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The extensible neuroimaging archive toolkit (XNAT) is a common platform for storing

and distributing neuroimaging data and is used by many key repositories of public

neuroimaging data. Some examples include the Neuroimaging Informatics Tools

and Resources Clearinghouse (NITRC, https://nitrc.org/), the ConnectomeDB for the

Human Connectome Project (https://db.humanconnectome.org/), and XNAT Central

(https://central.xnat.org/). We introduce Rxnat (https://github.com/adigherman/Rxnat),

an open-source R package designed to interact with any XNAT-based repository. The

program has similar capabilities with PyXNAT and XNATpy, which were developed for

Python users. Rxnat was developed to address the increased popularity of R among

neuroimaging researchers. The Rxnat package can query multiple XNAT repositories

and download all or a specific subset of images for further processing. This provides a

lingua franca for the large community of R analysts to interface with multiple XNAT-based

publicly available neuroimaging repositories. The potential of Rxnat is illustrated using an

example of neuroimaging data normalization from two neuroimaging repositories, NITRC

and HCP.
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1. INTRODUCTION

Medical imaging research is constantly evolving, which led to a dramatic increase in the availability,
scale, and number of publicly-available image datasets. These datasets are heterogeneous, which
raises substantial challenges for central organization and harmonization. Indeed, even downloading
of relevant data from a number of different repositories is challenging because it requires
multiple manual steps, which render the process essentially irreproducible. Moreover, repetitive
downloading of datasets with different characteristics substantially increases the effort of the
potential users.

Various imaging data hosting platforms have recently emerged, with the most prominent being
the eXtensible Neuroimaging Archive Toolkit, XNAT (https://www.xnat.org) (Marcus et al., 2007).
XNAT is an open source imaging framework for neuroimaging informatics, which is structured
as a database and contains procedures for storing, downloading, and querying the imaging data,
as well as managing user level access permissions. Notably, XNAT has become a standard for the
database backbone for dissemination of large public imaging repositories. Some examples of large
image repositories that rely XNAT framework are (for more examples see https://www.xnat.org/
about/xnat-implementations.php):

• NITRC (https://nitrc.org/). Neuroimaging Informatics Tools and Resources Clearinghouse is
currently a free one-stop-shop collaborative resource for researchers who need neuroimaging
analysis software, publicly available data sets, or computing power (Kennedy et al., 2016).
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• ConnectomeDB (https://db.humanconnectome.org/). The
Human Connectome Project (HCP) is designed to construct
a complete map of the structural and functional neural
connections in vivo within and across individuals (Van Essen
et al., 2013).

• XNAT Central (https://central.xnat.org/). XNAT Central is a
database for sharing neuroimaging and related data with select
collaborators or the general community (Herrick et al., 2016).

Most end users interact with XNAT via a graphical user interface
(GUI), which enables researchers to download images. This
interaction is manual and requires multiple point and click
actions that substantially slow down image processing pipelines.
Using a GUI can be difficult and time intensive, especially
if a large number of images is required or multiple XNAT
servers need to be queried. Thus, a software-based approach
is necessary to eliminate the friction induced by the manual
interaction with XNAT. Given the increased complexity, size, and
number of projects that use XNAT, using software to interact
with XNAT-based repositories can save time, improve workflow
efficiency, and increase analytic reproducibility. Indeed, having
public software that describes the data downloading process is
more transparent and less prone to errors than describing the
inclusion/exclusion criteria. Moreover, software can easily be
adapted to extract different datasets, which substantially increases
analytic efficiency.

We developed the package Rxnat (https://github.com/
adigherman/Rxnat) to interface with XNAT databases in the R
programming language (R Core Team, 2017). The package (1)
authenticates the user, (2) queries and extracts information, and
(3) downloads images and other data from these databases. The
package enables users to navigate heterogeneous neuroimaging
datasets using a unified syntax based on standard R data
structures. We demonstrate the utility of Rxnat by describing the
associated code and including an example of combining images
from multiple sources in an analysis. The program has similar
capabilities with PyXNAT (Schwartz et al., 2012) and XNATpy
(Achterberg, 2015), which were developed for Python users.
Rxnat is thus designed for a different analytic community than
PyXNAT/XNATpy. It also interacts with the various analytic
R packages in Neuroconductor (https://neuroconductor.org/)
(Muschelli et al., 2018) and popular data manipulation
packages such as dplyr (Wickham et al., 2019). Using Rxnat
allows to query specific subgroups of data from multiple
XNAT-based image repositories, download results data in a
standard format, and perform joint analyses. Thus, Rxnat
provides the infrastructure to conduct complete analyses on
one platform, R.

