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The development of successful pharmacotherapeutics for the treatment of alcoholism is
predicated upon understanding the biological action of alcohol. A limitation of the alcohol
research field has been examining the effects of alcohol only and ignoring the multiple
biological active metabolites of alcohol. The concept that alcohol is a “pro-drug” is not
new. Alcohol is readily metabolized to acetaldehyde within the brain. Acetaldehyde is
a highly reactive compound that forms a number of condensation products, including
salsolinol and iso-salsolinol (acetaldehyde and dopamine). Recent experiments have
established that numerous metabolites of alcohol have direct CNS action, and could, in
part or whole, mediate the reinforcing actions of alcohol within the mesolimbic dopamine
system. The mesolimbic dopamine system originates in the ventral tegmental area (VTA)
and projects to forebrain regions that include the nucleus accumbens (Acb) and the medial
prefrontal cortex (mPFC) and is thought to be the neurocircuitry governing the rewarding
properties of drugs of abuse. Within this neurocircuitry there is convincing evidence that;
(1) biologically active metabolites of alcohol can directly or indirectly increase the activity
of VTA dopamine neurons, (2) alcohol and alcohol metabolites are reinforcing within the
mesolimbic dopamine system, (3) inhibiting the alcohol metabolic pathway inhibits the
biological consequences of alcohol exposure, (4) alcohol consumption can be reduced by
inhibiting/attenuating the alcohol metabolic pathway in the mesolimbic dopamine system,
(5) alcohol metabolites can alter neurochemical levels within the mesolimbic dopamine
system, and (6) alcohol interacts with alcohol metabolites to enhance the actions of both
compounds. The data indicate that there is a positive relationship between alcohol and
alcohol metabolites in regulating the biological consequences of consuming alcohol and
the potential of alcohol use escalating to alcoholism.
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INTRODUCTION
Alcoholism and alcohol (EtOH) abuse is a global burden.
Alcoholism is estimated to be responsible for 3.8% of all global
deaths, and cost associated with treatment equivalent to 1% of
gross national product of high- and medium-income countries
(Rehm et al., 2009). As such, a great deal of research has focused
on therapeutic interventions to aid individuals that are currently
suffering from alcoholism and a great deal of effort has been
put forth to identify neurobiological traits that are common in
individuals that are at a high-risk to develop an alcohol-use dis-
order. However, while several lines of research have emerged

Abbreviations: Triazole, 3-amino-1,2,4-triazole; ACD, Acetaldehyde; ADH,
Alcohol Dehydrogenase; ALDH, Aldehyde Dehydrogenase; CNS, Central Nervous
System; CPP, Conditioned Place Preference; D2, Dopamine 2; DA, Dopamine;
EtOH, Ethanol; GABA, Gamma-aminobutyric Acid; GLU, Glutamate; ICV,
Intra-Cerebral Ventricular; IV, Intra-venous; μM, Micro-molar; mM, Milli-molar;
MOR, Mu Opioid Receptor; AcbC, Nucleus Accumbens Core; AcbSh, Nucleus
Accumbens Shell; Acb, Nucleus Accumbens; 5HT3, Serotonin 3; 5-HT, Serotonin;
TBCs, Tetrahydrobetacarbolines; SAL, Salsolinol; THIQs, Tetrahydroisoquinoline
alkaloids; THP, Tetrahydropapaveraoline; FDA, United States Food and Drug
Administration; VTA, Ventral Tegmental Area.

focusing on the many different facets of EtOH addiction the
biological basis of the reinforcing properties of EtOH has not
been completely established. Opposing theories have emerged
with some suggesting that it is the action of the EtOH molecule
itself that underlies the rewarding properties of EtOH. Others
believe that EtOH is simply a “pro-drug” and the rewarding
properties of EtOH are dependent on the action of the metabo-
lites/byproducts of EtOH within the brain. The main principles
underlying the “pro-drug” theory assert that (1) following EtOH
consumption, EtOH concentrations within the body are unable
to reach levels that adequately affect the central nervous sys-
tem (CNS), (2) various behavioral and physiological effects of
EtOH endure well past the bioavailability of EtOH in the sys-
tem, and (3) manipulation of the metabolism of EtOH, and
the subsequent formation of the metabolites and/or byproducts,
within the system affects most, if not all, of the CNS effects
of EtOH. The contrary theory suggests that EtOH affects sev-
eral neurotransmitter systems thereby exerting its effects within
the CNS. Proponents of this theory suggest there is no conclu-
sive evidence that the metabolites of EtOH possess the ability to
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cross the blood brain barrier and the metabolites exists for too
short a period to mediate the more persistent effects of EtOH
intoxication. Regardless of such polarized stances, EtOH reward
within the CNS likely depends on the action of EtOH in con-
junction with its metabolites/byproducts. This review will present
an overview of the behavioral and neurochemical actions of
the neuroactive metabolite acetaldehyde (ACD), and subsequent
metabolites/byproducts (i.e., salsolinol) formed through the reac-
tion/condensation of ACD with endogenous compounds, within
the central and peripheral nervous systems following EtOH
intake.

