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motion flow of naturalistic scenes

Yung-Hao Yang,1 Taiki Fukiage,2 Zitang Sun,1 and Shin’ya Nishida1,2,3,*

SUMMARY

The neural and computational mechanisms underlying visual motion perception have been extensively
investigated over several decades, but little attempt has been made to measure and analyze, how human
observers perceive the map of motion vectors, or optical flow, in complex naturalistic scenes. Here, we
developed a psychophysical method to assess human-perceived motion flows using local vector matching
and a flash probe. The estimated perceived flow for naturalistic movies agreed with the physically
correct flow (ground truth) at many points, but also showed consistent deviations from the ground truth
(flow illusions) at other points. Comparisons with the predictions of various computational models,
including cutting-edge computer vision algorithms and coordinate transformation models, indicated
that some flow illusions are attributable to lower-level factors such as spatiotemporal pooling and signal
loss, while others reflect higher-level computations, including vector decomposition. Our study demon-
strates a promising data-driven psychophysical paradigm for an advanced understanding of visual motion
perception.

INTRODUCTION

Visual motion perception is one of the most extensively investigated perceptual functions (see1–4 for reviews). According to the currently pre-

vailing view, the first stage of visual motion processing is the extraction of local motion signals by direction-selective sensors,5 followed by

mutual integration and inhibition of such signals to solve the aperture problem to estimate a spatiotemporal pattern of image motion vec-

tors.6 The higher-level visual motion processing, including vector analysis,7 uses this motion vector pattern to recognize object motion in the

scene, to control eye and bodymovements, to self-navigate in the field via optical flow, and to perceive biological motion. The cortical mech-

anisms underlying these computations have also been extensively studied.8 Progress in visual motion research has been aided by the use of

several artificial stimuli that selectively tap each processing stage; the stimuli include drifting sine-wave gratings,9 plaids,10 random-dot kine-

matograms,11–13 point-light walkers,7 and global dot flow patterns.14

Recent technical advances have rendered it possible to access large-scale data on neural responses, and to createmodels that predict the

responses to complex stimuli. Interest in visual motion research has thus shifted to how the visual system processes complex visual motion

information in dynamic natural environments. For instance, Nishimoto & Gallant15 measured the cortical functional magnetic resonance im-

aging (fMRI) responses to movie clips of natural scenes and tested the validity of the models having been proposed to explain humanmotion

perception. Matthis et al.16 measured visual motions projected on the retina during natural locomotion when studying the role of optical flow

in action control in real-world environments.

However, to the best of our knowledge, few attempts have been made to psychophysically measure the pattern of image motion vectors,

or optical flow, that human observers really perceive in complex natural or naturalistic scenes. (Note that this paper uses the term ‘‘optical

flow’’ to refer to the pattern of image motion vectors in general, including but not limited to the pattern of motion vectors caused by the

relative motion between an observer and a scene.) Such perceived optical flow, if measurable, would advance our understanding of visual

motion perception. It would be possible to compare human perceptions directly with the physically correct motion vectors, neurophysiolog-

ically measured brain responses, and the predictions of the motion models developed in the field of vision science and machine vision.

Psychophysical estimation of a perceived optical flow is challenging because this requires measurements of perceived motion vectors

(speed and direction) at many spatiotemporal positions in a dynamic scene. Here, we present a novel measurement procedure, inspired

by the gauge-probe task of surface shape estimation.17 Observers are asked to report perceived vectors by adjusting the speed and direction

of amatching noise stimulus. To indicate the target spatiotemporal position during each trial, we superimpose a brief dot probe on themovie

stimulus. By changing the target position in a grid-like fashion, we derive a map of the perceived optical flow.
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Figure 1. Experimental procedures and visual stimuli

(A) In each trial, motion and matching stimuli were alternatively and repeatedly presented. Each repetition featured a motion stimulus (250 ms), an inter-stimulus

interval (ISI, 750 ms), a matching stimulus (250 ms), and an ISI (750 ms).