2. MATERIALS AND METHODS

Setting up an XNAT instance requires a server and specialized
database expertise. We will not cover setting up XNAT servers
here; instead, we will focus on how to interact with such
servers. For more information of setting up an XNAT server, see
https://www.xnat.org/.

2.1. R as a Complete Analytic Platform
Rxnat is an essential component of an analytic platform that
starts with downloading public image data, pre-processing and
analyzing it on one open source platform: R (R Core Team,
2017). An advantage of R is that it is designed specifically for data
analysis and has benefited from a large community development
effort. While R is not the main programming language for
image analysis, its community and ecosystem are developing
rapidly (Tabelow and Whitcher, 2011).

Some of the advantages of having an integrated R platform
are that: (1) it offers all of the primary components of modern
interpreters and is at the forefront of data science software
development; and (2) R provides support for object-oriented and
functional programming.

The computational time associated with neuroimaging
software is of primary concern due to the large size of the
imaging files and databases. Many imaging software tools are
based on C++, which makes them fast and efficient. In contrast,
R is a high level interpreted language that historically has been
viewed as a slower alternative. However, R offers several avenues
for utilizing compiled code. Most notably, the Rcpp package
facilitates wrapping C++ code and libraries, which can create or
adapt powerful and fast imaging operations. Also, R can be used
as an interface and pipelining language, calling installed imaging
packages from the command line, such as the fslr (Muschelli
et al., 2015) package that calls the FMRIB Software Library (FSL)
(Jenkinson et al., 2012). This interface of imaging packages is
similar to the Nipype module in Python (Gorgolewski et al.,
2011). Both R and Python pipelining are extremely useful to
combine traditional pre- and post-processing analytic steps into
unified analytic pipelines.

Recent efforts in data science have pushed R into the vanguard
of conceptual thinking and implementation in this area. These
efforts includes plotting, interactive graphics, reproducible
research, data management and manipulation, dissemination
and app development (Xie, 2014; Tustison et al., 2015;
Wickham, 2016; Sievert, 2020). Specifically in neuroimaging
data science, recent packages have increased R’s capacity for
static and interactive display of neuroimaging data and its
analysis (Mowinckel and Vidal-Piñeiro, 2019; Fisher, 2020;
Muschelli and Gherman, 2020).

R provides a powerful package management system, which
allows for a series of checks to be performed to ensure operability.
The testthat, RUnit and other packages provide unit testing
procedures for stability (Wickham, 2011; Burger et al., 2018).
The comprehensive R archive network (https://cran.r-project.
org/) is primary source of general R packages. The R package
management system has also allowed for the development of
domain-specific package repositories that inspire collaboration
and dissemination within more tightly coupled scientific
domains. Perhaps the largest such example is Bioconductor,
which focuses on computational biology (Gentleman et al., 2004).
Another effort is Neuroconductor, which is a domain specific R
repository for image analysis (Muschelli et al., 2018). Rxnat is a
component package of Neuroconductor and was developed as a
core utility by the Neuroconductor developers.
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For interaction with XNAT servers, R provides a number of
options. The httr package provides an interface in R using the
standard HTTP methods and verbs for interacting with RESTful
APIs, similar to the requestsmodule in Python (Wickham, 2019).
The RCurl and crul packages provide additional functionality,
with the added benefit of using the popular curl-specific syntax
(Temple Lang, 2020). Thus, the packages httr, RCurl, and crul

allow powerful queries and calls to XNAT servers.
The introduction of the dplyr (Wickham et al., 2019) R

package allowed for more intuitive data manipulations steps
within R. These steps include subsetting data on rows (filter)
or columns (select), summarizing data (summarize),
creating frequency tables (count), among others, all in a unified
framework and data type (a data.frame). Rxnat allows users
to query databases and return data.frames. Thus, users
who are familiar with dplyr commands can use Rxnat directly,
without the need to learn the XNAT-specific querying syntax.

2.2. XNAT
XNAT is an open-source imaging informatics software platform
dedicated to managing and distributing neuroimaging data. The
under-laying framework uses XML for both database back-end
operation as well as the front-end web interface. The primary set
of XNAT features handle several core tasks:

• Organize and Share Data - Data stored in XNAT is associated
with user defined projects and allows giving access to users on
a project-by-project basis.

• View and Download Data - XNAT includes an online image
viewer that supports a number of common neuroimaging
formats, including DICOM and Analyze.

• Upload Data - XNAT offers a variety of methods to
upload data including image and metadata importing
directly from scanners, customized upload forms, and ZIP
enabled uploaders.

• Securing Access to Data - Quality control procedures provide
secure ways to access the data as well as control its accessibility
by fellow researchers and by the general public.

• Search and Explore Data Sets - XNAT provides a web
interface that allows users to store, retrieve, navigate, and
query the imaging data.