THE FIRST METABOLITE OF ALCOHOL: ACETALDEHYDE
It has been well established that high levels of ACD within the
periphery are associated with aversive symptoms (i.e., flushing,
headaches, etc.). The drug disulfuram (tetraethylthiuramdisul-
phide), which has been approved for the treatment of alcoholism,
exacerbates the aversive symptoms of ACD by inhibiting the
metabolism of ACD thereby encouraging individuals to abstain
from EtOH consumption. The mechanisms of action behind
disulfuram treatment were discovered serendipitously. In the
early 20th century, a report emerged describing individuals who
worked in a metal manufacturing plant experiencing transitory
aversive symptoms (i.e., fatigue, shortness of breath, flushing of
the face, increased heart rate, headaches) following the consump-
tion of alcoholic beverages (Koelsch, 1914). Such symptoms were
subsequently linked to the compound calcium cyanamide, an
organic compound used in the production of metals, which the
workers were in regular contact with. Similar symptoms were
reported shortly thereafter in patients that had consumed ink cap
mushrooms prior to drinking EtOH; a reaction that was linked to
the amino acid coprine present in the mushroom (Chifflot, 1916;
Reynolds and Lowe, 1965). Two decades later, Williams (1937)
suggested that the cure of alcoholism may have been discovered
as workers at a rubber plant that were exposed to the compound
tetramethylthiuram experienced similar aversive symptoms to
those outlined above when they consumed EtOH.

Soon thereafter, two researchers, Erik Jacobsen and Jens Hald,
began examining tetraethylthiuramdisulphide (disulfuram) as a
possible treatment for intestinal worms. Utilizing themselves
as test subjects, both men reported experiencing several aver-
sive symptoms following EtOH consumption (i.e., sleepiness,
increased heart rate, etc.; Jacobsen, 1958). Follow-up studies
indicated that disulfuram, since marketed as antabuse, acted
to block aldehyde dehydrogenase, an enzyme that metabolizes
ACD, causing increased blood ACD levels thereby increasing the
aversive side effects of EtOH consumption (Hald and Jacobsen,
1948). Early studies had already indicated a positive correlation
between EtOH intake and increased blood ACD levels such that
binge drinkers exhibited ACD levels 35 times greater than con-
trols (Stotz, 1943). However, additional studies indicated that
social drinkers treated with antabuse exhibited blood ACD lev-
els 5–10 times greater than individuals that did not receive the
treatment (Hald and Jacobsen, 1948; Larsen, 1948). Treating
individuals with antabuse, prior to EtOH consumption, allowed
for the detection of ACD in the breath (Hald and Jacobsen,
1948). Preclinical research indicated that antabuse rendered ACD
detectable in the breath of rabbits following EtOH exposure and

research aimed at the identification of the metabolic pathway of
EtOH began (Hald et al., 1949a,b).

Over the next 30 years, several theories emerged as to the func-
tion of ACD in EtOH-use disorders (Carpenter and Macleod,
1952; Myers and Veale, 1969; Davis and Walsh, 1970; Truitt and
Walsh, 1971; Griffiths et al., 1974). A number of theories identi-
fied EtOH as a “pro-drug” suggesting alcoholism would be better
termed “acetaldhydeism” as ACD was responsible for all of the
effects associated with the imbuement of EtOH (Truitt and Walsh,
1971; Raskin, 1975). Contradictory theories asserted that ACD
in no way mediated the effects of EtOH. Such assertions were
supported by research showing that the consumption of EtOH
produced only trace levels of ACD in the cerebrospinal fluid and
brain (Kiianmaa and Virtanen, 1978; Pikkarainen et al., 1979;
Eriksson et al., 1980) and that ACD was unable to cross the
blood brain barrier except when in exceedingly high concentra-
tions (Sippel, 1974; Tabakoff et al., 1976; Eriksson, 1977; Petersen
and Tabakoff, 1979). However, Cohen et al. (1980) reported that
the local formation of ACD within the brain was possible thereby
reestablishing the ACD/EtOH debate.

ACETALDEHYDE AND ALCOHOLISM: A GENETIC
PERSPECTIVE
Following consumption, EtOH undergoes a number of reactions
as it is metabolized. The primary pathway through which EtOH
is eliminated from the body involves the action of the alco-
hol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH)
enzymes (for review see: Deehan et al., 2013). The action of
ADH oxidizes EtOH which results in the formation of ACD
which is subsequently eliminated/metabolized by ALDH into
acetate and eliminated from the body (for schematic depiction
of EtOH metabolism see Figure 1). Alterations in either class of
enzyme have been shown to produce alterations in ACD levels.
An increase in the formation of ACD has been found to lead
to an increase in the aversive symptoms (i.e., flushing, nausea,
etc.) associated with EtOH consumption thereby decreasing fur-
ther motivation to consume EtOH (Peng and Yin, 2009). Genetic
studies have identified genetic polymorphisms in both ADH and
ALDH which have been linked to a decreased susceptibility to
develop an EtOH-use disorder (Edenberg, 2011). For instance,
a recent study reported that Mexican Americans expressing the
ADH1B∗2 genotype were protected against EtOH-dependence
(Ehlers et al., 2012). Such protection, against EtOH-dependence,
likely occurs through a more rapid oxidation of EtOH result-
ing in significantly higher levels of peripheral ACD (Hurley and
Edenberg, 2012). Research has indicated that an alteration in the
expression of the ALDH2 gene results in a slower oxidation of
ACD to acetate thereby resulting in a “Disulfiram-like” experi-
ence due to greater ACD levels (Ball, 2008). Recent endeavors
have identified a polygenic contribution of the ADH gene clus-
ter suggesting a potential role for several of the ADH genes in the
development of alcoholism (Frank et al., 2012).