(B) A probe dot was flashed in themiddle (the 8th frame) of themotion stimulus presentation (250ms, 15 frames) and observers were required to report themotion

vector at the location/time of the flash by adjusting the speed and direction of the matching stimulus. After at least three repetitions, the observers could

terminate the trial when satisfied with their settings. A feedback display was then presented.

(C) The 36 probed locations (1� spacing, green dots) of each movie clip.
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Objective evaluation of human performance requires a comparison with the physically correct optical flow, or the ground truth flow. It is

easy to know the ground truth optical flow for a synthesizedmovie given that the physical model generating themovie is known. On the other

hand, knowing the ground truth flow is difficult for movies shooting natural scenes with standard cameras. We therefore used a synthesized,

naturalistic movie dataset, the MPI Sintel Flow Dataset,18 that has been widely used in the field of computer vision for training and evaluation

of optical flow models.

Having applied our new measurement method to the Sintel Dataset, we found that human observers could reproduce the speed and di-

rection of amotion vector at a specified spatiotemporal location close to the ground truth at many locations.We also found, however, that the

estimated perceived flow at some locations deviated systematically from the ground truth in stimulus-dependent manners, which we termed

‘‘flow illusions.’’ We explored how much these illusions were explained by spatiotemporal pooling of local motion signals, by visual motion

models motivated by biological computations, by computer vision models engineered for optical flow estimation, and by models simulating

coordinate transformation in high-level human processing. We found that a small portion of the ‘‘illusions’’ were explained by retinotopic op-

tical flow estimationmechanisms, but others reflected high-level computations, including vector decomposition. Our study demonstrates the

strengths and limitations of existing models that predict visual motion flow perceptions when viewing naturalistic scenes and that estimation

of human-perceived optical flow maps of a variety of natural scenes will advance our understanding of human visual motion processing.

RESULTS

In themain experiment, wemeasured the human-perceivedmotion vectors of the optical flows in fivemovie clips selected from a high-frame-

rate version of the MPI Sintel Flow Dataset.18,19 The Dataset includes the ground truth optical flow data (Figure 1D) that can be directly

compared to human responses.

The human-perceived optical flow map was measured by a local vector-matching method (Figure 1 and Video S1). In each trial, pairs of

target motion clips andmatching noise stimuli were repeatedly presented. The observers were asked to adjust the direction and speed of the

matching stimulus to reproduce the local motion vector in the target movie clip at the location indicated by a flashed probe (Figures 1A and

1B). The probe location was selected from a 63 6 grid placed on the region of interest (Figures 1C and 1D). Eachmovie clip was presented in

one of four flip modes (Figure 1E); this allowed us to decompose the human response errors into two components. One component of errors

is defined on the display coordinates and determined by the relationship between the observer and the display. The other component is

defined on the image coordinates, the directions of which flip as the image flips. Our principal interest was the latter type of human error.

Accuracy evaluation

We evaluated the accuracy of our novel method from two perspectives. One is vector-matching accuracy, which refers to how accurately the

observers can reproduce the perceived vector. One might think that this accuracy might be low since we used a ‘‘time-saving’’ adjustment

method, instead of more strict psychophysical procedures. To evaluate the basic vector-matching accuracy, we analyzed the human re-

sponses to a random-dot kinematogram (Figure 2A, where the magnitudes of the horizontal and vertical (uv) vector components were

analyzed; see Figure S1 for analyses of the direction and speed components, separately). The results showed a good, though not perfect,

agreement between the reported motion and the ground truth motion (R2 = 0.901; Equation 6). Since the target and matching stimuli

were similar noise patterns in this condition, the task was straightforward. The results indicate that our procedure can provide the estimation

of the human-perceived vector with this level of accuracy under an optimal condition. On the other hand, the vector-matching accuracy for

Sintel Dataset was much worse (Figure 2B, R2 = 0.643, See also Figure S2 for direction and speed components). The performance reduction

could be ascribed to the stimulus-dependent errors we will consider in the following section, but one might suspect this was because the

flash-probing accuracy of our task was low.