• Process Data - XNAT includes a powerful pipeline engine that
allows the programming of complex workflows with multiple
levels of automation.

The Rxnat package is focused on query and data download as
these two operations are most commonly used by brain imaging
researchers looking to access XNAT imaging data. Here we focus
on the download capabilities of Rxnat, though future releases will
expand its upload capabilities.

2.3. Integration With Neuroimaging in R
2.3.1. Architecture and Design
The Rxnat package relies on the R packages httr, RCurl, and
crul to interact with an XNAT server. The XNAT REST API
structure has a collection of resources that give access to both files
(e.g., brain images) and metadata. Although the resources can be
accessed through the XNAT search engine individually, running

complex queries on aggregated data and downloading a certain
subset of images/metadata is not possible natively (Marcus et al.,
2007). Using the Rxnat package functionality, a researcher will
be able to combine multiple XNAT datasets, filter the aggregated
data based on multiple criteria and download the results/images
to be used in analysis pipelines.

3. EXAMPLES

3.1. Extracting Demographic Information
From Multiple Image Repositories
We show how to use the Rxnat package to select study
participants aged 26–40 from both NITRC and HCP
image repositories and download their magnetic resonance
imaging (MRI) scans. Images are further processed in R using
inhomogeneity correction, brain extraction, and tissue-class
segmentation. Results of this processing are shown for one study
participant for illustration purposes. Intensity normalization
is then applied to each image and intensities distributions
are compared before and after intensity normalization.
The complete R code for this example can be found
here: https://raw.githubusercontent.com/adigherman/Rxnat/
master/paper_code.R.

3.1.1. Connect to NITRC and HCP
The first step is to connect to each image repository using
the xnat_connect function. Authentication is done using
usernames and passwords. These values can be included in the
command as username and password pairs. Alternatively,
specifying xnat_name indicates which environment variables
to use for authentication. For example, with the nitrc
object below, as xnat_name is set to "NITRC", Rxnat
will look in environment variables NITRC_RXNAT_USER and
NITRC_RXNAT_PASS for authentication. This allows the code
to be shared without revealing credentials and authentication.

nitrc <- xnat_connect("https://nitrc.org/
ir", xnat_name="NITRC")
hcp <- xnat_connect("https://db.
humanconnectome.org", xnat_name="hcp")

The result of the xnat_connect function is an object of
class RXNATConnection. We decided to use objects to store
return query data as this will substantially reduce the time for
subsequent operations and would not require to re-query the
XNAT server. The object will not store images or other large
data, but will facilitate the creation of subsequent Rxnat calls
to download the data. The methods are classified into two
main categories:

1. Internal methods required for keeping track of
certain connection parameters as well as being able
to perform internal operations/sanity checks on an
RXNATConnection object.

• base_url - returns the connection base URL and is used
to create fully fledged URLs to download one or multiple
images/resources.
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nitrc$base_url

[1] "https://nitrc.org/ir"

• xnat_name - prints the name of the XNAT this objects is
connected to and is used internally to create the name of
the system environment variable that holds the username
and password for authentication (in case the credentials
are not passed as arguments when initializing an XNAT
connection).

nitrc$xnat_name

[1] "NITRC"

• jsid - outputs the JSESSIONID - a session identifier for
the connection. This unique temporary identifier is used as
an authentication token for all calls to the XNAT server.

nitrc$jsid

[1] "24162991E474881D597F90C98905B013"

• close - clears the JSESSIONID variable and closes the
XNAT connection

nitrc$close()

connection closed

• is.connected - checks the connection status signaling
if a new connection needs to be established.

nitrc$is.connected()

[1] FALSE

2. Usability functions are the external facing Rxnat functions that
allows users to interact with an XNAT repository by querying,
filtering and downloading data.

• projects - returns a tibble listing all XNAT projects that
are accessible based on the supplied user credentials. This
could potentially be only a subset of all projects hosted on

head(nitrc$projects())

# A tibble: 6 x 7
ID secondary_ID name description pi_firstname pi_lastname URI
<chr> <chr> <chr> <chr> <lgl> <lgl> <chr>

1 ABIDE ABIDE ABIDE Autism Brain I~ NA NA /data~
2 ABIDE~ ABIDE_II ABIDE_II Autism Brain I~ NA NA /data~
3 adhd_~ ADHD-200 ADHD-200 The ADHD-200 s~ NA NA /data~
4 beiji~ Beijing Enha~ Beijing~ INDI Beijing E~ NA NA /data~
5 beiji~ Beijing Eyes~ Beijing~ INDI Beijing E~ NA NA /data~
6 corr CoRR Consorti~ The goal of Co~ NA NA /data~

the XNAT server as privileges sometimes are granted on a
per project basis.

