That is, there is there are no hints from the layering seen in Figure 1. This is consistent with
Poisson’s equation (Equation (1)), which shows that it is the second derivative of the potential that
corresponds to the (net) charge distribution. Since the overall sign of the fluid charge density does not
change, the potential curvature (or d2Ψ/dz2) will not change as well. The magnitude of the curvature,
however, will change according to the the fluid charge density curves shown in Figure 1 but this is
hard to notice by visually observing the potential curves in Figure 2. However, differentiating the
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potential curves twice will recover the oscillating results for the fluid charge density ρe(z) shown in
Figure 1.

0 10 20 30 40 50

z/d

-2.0

-1.5

-1.0

-0.5

0.0

e
/k

B
T

Figure 2. Electrostatic potential for three different cases of solvent-wall interactions: the blue curve is
for εs−w = 0 (solvophobic), the black is for εs−w = 1kBT (neutral, where the energy is the same as the
bulk LJ attraction). The red curve is for εs−w = 2kBT (solvophilic).The results shown correspond to the
same charges as for Figure 1.

The results shown here are a demonstration of the role of including an explicit solvent in cDFT.
It is clear that the solvent’s presence is necessary to capture the effects of different wettabilities of
the solid phase. Moreover, to capture thin wetting films it is essential to include the formulation of a
density dependent dielectric permittivity described in the previous section.

6.2. Effect of Screening Correlations on EDL Structure within the Primitive Model

The vast majority of the studies studying the effect of the screening term were performed with
the primitive model of ions, where the ions are charged hard spheres and the solvent is a background
dielectric material; there are no explicit water particles, as there are for the other results shown in this
article. Therefore, it is not known exactly how the inclusion of higher order electrostatic correlations
will affect these results but a number of generalities will carry over. The focus of this section will be
discussing these general properties but within the framework of the primitive model of electrolytes.
While many of these properties have been generally known for a while, how they all come together to
define EDL structure was only recently described in detail by Voukadinova and Gillespie [44].

In the primitive model, ion concentration profiles as a function of the distance x from a smooth,
hard, uniformly charged (as opposed to the charge regulated approach described above) surface are
given by

ρi (x) = ρb
i exp

(
−∆µi

HS (x)− qi∆Ψ (x)− ∆µi
SC (x)

kBT

)
, (22)

where i is the ion species. Here, we assume that the surface charge is negative and constant (i.e.,
not regulated). The three terms in the Boltzmann factor are different components of the interaction
physics. The first term (HS) is the hard-sphere contribution, and ∆µHS (x) is the energy it takes to
insert an uncharged ion at distance x, relative to the bulk value far from the wall. Similarly, ∆Ψ (x) is
the mean electrostatic potential relative to bulk. The third term is the screening term. All these terms
are the functional derivative of a corresponding cDFT free energy term, see Equations (6) and (13).

To see the effect of the screening term most clearly, we rewrite this to focus on the electrostatic
potential profile. Specifically, we write this in terms of the counterion (cation) species but for
convenience drop the species notation:

q∆Ψ (x) = −kBT ln
(

ρ (x)
ρb

)
− ∆µHS (x)− ∆µSC (x) . (23)



Entropy 2020, 22, 132 10 of 15

In this equation, the first two terms on the right-hand side are negative. The first term is negative
because, when the surface charge on the wall is large enough, the cation concentration will be greater
than the bulk value far from the wall. This also causes the second (HS) term to be negative because the
more dense an area is, the more difficult is to insert an uncharged particle. The SC term, on the other
hand, is almost always negative [44] because, just like in a homogeneous system, having higher ion
concentrations makes the screening energy more negative. This makes the third term positive.

In the classical Poisson-Boltzmann theory where the HS and SC terms are ignored, the electrostatic
potential given just by the first term in Equation (23). Therefore, the balance between the HS and SC
terms determines how the electrostatic potential is different from the classical case. In their recent
work, Voukadinova and Gillespie [44] found that at low to moderate service charges the SC term in
Equation (23) is more positive than the HS term is negative; the balance is only flipped at extremely
high surface charges when the counterion concentration is so large that it becomes extremely difficult
to find space for more ions. Therefore, the effect of the higher order electrostatic correlations is to make
the electrostatic potential less negative than the classical Poisson-Boltzmann case.

In fact, the screening term can become so large as to make the electrostatic potential positive.
This is known as charge inversion. Charge inversion occurs mostly for multivalent ions and this is
because the screening term scales as the square of the counterion valence [36]. Thus, the screening
term becomes significantly larger the higher the valence.

The effect of the screening term in making the electrostatic potential less negative than the
Poisson-Boltzmann case and leading to charge inversion is shown in Figure 3a. There, the onset of
charge inversion is shown by increasing the bulk concentration of an electrolyte with divalent cations.
At low concentrations (blue lines), the electrostatic potential with higher order electrostatic correlations
(solid lines) is less negative compared to Poisson-Boltzmann without these correlations (dashed lines).
This trend continues at high concentrations (black lines) but the potential with screening correlations
becomes positive (solid line). Because the Poisson-Boltzmann theory does not include this negative
contribution it can never have a change of sign in the electric potential.