The flash-probing accuracy refers to how accurately in space and time the observers can localize local vectors specified by the flashed

probe. It is known that various phenomena including flash lag20 and flash drag21 can cause (apparent) spatiotemporal misalignments between

continuously moving and flashing patterns. It might be therefore hard for human observers to accurately localize the target vector indicated

by the flash probe. Random-dot kinematogram cannot be used for evaluation of this aspect of human accuracy since it is spatiotemporally

uniform. We analyzed the Euclidean distance of the endpoints between the perceived vectors and the ground truth vectors (which we call

endpoint error; see Equation 7) for the MPI Sintel movie clips. If the human observers reported the perceived vector at the probed point,

the endpoint error should be smallest when we compare the human response with the ground truth at the probed spatial location and in

the probed frame, rather than when we compare the human response with the ground truth vectors in its neighbors. The results indicated

that the minimum endpoint error best agreed with the ground truth local motions at spatiotemporal locations very close to the probe (Fig-

ure 2C, see also Figures S3; and S4 for spatiotemporal distributions of the endpoint errors). This indicates that the flash-probing accuracy of

our procedure is high enough to measure the perceived vector at the probed point (at least for the temporally smooth motion clips that

we used).

Figure 1. Continued

(D) Ground truth motion vectors of eachmovie using a color-coding scheme43 where hue indicates the motion direction and saturation the speed (normalized by

the maximum speed of each five clips) as shown in (F).

(E) Each movie clip was presented through a circular aperture (12� in diameter) in one of four flip modes: Original orientation, horizontal flip, vertical flip, and

horizontal and vertical flip. See also Videos S1–S6.
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Human perceived flow: An overview

Next, consider the pattern of human perceived flow. Figure 3 shows the response flowmap for each Sintel movie clip.We averaged the response

vectors over the four flip conditions after unflipping them into the original image coordinates. This was for revealing the response biases asso-

ciated with the stimulus pattern while controlling for the biases associated with the relationship between the observer and the display. For

instance, even if an observer had abias to report stronger rightwardmotions than leftwardmotions, it was canceledby our procedure. The results

of the four observers were averaged. The pattern of results was generally similar across the observers (see Figure S5; and Table S1).

In Figure 3, the response flow vector (red arrow) agrees with the ground truth vector (green arrow) at certain probed locations. The

endpoint error averaged over all probe points is 0.928 pixels or 1.11 arcmin (see the first row of Table 1), suggesting that the observers reliably

reproduced certain flow patterns in naturalistic scenes. However, the reported vector deviated from the ground truth vectors at many other

locations in various ways. For example, large errors are found in the gaps between fingers in Video S1, in the hand on the right in Video S2, in

the dark background surrounding the arm in Video S3, in the body of the rooster in Video S4, and in the wing of the bat in Video S5. These

deviations explain why the agreement between the reported and ground truth vectors was less in the main Sintel experiment than in the pre-

liminary random-dot kinematogram experiment (compare Figures 2A and 2B).

How to compare human perceived flow and model predictions?

The patterns of systematic deviation between the human vectors and ground truth vectors, which we term ‘‘flow illusions’’, would be expected

to provide valuable information on human visual motion processing. We used the term ‘‘illusion’’ instead of ‘‘errors’’ simply because we

believe ‘‘flow illusions’’ must be functionally meaningful as are many other illusions. Some components of flow illusions must be classifiable

into the known categories of motion illusion, but it is not readily obvious only from visual inspection of the pattern.