ACETALDEHYDE FORMATION WITHIN THE CNS
Following the intake of EtOH, ACD is formed in the periphery,
primarily by the activity of ADH in the liver. However, given high
activity of aldehyde dehydrogenase (ALDH; the primary enzyme
responsible for metabolizing ACD) within the blood brain barrier
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FIGURE 1 | A general schematic representation of the central (brain) and peripheral (body) metabolism pathways for alcohol and alcohol metabolites.

it was widely accepted that very little ACD could commute into
the brain from the periphery (Hunt, 1996). Additional stud-
ies indicated that higher levels of ACD within the periphery
may be capable of overwhelming peripheral ALDH, entering
the brain within minutes (Ward et al., 1997; Quertemont et al.,
2005). Metabolic activity resulting in the local formation of ACD
within brain was not immediately clear and has been the topic
of debate for several years. Research has indicated that ADH is
not active within the brain and has established that EtOH is pri-
marily metabolized through the activity of the catalase enzyme
(Sippel, 1974; Zimatkin, 1991; Smith et al., 1997) and this enzyme
remains relatively constant across different rat strains (Rhoads
et al., 2012). In vivo studies support the activity of catalase as a
key component in the formation of brain ACD following EtOH
exposure as inhibition of catalase activity subsequently decreased
brain ACD levels (Jamal et al., 2007). However, inhibition of cata-
lase does not completely abolish ACD formation. Other metabolic
pathways such as mitochondrial cytochrome P450 have also been
found to produce ACD locally within the brain following the con-
sumption of EtOH (Zimatkin et al., 1998; Zakhari, 2006). In mice,
manipulation of cytochrome P450 has been found to alter over-
all sensitivity to EtOH (Vasiliou et al., 2006), EtOH consumption,
and EtOH stimulated locomotor activity (Correa et al., 2009).

IMPLICATION OF ACD IN THE CENTRAL ACTIONS OF EtOH
Several studies that have made use of compounds that act to
inhibit the formation of ACD or sequester ACD into a stable
non-reactive adduct. Such experiments have implicated the local

formation of ACD as an important aspect of the neurobiologi-
cal and behavioral aspects of EtOH use/abuse. The compounds
sodium azide and/or 3-amino-1,2,4-triazole (triazole) inhibit
catalase activity, thereby decreasing ACD formation within the
brain, and have been shown to alter EtOH related behaviors.
For instance, both sodium azide and triazole significantly altered
EtOH-induced locomotor activity when infused into the arcuate
nucleus of the hypothalamus (Sanchis-Segura et al., 2005; Pastor
and Aragon, 2008). Triazole has also been found to decrease
the consumption of EtOH in both rats and mice (Aragon and
Amit, 1992; Koechling and Amit, 1994), reduce EtOH induced
motor depression in rats (Aragon et al., 1985) and EtOH induced
locomotor activity in mice (Escarabajal et al., 2000). However, tri-
azole has also been shown to cause a non-specific reduction in
the consumption of saccharin-quinine solution (Rotzinger et al.,
1994) and food intake (Tampier et al., 1995). Such data bring
into question whether a reduction in EtOH consumption is a
function of reduced ACD production or a general reduction in
consummatory behavior caused by triazole. Recent studies have
utilized a somewhat different approach to limiting the activity of
the catalase system. The hydrogen peroxide (H2O2) scavenging
compounds ebselen and alpha lipoic acid inhibit the formation
of ACD through their reduction in the catalase-H2O2 reaction
and subsequent formation of Compound I (Cohen et al., 1980).
Ledesma and colleagues have demonstrated that exposure to both
ebselen or alpha lipoic acid inhibit EtOH-stimulated locomo-
tor activity in mice (Ledesma et al., 2012; Ledesma and Aragon,
2013).
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Unlike compounds that directly affect brain catalase activ-
ity, thiol amino acid compounds, such as D-penicillamine or
L-cysteine act to sequester ACD into a non-reactive stable adduct
without altering EtOH metabolism (Cederbaum and Rubin,
1976; Nagasawa et al., 1978). Several studies have been conducted
using these compounds which have added support for the role of
ACD in the behavioral and pharmacological actions of EtOH. For
instance, administration of either D-penicillamine or L-cysteine
effectively reduced EtOH consumption and decreased EtOH con-
ditioned place preference (CPP) in rats (Font et al., 2006b; Diana
et al., 2008; Peana et al., 2008). Intra-cisterna magna injections
of D-pennicillamine acted to block EtOH- and/or ACD appeti-
tive conditioning to a surrogate nipple in newborn rats (March
et al., 2013) and induced locomotor activity and tactile stimu-
lus preference in preweanling rats (Pautassi et al., 2011). Mice
exhibit a decrease in EtOH CPP and a reduction in EtOH-induced
motor depression when treated with D-penicillamine (Font et al.,
2005, 2006a). L-cysteine has been found to reduce nose-poke
responding for ACD and EtOH during acquisition, maintenance,
and reinstatement phases of testing (Peana et al., 2010, 2012) as
well as inhibit EtOH and ACD induced CPP (Peana et al., 2009).
Peripheral and central (intra-VTA) exposure to D-penicillamine
significantly reduced expression of the alcohol-deprivation effect
(ADE) as observed by a lack on an increase in EtOH consump-
tion during the initial 3 post-abstinence measurements (Orrico
et al., 2013). This finding offers support for the role of ACD in the
expression of relapse-like behaviors as the ADE has been estab-
lished as an animal model for EtOH relapse-drinking (for review
see: McBride and Li, 1998).