• subjects - outputs a tibble listing all available subjects
from all accessible projects. The listing also includes basic
clinical information.

head(nitrc$subjects())

# A tibble: 6 x 11
project ID label gender handedness
<chr> <chr> <chr> <chr> <chr>

1 ABIDE NITR~ Calt~ M R
2 ABIDE NITR~ Calt~ M A
3 ABIDE NITR~ Calt~ M R
4 ABIDE NITR~ Calt~ M R
5 ABIDE NITR~ Calt~ F A
6 ABIDE NITR~ Calt~ M R
yob education ses group race
<lgl> <lgl> <lgl> <chr> <chr>

1 NA NA NA Auti~ ""
2 NA NA NA Auti~ ""
3 NA NA NA Auti~ ""
4 NA NA NA Auti~ ""
5 NA NA NA Auti~ ""
6 NA NA NA Auti~ ""
# ... with 1 more variable:
ethnicity <chr>

• experiments - returns a tibble listing all of the available
experiments. The list is retrieved based on the provided user
credentials and only lists the experiments associated with
studies that are accessible.

head(nitrc$experiments())

# A tibble: 6 x 6
project subject ID
<chr> <chr> <chr>

1 ABIDE Caltech_51456 NITRC_IR_E00990
2 ABIDE Caltech_51457 NITRC_IR_E00991
3 ABIDE Caltech_51458 NITRC_IR_E00992
4 ABIDE Caltech_51459 NITRC_IR_E00993
5 ABIDE Caltech_51460 NITRC_IR_E00994
6 ABIDE Caltech_51461 NITRC_IR_E00995
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type label age
<chr> <chr> <int>

1 xnat:mrSessionData Caltech_51456 55
2 xnat:mrSessionData Caltech_51457 22
3 xnat:mrSessionData Caltech_51458 39
4 xnat:mrSessionData Caltech_51459 22
5 xnat:mrSessionData Caltech_51460 34
6 xnat:mrSessionData Caltech_51461 37

• get_xnat_experiment_resources - returns
a tibble with all the resources (files) associated with a
particular experiment. The listing will provide information
on the type of resource, size information as well as a URI
(Uniform Resource identifier) to allow direct downloads of
selected resources.

resources<-nitrc$get_xnat_experiment_
resources(’NITRC_IR_E00990’)

print(resources)

# A tibble: 4 x 9
Name Size URI collection file_tags
<chr> <int> <chr> <chr> <chr>

1 qc.g~ 5.29e3 /dat~ SNAPSHOTS U
2 rest~ 2.47e7 /dat~ NIfTI U
3 qc.g~ 3.96e4 /dat~ SNAPSHOTS U
4 mpra~ 6.59e6 /dat~ NIfTI U
file_format file_content cat_ID digest
<chr> <chr> <int> <lgl>

1 GIF THUMBNAIL 21002 NA
2 NIfTI RAW 21001 NA
3 GIF THUMBNAIL 21000 NA
4 NIfTI RAW 20999 NA

• download_file - downloads a single resource file. As an
example, we will use the resources tibble from the previous
method example to download the NIfTI MP-RAGE RAW
image.

nitrc$download_file(resources$URI[4])

[1] "/var/folders/wb/l7jtkdy14f761vm4xr9zxjj80000gn/T//Rtmpgo

PaSc/mprage.nii.gz"

• download_dir - downloads multiple resource files at the
same time

nitrc$download_dir(’NITRC_IR_E00990’)

[1] "/var/folders/wb/l7jtkdy14f761vm4xr9zxjj80000gn/T//Rtmpxl

jggF/NITRC_IR_E00990.zip"

• scans - is used to filter the XNAT repository data
and return a subset of subjects that match specific
criteria. As an example we will query all NITRC projects
for all subjects aged 26 that have at least one T2
type image.

nitrc$scans(age=’26’, type=’T2’)

# A tibble: 9 x 15
subject_ID Project Age experiment_ID
<chr> <chr> <int> <chr>

1 NITRC_IR_~ ixi 26 NITRC_IR_E10~
2 NITRC_IR_~ ixi 26 NITRC_IR_E10~
3 NITRC_IR_~ ixi 26 NITRC_IR_E10~
4 NITRC_IR_~ ixi 26 NITRC_IR_E10~
5 NITRC_IR_~ ixi 26 NITRC_IR_E10~
6 NITRC_IR_~ ixi 26 NITRC_IR_E10~
7 NITRC_IR_~ ixi 26 NITRC_IR_E10~
8 NITRC_IR_~ ixi 26 NITRC_IR_E10~
9 NITRC_IR_~ ixi 26 NITRC_IR_E11~
Type TR TE TI Flip
<chr> <dbl> <dbl> <lgl> <int>