This positive electrostatic potential has two consequences. Right now we focus on the consequence
for the EDL structure; below we consider the effect on fluid flow. Specifically, the positive potential
draws in anions (co-ions) in a second layer of ions behind the initial high concentration layer of cations
(counterions). This is shown in Figure 3b. There, the anion concentration (solid red line) increases above the
bulk concentration (thin red line); for the Poisson-Boltzmann case (dashed red line) this does not happen.
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Figure 3. Classical density functional theory (cDFT) (solid lines) and Poisson-Boltzmann (dashed lines)
calculations of electric double layer (EDL) structure for a primitive model electrolyte with +2 valence cations
and−1 anions, both with 0.3 nm diameter. The surface charge is−0.1 C/m2. (a) Electrostatic potential versus
x, the distance from the wall, for low (10−2 M, blue lines) and high (1 M, black lines) bulk concentration.
(b) Cation (black lines) and anion (red lines) concentration profiles for the 1 M case.
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This negative-positive-negative sandwich of surface charge, counterions and co-ions is a hallmark
of charge inversion and it is due to the change of sign of the electrostatic potential caused by the higher
order electrostatic screening correlations. This is the most extreme consequence of these correlations
but in general they make the electrostatic potential less negative and therefore tend to decrease
the cation concentration and increase the anion concentration, relative to the classical uncorrelated
Poisson-Boltzmann theory.

6.3. Effect on Fluid Flow

Beyond this effect of the electrostatic screening correlations on EDL structure, they and the
concomitant charge inversion can also have a significant effect on fluid flow. This was explored in
detail in References [60,61] for nanofluidic channels where electrolytes flow parallel to two charge
surfaces that are of the order of 100 nm apart [62]. The geometry is illustrated in Figure 4.
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Figure 4. Geometry of a nanofluidic slit channel. Two wells with electrolytes (blue) are connected by a
channel fabricated out of fused silica that is several millimeters in the x direction, several micrometers
in the z direction and ∼ 100 nm in the y direction. The surface charge is on the top (pink) and bottom
(red) of the device.

In such a system, advection moves water through the channel based on the local mean electrostatic
potential. (This movement of fluid is in addition to the movement of ions.) Specifically, the advective
velocity profile at each longitudinal location y across the channel that drives fluid down the axial
direction x of the channel is proportional to Ψ (y)−Ψ (HS) where HS is the slip plane location where
the velocity is zero [63]. If one considers the velocity at the center of the channel where, for convenience,
we take the electrostatic potential to be zero, then the direction of the velocity is given by the sign
of −Ψ (HS). Consequently, if there is charge inversion and the slip plane is in the region a positive
potential, then the fluid will flow in the opposite direction of when there is no charge inversion and
also in the opposite direction of the ions.

Each of these has a consequence that can be measured in experiments. In the classical case
without charge inversion, the counterions in the EDL and the water move in the same direction when
a hydrostatic pressure gradient or electrostatic potential gradient is applied down the axial x direction
of the channel. However, when charge inversion moves the fluid in the opposite direction of the ions,
this reduces the total ion current (as some ions are in each volume of fluid that is moving) and can
even change the sign of the current. These were the first measurable consequences of charge inversion
in nanofluidics [64,65] and can be reproduced by cDFT [66,67].

In more recent work [60], the two wells at the end of the channel contained different electrolytes,
one that exhibited charge inversion and one that did not. When an electrostatic potential was
applied between the two wells that moves the two fluids towards each other (as the charge inverting
fluid moves in the opposite direction of the other fluid), a stable front between the two fluids is
established. Moreover, at this junction, low-concentration analyte ions will accumulate so that they
can be pre-concentrated for analysis later. While the explanation of the physics of both the stable
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front and the ion accumulation is beyond the scope of this paper (see References [60,61]), this practical
application is a macroscopic manifestation of the charge inversion produced by the higher order
electrostatic screening correlations.

7. Conclusions

EDLs are inherently complex interfacial structures involving a multicomponent fluid with
chemical ionization reactions present at the surface. To gain insight into EDLs it is often helpful
to also consider basic models, as we have set out to do in this paper. One important aspect concerns
the electrostatic screening effects acting between charges. These have been successfully studied within
the primitive model, where the solvent is structureless background fluid. However, the conclusions
reached by using the primitive model are transferable. That is, the main effect that the electrostatic
screening correlations make the electrostatic potential less negative will still apply when explicit
water particles are included. Moreover, they will remain an important contributor to charge inversion.
However, what the relative balance of the screening term and the other terms will be when water is
included remains to be determined. Nanofluidic flow was presented an application of the relevance of
charge inversion.

EDLs with charge regulation boundary conditions and an electrolyte that contains an explicit
solvent component display different rich interfacial behavior. That behavior includes a detailed
structure dominated by the neutral solvent molecules, that strongly influences where the charged ions
will be positioned. The solution structure near the charged interface affects the surface chemistry and
hence there is a strong coupling between the solvent-induced effects and the charge regulation (for
more details see References [14,18]). As an example of solvent effects we have presented the results
for three types of wetting situations: solvophilic, neutral and solvophobic. These wetting types were
created by enacting different interaction strengths between the solvent and the wall (while keeping all
other interaction fixed). We find that although only the interactions between the wall and the neutral
solvent were varied, the charge and electric potential were directly affected.

In this paper we have exclusively focused on simple planar surfaces. However, we stress that
the methods discussed here are not limited to these simple cases. In fact, they can and have been
applied to biological problems such as as ion channels. An example is the work of Gillespie et al. on
the ryanodine receptor ion channel, see for instance, Reference [68].
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