Perhaps the most compelling evidence for the involvement of
ACD in the central actions of EtOH has emerged from studies uti-
lizing adenoviral and lentiviral vectors that alter catalase, ADH,
or ALDH activity. Approximating the significantly higher activ-
ity of the ADH enzyme for individuals expressing the ADH1B∗2
gene, mutated cDNA which encoded rADH-47His (the rat ana-
logue for the ADH1B∗2 gene) was peripherally administered
to the University of Chile Bibulous (UChB) alcohol preferring
rat line and resulted in significantly higher ACD blood levels
while also significantly reducing EtOH consumption (Rivera-
Meza et al., 2010, 2012). Similarly, an adenoviral vector coded
for ALDH2 antisense RNA, to approximate clinical condition
of reduced ALDH2 activity, produced comparable increases in
blood ACD levels and decreases in EtOH consumption (Ocaranza
et al., 2008; Rivera-Meza et al., 2012). Studies looking at the cen-
tral administration of anticatalase (shRNA)- or ADH (rADH1)-
encoding lentiviral vectors, which inihibit catalase synthesis or
increases the activity of ADH respectively, have been found to
alter EtOH-related behaviors. Administration of the anticalatase
lentiviral vector into the ventral tegemental area (VTA) signif-
icantly reduced EtOH consumption and EtOH stimulated DA
release in the AcbSh whereas the rADH1-encoding vector facil-
itated an increase in EtOH intake (Karahanian et al., 2011).
Quintanilla et al. (2012) reported that insertion of an anti-
catalase viral vector into the VTA resulted in the reduction of
EtOH consumption when administered prior to EtOH testing.
However, when the viral vector was administered during an ongo-
ing EtOH drinking period, animals only exhibited a reduction

in EtOH intake following a period of imposed abstinence dur-
ing relapse-like drinking (Quintanilla et al., 2012). With regard
to ADE expression, an additional study examining the effects
of intra-VTA injection of anticatalase viral vector immediately
following 67 consecutive days of EtOH exposure and immedi-
ately prior to a 15 day EtOH deprivation period, significantly
reduced relapse drinking during both a first and second rein-
statement of EtOH access (Tampier et al., 2013). Taken as a
whole, research utilizing such cutting-edge techniques suggest
that ACD possess a substantial role in the neurobiological actions
of EtOH.

ACD EXHIBITS REWARDING PROPERTIES
While it is difficult to suggest that the behavioral and neurobio-
logical effects of EtOH are completely dependent on the presence
of ACD, there is a substantial amount of literature suggesting
that ACD is involved to a significant extent. Studies examin-
ing the behavioral effects of ACD, with regard to EtOH reward,
have reported that intra-cranial ventricular (ICV) administra-
tion of ACD acted to increase the consumption of and prefer-
ence for EtOH in rodents (Brown et al., 1979, 1980; Amit and
Smith, 1985) while peripheral administration of higher doses
of ACD produced a conditioned taste aversion in several rat
lines (Brown et al., 1978; Aragon et al., 1986; Kunin et al.,
2000; Quintanilla et al., 2002; Escarabajal et al., 2003). Utilizing
the UChB rat line (an alcohol preferring rat line), researchers
have revealed that peripheral ACD exposure, at lower doses (50–
100 mg/kg ACD) than those shown to produce a conditioned taste
aversion (>200 mg/kg ACD), acted to significantly increase the
consumption of EtOH over the two weeks following ACD admin-
istration (Tampier and Quintanilla, 2002). Taken together, such
findings may suggest that ACD facilitates the development of tol-
erance to the aversive effects of EtOH thereby increasing EtOH
consumption.

It has also been reported that ACD possesses reward-
ing/reinforcing properties itself as animals readily
self-administered both ICV ACD (Amit et al., 1977; Brown
et al., 1979, 1980) and intra-venous ACD (Myers et al., 1984a,b;
Takayama and Uyeno, 1985). Central ICV administration of
ACD produced a CPP (Smith et al., 1984). Extending on such
findings, recent endeavors have reported that ACD, whether
administered centrally or peripherally, produced a CPP in several
rat lines (Quintanilla and Tampier, 2003; Peana et al., 2008;
Spina et al., 2010). Adult rats peripherally treated with ACD
exhibit a dose-dependent preference to a discrete olfactory
stimulus (Quertemont and DeWitte, 2001). Rat pups exhibited
a significant preference to an olfactory cue previously paired
with ACD exposure (March et al., 2013) while pre-weanling rats
exhibited an ACD-dependent stimulation of locomotor activity
and tactile stimulus preference following EtOH administration
(Nizhnikov et al., 2007; Pautassi et al., 2011). ACD has been
shown to dose-dependently alter locomotor activity in adult
animals as well. Rodent testing has reported that the central
administration of lower doses of ACD resulted in significant
increase in locomotor activty (Correa et al., 2003; Sanchez-
Catalan et al., 2009) while higher doses, administered either
centrally or peripherally, resulted in a significant depression
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of locomotor activity (Holtzman and Schneider, 1974; Ortiz
et al., 1974; Myers et al., 1987; Durlach et al., 1988; Quertemont
et al., 2004; Tambour et al., 2006). An early study also observed
comparable biphasic effects utilizing a vapor exposure paradigm
to deliver ACD (Ortiz et al., 1974). Recent studies have pursued
the evaluation of the reinforcing effects of ACD via the oral
route and reported that rats will actively nose-poke (Peana et al.,
2010, 2012) or lever press to obtain ACD (Cacace et al., 2012).
However, it is unlikely that the effects of oral ACD on the ACD
self-administration were mediated via central ACD as Peana
et al. (2010, 2012) reported that blood and brain ACD levels did
not significantly differ between rats consuming oral ACD and
those consuming water (Peana et al., 2010, 2012). Nonetheless,
ACD possess rewarding properties itself which are related to (or
underlie) the behavioral actions of EtOH.