1 T2 8178. 100 NA 90
2 T2 5726. 100 NA 90
3 T2 5726. 100 NA 90
4 T2 5726. 100 NA NA
5 T2 NA NA NA 90
6 T2 8178. 100 NA NA
7 T2 NA NA NA NA
8 T2 NA NA NA 90
9 T2 5726. 100 NA

Voxel_res
<lgl>

1 NA
2 NA
3 NA
4 NA
5 NA
6 NA
7 NA
8 NA
# ... with 5 more variables: Voxel_res
_X <lgl>, Voxel_res_Y <lgl>,
# Voxel_res_Z <lgl>, Orientation
<lgl>, quarantine_status <chr>

The amount of information contained in an XNAT server
can be massive, so it is important to try to optimize the
query/download time. An object of class RXNATConnection
stores the projects, study participants, experiments, and scans
query results internally, which substantially speeds up subsequent
query operations. Thus, the initial connection call to an
XNAT resource collects and stores some of the quickly
retrievable data in the return object. This information is
then used in every subsequent call without re-querying the
XNAT server.

3.1.2. Query and Download Subject Data
Next, we query the NITRC and HCP repositories and acquire
all patient data with the subjects method. We will then
aggregate the data into one data.frame by appending the data
by row:
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nitrc_subjects <- nitrc$subjects()
hcp_subjects <- hcp$subjects()
all_subjects <- bind_rows(nitrc_subjects,
hcp_subjects)colnames(all_subjects)

[1] "project" "ID" "label"
[6] "yob" "education" "ses"
[11] "ethnicity"
"gender" "handedness"
"group" "race"

Data seems to have information on certain demographic
variables. However, a number of these variables are missing or
may not be captured for this project:

head(all_subjects,3)

project ID label
1 ABIDE NITRC_IR_S00975 Caltech_51456
2 ABIDE NITRC_IR_S00976 Caltech_51457
3 ABIDE NITRC_IR_S00977 Caltech_51458

gender handedness yob education ses
1 M R NA NA NA
2 M A NA NA NA
3 M R NA NA NA

group race ethnicity
1 Autism
2 Autism
3 Autism

When creating subsets of data based on querying individual
variables different rules may be necessary, especially when
aggregatingmultiple studies or projects. Also, some demographic
variables are returned from XNAT using that query (such as
age), that are not encoded in the subject-level data. Thus, using
a combination of both queries and aggregate data may be
necessary. This may be surprising, but in longitudinal studies
some variables change over time (e.g., age, BMI, smoking status)
whereas others (e.g., handedness) do not. Thus, the time-varying
variables may be stored at the scan-level while the time-invariant
variables may be stored at the subject-level.

3.1.3. Extract Experiment Data
For the purpose of this example, we focus on T1-weighted images,
which are widely used for brain image segmentation. To retrieve
the list of all experiments that have an associated T1 image, we
use the scans function. NITRC stores T1 images under the T1
label, while HCP stores them under the T1w label. The data set is
augmented to include the data source and image sequence, which
is especially useful when combining multi-sequence data.

library(dplyr)
nitrc_T1_scan_resources <- nitrc$scans(

type="T1")

nitrc_T1_scan_resources <- nitrc_T1_scan_
resources %>%

mutate(source = "nitrc",
scantype = "T1")

hcp_T1_scan_resources <- hcp$scans(type=
"T1w")

hcp_T1_scan_resources <- hcp_T1_scan_
resources %>%
mutate(source = "hcp",

scantype = "T1")

head(hcp_T1_scan_resources,3)

subject_ID Project Age
1 ConnectomeDB_S00230 HCP_500 26
2 ConnectomeDB_S00231 HCP_500 26
3 ConnectomeDB_S00232 HCP_500 31

experiment_ID Type TR
1 ConnectomeDB_E03657 tfMRI_SBRef 720
2 ConnectomeDB_E03664 Bias_Receive 250
3 ConnectomeDB_E03667 tfMRI_SBRef 720

TE TI Flip Voxel_res Voxel_res_X
1 33.10 NA 52 NA 2
2 1.01 NA 3 NA 2
3 33.10 NA 52 NA 2

Voxel_res_Y Voxel_res_Z Orientation
1 2 2 Tra
2 2 2 Sag
3 2 2 Tra

quarantine_status source scantype
1 active hcp T1
2 active hcp T1
3 active hcp T1

The nitrc_T1_scan_resources and
hcp_T1_scan_resources data frames contain information
associated with T1-weighted images available in the NITRC
and HCP repositories, respectively. This information can
be combined and then used to select the sample of interest.
However, some studies may have different data encoding
procedures. For example, some studies may collect age whereas
other studies may collect the date of birth and visit date instead.
Therefore, it is important to harmonize the common fields
before starting the manipulation of the joined data.