ACETALDEHYDE REACTIVITY: BYPRODUCTS OF
ACETALDEHYDE
Acetaldehyde is a highly reactive compound that interacts with
several endogenous neurochemicals in the brain to form a num-
ber of additional biologically active products (Cohen and Collins,
1970; Davis and Walsh, 1970; Walsh et al., 1970; Cohen, 1976).
With regard to neurobiological and behavioral testing of the
byproducts of ACD, the majority of attention has focused on
two main classes of compounds which are formed through
condensation of ACD with the catecholamines. The first class
of compounds, the tetrahydroisoquinoline alkaloids (THIQs),
are formed through both the direct and indirect condensation
of ACD with the monoamines: dopamine, epinephrine, and
norepinephrine (Cohen, 1976). The tetrahydro-beta-carbolines
(TBCs) on the other hand, are formed through the reaction
of ACD with the indoleamines: tryptophan and tryptamine
(Buckholtz, 1980). The THIQs tetrahydropapaveroline (THP)
and salsolinol (SAL) have received the most attention as to their
role in alcohol use-disorders as both compounds can be detected
in the brain following EtOH administration. The TBCs have
received considerably less attention and contradictory data exists
as to their contribution to the neurobiological effects of EtOH.

TETRAHYDROPAPAVEROLINE
The formation of THP occurs via the condensation of
dopaldehyde and dopamine. In this sense, ACD is indirectly
associated with the formation of THP as ACD inhibits the break-
down/metabolization of dopaldehyde subsequently increasing
THP levels in the brain (Davis and Walsh, 1970). Early studies
observed an enhanced preference for EtOH and consumption of
EtOH following ICV microinjections of low concentrations of
THP in both rodents and primates (Melchior and Myers, 1977;
Myers and Melchior, 1977; McCoy et al., 2003) while higher
concentrations reduced both EtOH consumption and preference
(Duncan and Deitrich, 1980). Manipulation of the mesolimbic
DA pathway through microinjections of lower doses of THP into
either the ventral tegmental area (VTA) or Nucleus Accumbens
(Acb) accentuated EtOH preference in rats (Myers and Privette,
1989; Duncan and Fernando, 1991). Experiments were conducted
in an effort to identify the neuroanatomical substrates of both the
enhancing and aversive properties of THP with regard to alcohol

related behaviors (Privette et al., 1988; Myers and Privette, 1989;
Privette and Myers, 1989) however, research on the role of THP
in EtOH-use disorders has slowed considerably over the past two
decades.

SALSOLINOL
Salsolinol (SAL; 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroiso-
quinoline) is the most extensively studied byproduct of ACD in
relation to EtOH-use disorders and studies aimed at examining
the underlying contribution of SAL to the reinforcing properties
of EtOH are still in full swing. The in vivo formation of SAL occurs
primarily through non-enzymatic Pictet-Spengler condensation
of DA with ACD (Lee et al., 2010) but has been hypothesized
to occur through secondary processes as well (for review see:
Hipolito et al., 2012). Several studies have sought to quantify
SAL levels within the body and brain following EtOH ingestion
with mixed results. Specifically in the rodent brain, studies have
shown that EtOH exposure (via oral consumption or experi-
menter administered EtOH) increased (Rojkovicova et al., 2008)
or did not alter (Lee et al., 2010) SAL levels in several brain
regions. Nonetheless, there is a substantial amount of evidence
suggesting that SAL is intricately involved with the rewarding
properties of EtOH.

While the effect of SAL administration on EtOH intake
received considerably less attention than that of ACD, early
endeavors found that centrally ICV administered SAL caused ani-
mals to exhibit an increase in both their consumption of and
preference for (Myers and Melchior, 1977; Duncan and Deitrich,
1980; Purvis et al., 1980). Altshuler and Shippenberg (1982)
indicated that SAL possess similar discriminative properties com-
pared to EtOH in that animals respond comparably when SAL
is substituted for EtOH. More recently, several laboratories have
shown that SAL exhibits reinforcing properties in the absence
of EtOH. Animals exhibited a CPP for peripheral injections of
10 mg/kg SAL with higher (30 mg/kg) and lower (1 and 3 mg/kg)
doses falling in a U-shaped dose response curve (Matsuzawa et al.,
2000). Interestingly, when the animals were exposed to a condi-
tioned fear stress (foot shock) the dose response curve shifted to
the left (optimal dose: 3 mg/kg) as the animals exhibited a greater
sensitivity to the reinforcing properties of SAL (Matsuzawa et al.,
2000). Central administration of SAL (intra-VTA) has also been
shown to induce a CPP in rats (Hipolito et al., 2011). Much
like in response to EtOH, rats will exhibit a biphasic response
in SAL-stimulated locomotor activity, specifically when SAL is
microinjected into the VTA (Hipolito et al., 2010). Perhaps the
most convincing evidence that SAL is reinforcing, even in the
absence of EtOH, lies in data showing that animals will readily
self-administer SAL into the posterior (p)VTA via intra-cranial
self-administration at concentrations far below required to sus-
tain the ICSA or EtOH or ACD (Rodd et al., 2008). Thus, research
has outlined a clear role for SAL in the behavioral and neurobio-
logical actions of EtOH and ongoing research is working toward
the delineation of the nature of this contribution.

TETRAHYDRO-BETACARBOLINES
The role of TBCs in EtOH-use disorders has received consider-
ably less attention than ACD and/or SAL. Findings have been
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somewhat inconsistent as early research indicated that peripheral
injections of TBC derivatives reduced EtOH preference (Geller
and Purdy, 1975). Central administration (ICV microinjections)
of the TBC tryptoline had the opposite effect as it signifi-
cantly increased both EtOH preference and EtOH consumption
(Myers and Melchior, 1977; Tuomisto et al., 1982; Airaksinen
et al., 1983; Huttunen and Myers, 1987; Adell and Myers, 1994).
Co-administration THP and tryptoline resulted in a synergis-
tic increase in EtOH preference and consumption (Myers and
Oblinger, 1977). Hippocampal microinjections of TBCs pro-
duced alterations in both 5-HT and norepinephrine levels thereby
significantly augmenting EtOH preference and consumption in
low alcohol drinking (LAD) rats (Huttunen and Myers, 1987;
Adell and Myers, 1995). Additionally, TBCs have been shown to
possess an affinity for the delta opioid receptor (Airaksinen et al.,
1984). Overall, however, the pharmacological properties of TBCs
have yet to be fully examined.