3.1.4. Filter Results to Select a Subgroup
The next step is to aggregate the NITRC and HCP T1
resources/image information, join them with the subjects
information, and filter for study participants with age between
26 and 40. Below T1_resources data frame combines the
information about T1-weighted images with the subject-level
data contained in the all_subjects data frame. The data
frame age_26_to_40_group now contains all the necessary
information to extract the specific subsample of interest.

Frontiers in Neuroinformatics | www.frontiersin.org 6 November 2020 | Volume 14 | Article 572068

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Gherman et al. Rxnat: XNAT R Interface

T1_resources <- bind_rows(
nitrc_T1_scan_resources,
hcp_T1_scan_resources

)
T1_resources <- left_join(

T1_resources,
all_subjects,
by = c("subject_ID"
= "ID")

)
age_26_to_40_group <- T1_resources %>%

filter(Age>26) %>%
filter(Age<40)

head(age_26_to_40_group,3)

subject_ID Project Age experiment_ID
1 NITRC_IR_S05189 ixi 35 NITRC_IR_E10452
2 NITRC_IR_S05190 ixi 38 NITRC_IR_E10453
3 NITRC_IR_S05192 ixi 34 NITRC_IR_E10455

Type TR TE TI Flip Voxel_res
1 T2 8178.340 100 NA 90 NA
2 T2 5725.791 100 NA 90 NA
3 T2 5725.791 100 NA 90 NA

Voxel_res_X Voxel_res_Y Voxel_res_Z
1 NA NA NA
2 NA NA NA
3 NA NA NA

Orientation quarantine_status source
1 <NA> active nitrc
2 <NA> active nitrc
3 <NA> active nitrc

scantype project label gender handedness
1 T1 ixi 2 F
2 T1 ixi 12 M
3 T1 ixi 14 F

yob education ses group race ethnicity
1 NA NA NA Normal NA NA
2 NA NA NA Normal NA NA
3 NA NA NA Normal NA NA

Using these data it is now easy to produce (Table 1),
which provides the gender distributions for the NITRC
and HCP populations of 26- to 40-year-olds. In this
age group NITRC has a higher percentage of male
participants (56%) compared to HCP (34%). In addition to
demographic and clinical information, scanning parameters
may be wildly different across studies, and correction
or adjustment of these differences may be necessary
for analysis.

3.1.5. Image Processing Pipeline
Supplementary Figure 1 displays the T1-weighted image from
one of the study participants. The image still contains much of
the mouth, neck, and brain stem, which need to be removed
before applying standard imaging processing tools, such as brain

TABLE 1 | Gender distribution in the NITRC and HCP repositories for study

participants between 26 and 40 years of age.

XNAT server Total subjects Male Female

Gender distribution age 26–40

NITRC 132 75 (56%) 60 (44 %)

HCP 410 138 (34%) 272 (66%)

segmentation. We illustrate our processing steps on this image,
but the process is applied to the entire data set.

The processing pipeline shown in Figure 1 will read and
reorient the original T1 image, perform registration-based neck
removal, brain extraction using a form of multi-atlas label fusion
(MALF) (Wang et al., 2012) brain segmentation and tissue class
segmentation using the FAST algorithm (Zhang et al., 2001).

We now provide the major step of the software
implementation. The first step is to download a sample
T1-weighted image using the download_dir function.
For this example we download an image from NITRC. The
experiment_ID is a NITRC experiment identifier for a study
participant between 26 and 40 years of age. The result of the
download is a compressed directory, which is decompressed in a
temporary location to access the files.

T1_image <- nitrc$download_dir(
experiment_ID = age_26_to_
40_group$experiment_ID[8],
scan_type = "T1",
extract = TRUE)

The T1_image object is a vector of files names from the
temporary download folder and we will read in the 1st element
which is the T1 weighted NIfTI file name.
NB: The rest of this section describes an image processing and
analysis pipeline of T1 weighted structural MRI, but it is not
Rxnat specific. Please feel free to skip to the section 3.1.6 if
desired.