THE NEUROBIOLOGICAL ACTIONS OF EtOH AND EtOH
METABOLITES WITHIN THE REWARD PATHWAY
While early studies investigated the effects of the central and/or
peripheral administration of ACD and/or SAL on the behavioral
actions of EtOH (as discussed above), the dissemination of the
underlying mechanisms of ACD and SAL at the neurobiological
level has gained significant traction over the past three decades.
The advent of a number of novel techniques (i.e., intracranial
self-administration; ICSA) has allowed researchers to more thor-
oughly evaluate the neurobiological actions of drugs of abuse
including EtOH and its metabolites. Research to date suggests
that the neurobiological actions of EtOH and EtOH metabolites
overlap to ultimately affect the development/expression of EtOH-
use disorders. This section will present an overview of preclinical
research focused on the neurobiological mechanisms within the
brain reward pathway that have been identified to play a key role
in the rewarding/reinforcing properties of EtOH, ACD, and the
THIQs.

Numerous studies have implicated the mesocorticolimbic
dopamine reward pathway (MCL) as a key mediator of the
rewarding/reinforcing properties of virtually every major drug of
abuse including EtOH (for review see: Di Chiara and Imperato,
1988). The MCL originates in the VTA and projects to sev-
eral forebrain regions including the Acb (Oades and Halliday,
1987). An early study indicated that peripheral EtOH expo-
sure stimulated DA neuronal activity within the substantia nigra
(Mereu et al., 1984). A subsequent experiment found that periph-
eral injections of EtOH (0.5 mg/kg) significantly elevated DA
levels within the AcbSh of freely moving rats (Di Chiara and
Imperato, 1985). Subsequent research over the past 3 decades
has elucidated a cascade of neurochemical events within the
MCL that underlie EtOH reinforcement (for review see: Spanagel,
2009). For instance, it has been well documented that EtOH
itself primarily targets N-methyl-D-aspartate (NMDA; Lovinger
et al., 1989), 5-hydroxytryptamine 3 (5-HT3; Lovinger and
Zhou, 1998), nicotinic acetylcholine (nAch; Narahashi et al.,
1999), γ-aminobutyric acid A (GABAA) and glycine (Mihic
et al., 1997; Mihic, 1999) receptors. The EtOH molecule also

primarily interacts with non-ligand gated ion channels as EtOH
inhibits L-type Ca2+ channels and opens G protein-activated
inwardly rectifying K+ (GIRKs) channels (Vengeliene et al.,
2008). Overall, such primary effects underlie and/or contribute
to several secondary effects within the MCL (i.e., increases in
DA efflux) that ultimately result in the rewarding/reinforcing
properties of EtOH (Spanagel, 2009). Thus, research has estab-
lished that the neurobiological actions of the EtOH molecule itself
are important to the reinforcing properties of EtOH. However,
given the dynamic nature of the neurobiological functioning
of the MCL and the concurrent actions of EtOH metabo-
lites, the extent to which the actions of the EtOH molecule
itself contribute to overall EtOH reinforcement is somewhat
tenuous.

Several studies have focused on the role of the projection from
the VTA to the Acb in the neurobiological actions of EtOH as
well as the metabolites of EtOH (see Figure 2). Specifically within
the VTA, EtOH and ACD have been shown to activate DA neu-
rons by significantly increasing their firing rate (Gessa et al., 1985;
Brodie et al., 1990; Foddai et al., 2004), albeit through differing
mechanisms (for review see: Deehan et al., 2013). Sequestering
ACD formation through the direct infusion of D-penicillamine
into the VTA inhibits DA neuronal activation by the intra-gastric
administration of both EtOH and ACD (Enrico et al., 2009). Local
application of an ADH (Foddai et al., 2004) or catalase inhibitor
(Melis et al., 2007; Diana et al., 2008) in the VTA prevents EtOH
stimulated increases in DA neuronal activity. These findings cou-
pled with data from in vitro studies showing that ACD stimulates
VTA DA neuronal activity at concentrations 1200–2000 fold lower
than that required for EtOH suggest that ACD is critical compo-
nent required for EtOH stimulated DA activity within the VTA
(Brodie and Appel, 1998; Brodie et al., 1999; Diana et al., 2008).
A recent paper has reported that SAL is also capable of stimu-
lating VTA DA neuronal activity at concentrations 10-1,000 fold
lower than the lowest effective concentration of ACD (Xie et al.,
2012a).

Relative differences in effective concentrations between EtOH,
ACD, and SAL have also been reported by studies examining the
behavioral neuropharmacology of these compounds within the
VTA. An early study indicated the alcohol preferring (P) rats
(an animal model for alcoholism) would readily self-adminster
EtOH directly into the VTA exhibiting a U-shaped dose response
curve with 100 mg % being the most effective concentration
(Gatto et al., 1994). Follow-up studies identified a regional het-
erogeneity within the VTA as both P and Wistar rats would
self-administer EtOH into the posterior (p) VTA but not ante-
rior (a) VTA at doses of 20-80 mM (Rodd et al., 2003, 2005).
Much like EtOH, both ACD and SAL are self-administered into
the pVTA in an inverted U-shaped dose response pattern and
in congruence with neurophysiological data, the pVTA appears
to be significantly more sensitive to the rewarding/motivational
properties of each compound in a stepwise fashion (SAL >

ACD > EtOH). For example, P rats self-administered ACD
between the dose ranges of 6–90 μM (Rodd-Henricks et al.,
2002; Rodd et al., 2005) whereas SAL ICSA was supported in a
dose range of 0.03–0.3 μM (Rodd et al., 2008). For perspective,
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FIGURE 2 | A simplified representation of the sites of action for alcohol and alcohol metabolites on posterior ventral tegmental area dopamine

neurons.

the optimal concentration for the ICSA of SAL is approxi-
mately 200-fold lower than the most effective concentration of
ACD and 300 × 103 lower than the optimal concentration of
EtOH. Additionally, the co-infusion of the D2/3 agonist quin-
pirole (100 μM) blocked the ICSA of EtOH, ACD, and SAL
into the pVTA (Rodd et al., 2005, 2008) suggesting that of DA
neuronal activation within the pVTA is a common mechanism
underlying the rewarding/motivational properties of EtOH, ACD,
and SAL.

An alternative method to assess the efficacy of a given com-
pound to stimulate DA neurons within the VTA involves microin-
jecting the compound into the VTA and measuring DA release in
downstream projection structures (i.e., the Acb). An early study
employed such a paradigm to examine the down-stream effects
of microinjections of THP into the VTA on DA efflux within the
core (AcbC) and the AcbSh reporting that a 13.6 μM microin-
fusion of THP increased DA efflux in the AcbC (94%) whereas
the same dose decreased DA efflux in the AcbSh (51%; Myers
and Robinson, 1999). Given that cannula placement were anterior
to the VTA and the THP dose was well above the pharmaco-
logical range of the in vivo generation of THP (Haber et al.,
1997; Baum et al., 1999), it is difficult to resolve whether THP
altered DA neuronal activity directly or through a non-specific
mechanism. Recent research, however, has utilized similar equip-
ment as that employed for ICSA experiments to examine the
effects of intra-pVTA microinjections of EtOH, ACD, and/or
SAL on DA levels downstream within the AcbSh (Ding et al.,
2009, 2011; Deehan et al., 2013). Ding et al. (2009) reported
that pulse microinjections of 200 mg% (∼44 mM) EtOH was
the most efficacious dose at stimulating DA efflux in the AcbSh
of Wistar rats. Utilizing the same range of doses of ACD and
SAL that were reliably self-administered via ICSA (Rodd et al.,
2005, 2008), Deehan et al. (2013) reported that Wistar rats exhib-
ited comparable U-shaped dose response curves for DA efflux
in the AcbSh following pulse microinjections of ACD and/or
SAL into the pVTA. Along the same lines as previous obser-
vations utilizing alternative paradigms, DA neurons within the
pVTA exhibited a significantly greater sensitivity to ACD and/or
SAL compared to EtOH. Pulse microinjections of 23 μM ACD or

0.3 μM SAL were effective at significantly increasing DA efflux
within the AcbSh to levels 200 and 300% above baseline respec-
tively (Deehan et al., 2013). Moreover, this was observed for
an ACD dose that was over 1800 fold, and a SAL dose that
was 147,000 fold lower, than the peak dose of EtOH. These
data further suggest that the pVTA is differentially sensitive to
EtOH, ACD, and SAL in a manner that is consistent with the
production of ACD and SAL through conventional metabolic
processes.

The findings from the microinjection/microdialysis study by
Deehan et al. (2013) extend on previous research that reported
increases in accumbal DA in response to local exposure of higher
concentrations of ACD or SAL within the pVTA. The reverse
microdialysis of 75 μM ACD in the pVTA stimulated DA release
in the AcbSh to 150% of baseline (Melis et al., 2007; Diana
et al., 2008) while Hipolito et al. (2011) reported that a microin-
jection of SAL (150 μM) within the pVTA caused an increase
in AcbSh DA to 130% of baseline. However, SAL has been
shown to modulate DA levels within the AcbC and AcbSh in an
opposing manner. Local perfusion of SAL via reverse microdial-
ysis, over the course of a 20-min sample, significantly increased
DA levels in the AcbC but decreased DA levels in the AcbSh
(Hipolito et al., 2009) in a manner consistent with the effects
of selective μ- and δ-opioid receptor agonists reported by the
same lab (Hipolito et al., 2008). Although the lowest concen-
tration of SAL (5 μM) used by Hipolito et al. (2009) was sig-
nificantly higher than the optimal concentration (0.3 μM) that
stimulated activity in DA neurons within the pVTA (Deehan
et al., 2013), ICSA studies have shown that the AcbSh is sig-
nificantly less sensitive to the rewarding properties of SAL with
the greatest level of responding exhibited for the 3.0 μM concen-
tration of SAL (Rodd et al., 2003). Additionally, the rewarding
properties of SAL within the AcbSh were found to be depen-
dent on post-synaptic activation of DA receptors as the D2/3

antagonist (sulpiride) completely abolished ICSA responding for
SAL.