To ensure that all images have the same orientation, we use
the readrpi function from the fslr package, which uses FSL
to read and reorient a T1-weighted image.

t1 <- readrpi(T1_image[1])

The neck removal step is implemented using the
remove_neck function from the extrantsr (Muschelli,
2019) package. The empty image dimensions (including
the neck slices) can be dropped by using the function
dropEmptyImageDimensions from the neurobase
(Muschelli, 2020) package (Figure 2A).

noneck <- remove_neck(
t1,
template.file = fslr::mni_fname(brain
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= TRUE, mm = 1),
template.mask = fslr::mni_fname(mm =
1, brain = TRUE, mask = TRUE)
)

red = dropEmptyImageDimensions(noneck)
# Panel A

Many MRIs contain a bias field, which is a low frequency,
smooth, non-biological signal introduced by magnetic
inhomogeneities. To correct the bias field signal we use
the bias_correct function from the extrantsr
package, which uses the N4 inhomogeneity correction
(Tustison et al., 2010).

t1_n4 <- bias_correct(
red,
correction = "N4",
outfile=tempfile(fileext= ".nii.gz"),
retimg = FALSE
)

Once images are bias field corrected, we apply brain extraction
using a form of multi-atlas label fusion (MALF) (Wang et al.,
2012). MALF uses a collection of previously labeled brain images
(atlases), aligns the T1-weighted image to each atlas, and obtains
a labeled T1-weighted image for each registration. These labels
are then combined, or fused, into one labeled map of the
processed T1-weighted image. This approach is implemented
using the malf function from the malf.templates package,
which includes the templates from the 2012MICCAIMulti-Atlas
Labeling Challenge (Landman et al., 2012). Figure 2B displays
the T1 image overlaid with the estimated brain mask using this
approach indicating that the brain tissue is well estimated and
extra-cranial areas are excluded.

timgs = mass_images(n_templates = 35)
ss = malf(infile = t1_n4,

template.images = timgs$images,
template.structs = timgs$masks,
keep_images = FALSE

) # Panel B

All these steps an be done with fewer lines of code using the
preprocess_mri_within function from the extrantsr
package. This function performs N4 bias correction, image
registration (if multi-sequence data is given), skull stripping
(estimating the brainmask if one is not supplied), and brainmask
application to the registered images. These steps have already
been applied one-by-one, save for applying the brain mask, but
this wrapper is useful for doing all the steps with one function,
especially in cases where you are using multi-sequence data
where registration is required.

FIGURE 1 | Image processing pipeline: neck removal, inhomogeneity

correction, skull stripping via registration and label fusion, tissue class

segmentation, and intensity normalization across studies.
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FIGURE 2 | Pipeline image processing. (A) T1-weighted image after bias-field correction and neck removal. (B) Brain mask (red) estimated using multi-atlas label

fusion. (C) Brain image plotted next to a three-class tissue segmentation in white matter (WM, color-labeled white), gray matter (GM, color labeled gray), and

cerebrospinal fluid (CSF, color labeled black).

preprocess_mri_within(
files = t1_n4,
outfiles = proc_outfile,
correction = "N4",
maskfile = ss,
correct_after_mask = FALSE
)

Intensity normalization is an important component of image
analysis, especially when results of image processing depend on
voxel intensities or when one is interested in combining intensity
information across individuals. For example, when images are
thresholded for low values, we may want that threshold to have
the same interpretation across scans. To achieve that we need to
apply one of the many methods for intensity normalization; see
Reinhold et al. (2019) for a discussion.

We will use the WhiteStripe intensity normalization
method introduced by Shinohara et al. (2014). This approach,
estimates a small area in the tail of the T1-weighted image
intensity distribution, labeled the “white stripe,” as it generally
corresponds to white matter voxels. The mean and standard

deviation (SD) of the voxel intensities in this area is calculated,
and the image is z-scored by this mean/SD. WhiteStripe
intensity normalization can be implemented using the
whitestripe and whitestripe_norm functions from the
WhiteStripe package.

ind = whitestripe(img = T1_ss_image,
type = "T1",
stripped = TRUE
)$whitestripe.ind

ws_t1 = whitestripe_norm(T1_ss_image, ind)

After WhiteStripe normalization, the intensities of the brain
image are interpreted as standard deviations from the mean
of the normal-appearing white matter (NAWM). We would
like to compare the effects of intensity normalization within
tissues classes. To do that, one needs to perform tissue class
segmentation on each image. This is implemented here using
the FAST function from FSL. FAST segments a 3D brain
image into different tissue types (GM—Gray Matter, WM—
White Matter, CSF—Cerebrospinal Fluid). As our images are
already N4 corrected, we will use the fast_nobias from the
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FIGURE 3 | Tissue intensity densities in raw (first row) vs. WhiteStripe intensity normalized images (second row). The distribution of intensities for each study

participant and tissue type is represented by one density (line) by tissue type: Cerebrospinal Fluid (CSF, left), Gray Matter (GM, middle), White Matter (WM, right). The

density color coding corresponds to the different repositories: blue for NITRC and red for HCP.

fslr package, which assumes that the bias field was removed.
Figure 2C displays the results of this segmentation.

ss = fslr::fast_nobias(
skull_stripped_file,
outfile = fast_nb_outfile,
verbose = TRUE
)

Figure 3 displays the tissue intensity densities in raw (first
row) vs. WhiteStripe intensity normalized images (second row).
The distribution of intensities for each study participant and
tissue type is represented by one density (line) by tissue type:
Cerebrospinal Fluid (CSF, left panels), Gray Matter (GM, middle
panels), White Matter (WM, right panels). The density color
coding corresponds to the different repositories: blue for NITRC
and red for HCP. The densities of raw intensities can be clearly
separated by repository, indicating that the raw units have a
fundamentally different interpretation in the two studies, even
when separated by tissue classes. These substantial differences
are likely due to different scanning protocols, scanner types,
and scanner manufacturers. Within each study there is a higher
degree of overlap of MRI voxel intensity distributions, which is

likely due to the study-specific scanning protocols and machines.
The WhiteStripe-normalized data (second row in Figure 3)
indicates that the CSF and WM intensity distributions across
all subjects and both studies are similar (see second row, right
panels). For GM the overlap of distributions is much improved
compared to the raw data. However, there is still separation
between the studies, which may require additional normalization
using, for example, RAVEL (Fortin et al., 2017).

3.1.6. Easier With an Interface
The above image processing pipeline shows an analysis of data
from multiple sources. Moreover, we stress that researchers
should be careful with data aggregation as harmonization is
almost surely required. While Rxnat was not the explicit focus,
the full process, without a programmatic interface the process
would be navigating and filtering based on the NITRC and HCP
graphical interfaces. As the number of data sources grow, even if
they are supported by XNAT, the probability of these interfaces
being the same goes down drastically. Rxnat allows us to perform
this data aggregation with reproducible scripts where the same
interface works with multiple data sources, and demographic and
clinical data can be analyzed and explored without downloading
all individual data. To reiterate, the above analysis and data
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aggregation is possible without Rxnat, but is more difficult and
not scripted.

4. DISCUSSION AND CONCLUSION

Large public data repositories have become focal points in
neuroimaging research. Such resources can be used to: (1)
conductmeta analyses and synthesis across studies (Yarkoni et al.,
2011); and (2) provide priors for data fusion with smaller local
studies. Moreover, many repositories contain information about
data replicability and reproducibility (Zuo et al., 2014). Thus,
they can be used to optimize processing pipelines and understand
inter-subject and inter-site replicability.

Public image databases often provide direct and relevant
scientific information, particularly on establishing norms.
Further, public databases are core resources for methodology
development in neuroimaging. With easy access to these
databases, a wider variety of researchers can access, use,
and test emerging methodological approaches. Improving
access to such data creates easier on ramps to quantitative
neuroimaging research.

As XNAT is the key format for image repositories, having
Rxnat, an intuitive R interface and querying system native to R,
can substantially accelerate this process. Rxnat can be used to
assist existing researchers working in R and neuroimaging and
lower the entry to computational neuroimaging in R.

The Rxnat package substantially simplifies querying and
downloading images from XNAT repositories for researchers
familiar with R. Rxnat complements PyXNAT/XNATpy and
lowers the computational barrier for a large number of analysts
using R. Given the ever increasing number of large imaging
data sets, the importance of packages, such as Rxnat, is likely
to increase. Indeed, the most important achievement of Rxnat
is that it allows the incorporation of the XNAT data into image
processing pipelines. This circumvents the need to use Web
GUIs to manually download the data. Moreover, because the
downloading process is now scripted, the approach substantially
improves the reproducibility of a study by having explicit lines
of code for inclusion/exclusion criteria as well as direct calls to
publicly available image repositories.

For large scale studies, having a local image repository on
a cluster is key for being able to generate results in a fast and
secure way. Through the use of automated tasks, such as Unix
cron jobs or the task scheduler for Windows systems, Rxnat
can synchronize image repository with the upstream data and
prepare it for ad-hoc analyses.

As part of the Neuroconductor project, Rxnat is an
important upstream component of the processing and analysis
of neuroimaging data. Indeed, Rxnat provides the connection
with XNAT repositories, while Neuroconductor provides various

interfaces to popular imaging software packages such as FSL,
AFNI (https://afni.nimh.nih.gov/), MRICloud (https://mricloud.
org/), and ANTs (http://stnava.github.io/ANTs/). As working
with multiple R software packages software that are constantly
changing can be difficult, we simplify the process by providing a
Docker image for Neuroconductor (https://neuroconductor.org/
docker-release). Thus, we aim to provide data access tools as
well as analysis pipelines, ready for users. Coupled with rapidly
developing tools for reproducible research in R, Neuroconductor
and its packages, including Rxnat, are becoming a viable option
for end-to-end analyses of neuroimaging data using modern
best practices.
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