Overall, there are several neurobiological mechanisms that
underlie the EtOH, ACD, or SAL induced stimulation of DA
neuronal activity within the pVTA, not all of which participate
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equally across the three compounds. For instance, research has
implicated 5-HT3 receptors in the reinforcing properties of EtOH
and SAL but not ACD. The compound ICS 250,390 (a 5-HT3

receptor antagonist) selectively prevents the ICSA of both EtOH
and SAL but does not affect the ICSA of ACD (Rodd et al., 2005,
2008). This stands to reason as EtOH possesses an affinity for 5-
HT3 receptors (Lovinger and White, 1991) and SAL increases the
efflux of 5-HT within the rat striatum (Maruyama et al., 1993)
but ACD does not exhibit an affinity for 5HT3 receptors (Li,
2000). Within the striatum SAL decreases the metabolization of
5-HT through a reduction in metabolizing enzymes resulting in
an increase in 5-HT levels to 20 times that of DA (Nakahara et al.,
1994). Similar findings have been reported with regard to DA as
SAL increases catecholamine levels within the brain through a
combination of the inhibition of reuptake (Heikkila et al., 1971;
Tuomisto and Tuomisto, 1973; Alpers et al., 1975) and a reduction
in the metabolizing enzymes such as catecholmethyltransferase
and monoamine oxidase (Collins et al., 1973; Alpers et al., 1975).

From early on, studies had outlined a substantial role for the
mu opioid receptor (MOR) in the neurobiological actions of
EtOH, ACD, and SAL within the MCL. Naltrexone, a general
opioid antagonist with an affinity for all three opioid receptors
(mu, delta and kappa), has been approved by the FDA for use in
the treatment of alcohol use disorders (Johnson and Ait-Daoud,
2000). Preclinical data indicate that naltrexone decreases both
free-choice consumption and the operant self-administration of
EtOH (for review see: Gianoulakis, 2009). For instance, EtOH has
been found to directly alter the release of opioid peptides (Jarjour
et al., 2009) and both naltrexone and β-funaltrexamine (β-FNA;
a selective MOR antagonist) reduced the duration of DA release
within the AcbSh caused by intra-VTA microinjections of EtOH
(Valenta et al., 2013). Microinjections of higher concentrations of
EtOH into the VTA stimulate locomotor activity that is prevented
by the co-administration of β-FNA (Sanchez-Catalan et al., 2009)
or the co-administration of D-penicillamine (Marti-Prats et al.,
2010) suggesting that the locomotor activating effects of EtOH
within the VTA require MOR activation as well as the presence of
ACD.

Both ACD and SAL possess locomotor stimulating proper-
ties within the VTA and much like EtOH, the activation of
locomotor activity has been reported to be dependent on MOR
activation (Sanchez-Catalan et al., 2009; Hipolito et al., 2011).
To date, there is a lack of research investigating the effects of
MOR manipulation on the self-administration of ACD or SAL.
An early study observed a decrease in the IV self-administration
of ACD when animals were treated with naloxone (Myers et al.,
1984a). Further, the oral self-administration (nose poke respond-
ing) of ACD was decreased by naltrexone and naloxonazine
(a selective MOR1 antagonist; Peana et al., 2011). Naltrexone
also acted decrease extracellular signal-regulated kinase phos-
phorylation within the Acb caused by ACD self-administration
(Peana et al., 2011). However, the full transgression from MOR
activity to increased DA neuronal activity within the pVTA,
and subsequent increase in DA release downstream, is indeed
complex. Xie and colleagues have reported that SAL stimulates
DA neurons within the pVTA indirectly by activating MORs

which in turn inhibit of gama-amino butyric acid (GABA)
neurons (Xie et al., 2012a) while also increasing glutamater-
gic signaling into the pVTA (Xie and Ye, 2012b). Overall, it
is likely that the rewarding/reinforcing properties of both ACD
and SAL in the pVTA are dependent on DA release within the
AcbSh and the DA activity is modulated via MORs. After all
it has been shown that direct stimulation of MORs increase
DA release within the AcbSh (Spanagel et al., 1992) an simi-
lar effect to that observed following microinjections of EtOH,
ACD, or SAL into the pVTA (Ding et al., 2009; Deehan et al.,
2013). Although there are no studies focused on the role of
MOR activity in the central self-administration of ACD and/or
SAL, the current body of literature has implicated MOR activ-
ity within the pVTA as a key mediator of the neurobiological
action of ACD and/or SAL on DA neurons. Future research
will help to further elucidate other contributory structures and
neurochemical systems, within the MCL, with regard to ACD
and SAL.

GENERAL SUMMARY
The action of EtOH within the CNS is extremely complex yet
the current body of literature has outlined a significant role for
ACD and SAL in the modulation of the behavioral and neuro-
logical effects of EtOH. It has been shown that EtOH can act
directly within the VTA to stimulate DA neurons (Gessa et al.,
1985; Lovinger and White, 1991; Brodie et al., 1999; Ye et al.,
2001) and accumulating evidence suggests that both ACD and
SAL exhibit distinct actions on neurobiological processes within
the MCL. The utilization of inhibitory/sequestering agents pre-
venting the conversion from EtOH into ACD clearly affect EtOH
consumption and reinforcement further supporting the role for
the metabolites of EtOH in EtOH-use disorders. Thus, conver-
gent evidence supports the following assertions: (1) within the
CNS, EtOH is capable of altering neurobiological and behav-
ioral processes, (2) evidence exists supporting the notion that
the actions of EtOH, are, in part, mediated by the metabolites
ACD and SAL formed during metabolic processes, (3) both ACD
and SAL possess reinforcing properties within the MCL at levels
shown to be pharmacologically relevant, and (4) further research
focused on examining the central effects of EtOH and EtOH
metabolites will greatly improve our understanding of how these
compounds function in regard to the development/expression
of EtOH-use disorders. Overall, the manifestation of EtOH-use
disorders in the clinical population is undoubtedly a result of a
complex and interrelated series of central and peripheral effects
of EtOH and the metabolites of EtOH. Research aimed at increas-
ing our understanding of such a complex system will facilitate
the development of successful pharmaocterapeutic treatments for
individuals suffering from, or are at a high risk to develop, an
EtOH-use disorder.
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