To seek the mechanisms underlying the flow illusions, we compared the human response to the predictions of visual processing models,

including models that approximate signal pooling by lower-level visual processing, computer vision models developed for optical flow esti-

mation, coordinate transformation models that approximate biologically plausible higher-level visual processing, and hybrid models that

combine both low-level and high-level visual processing (See model descriptions in the STAR methods for more details). The model type

was not uniform. Some use ground truth information, and others are image-computable. Some include parameter fitting, but others do

not. This was because the main purpose of comparing these models was not to find the best model to explain the human data, but to reveal

various kinds of mechanisms contributing to the flow illusions.

As shown in Table 1, to quantitatively evaluate the performance of each model, we used predicted vectors to compute: (1) the average

endpoint error by reference to the ground truths averaged over all 180 probed locations; (2) the average endpoint error by reference to

Figure 2. Evaluation of two aspects of accuracy

(A) Vector-matching accuracy is shown by a scatterplot of responses versus the ground truths for the horizontal and vertical (uv) vector components based on the

results of a preliminary experiment using a random-dot kinematogram. Each point indicates a response of one observer in one trial. Different colors refer to

different observers. r, r2: Pearson correlations and the squares; slope: the slope of the linear regression line; R2: the coefficient of determination with respect

to the ideal response (i.e., the ground truth). The index values were computed based on the signed uv values; the Figure plots the absolute (unsigned)

uv values for visualization. See the separate plots of the direction and speed components in Figure S1 and Data S1.

(B) A similar scatterplot of the results of the main experiment using the MPI Sintel dataset. Vector-matching accuracy is reduced by flow illusions. See also

Figure S2 and Data S2.

(C) Flash-probing accuracy as shown by the spatiotemporal distribution of the endpoint differences in the display coordinates of theMPI Sintel FlowDataset. The

red line indicates the endpoint differences between the human response to a probe and the physical optical flows at surrounding locations. The observer

responses were closest to the ground truths at the probed locations, indicating that observers reported motions at probed locations rather accurately. The

black line indicates the within-stimulus similarity, thus the endpoint differences between the ground truths at the probed location and the physical optical

flows at surrounding locations. See also Figures S1–S4.
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the human responses; (3) the partial correlations (r) between the human-perceived horizontal and vertical (uv) vector components with the

effects of ground truth removed; and, (4) the average response consistency index (RCI, see Equations 10.1, 10.2, 10.3) over the probed loca-

tions. Except for the computer visionmodels, we estimated the freemodel parameters that best explained the response data (see Table S2 for

the best-fit parameters for each model). To ensure fair comparisons across models with different numbers of free parameters, we also

computed index values via 2-fold cross-validation and used (principally) these values for model evaluation.

Of the indices shown in Table 1, two are the most informative in terms of the extent of overall agreement between the model predictions

and human responses. One is the partial correlation of uv components between the model predictions and human responses (ruv). As the

Pearson correlation between the model predictions and human responses (ruv) could be associated with the common variable, the ground

truth, ruv evaluates the correlation between the two while excluding the effect of the ground truth. The reason to use the uv components was

to evaluate the direction and speed components together (See Table S3 for the Pearson correlations and partial correlations betweenmodel

predictions and human responses/ground truth for direction and speed).

The other informative index is the spatially averaged RCI. The RCI is an index of consistency between model predictions and the human

responses, and takes a value between �1 and +1. The RCI becomes positive and approaches +1 as the prediction becomes closer to the

human response than to the ground truth, approaches zero when the model prediction becomes closer to the ground truth, and becomes

negative when the model predicts an error in the opposite direction (see the STAR methods). Although the absolute value of this index was

small due to the multiplication of the three terms, we found a strong positive correlation between the average RCI and the partial correlation

(Figure 4). An advantage of the RCI compared to the partial correlation is that the RCI can be separately computed for each location, as shown

in Figures 5 and S11–S26. In addition, our analysis suggests that the average RCI is less affectedby the small number of outliers than the partial

correlation.

Figure 4 shows the distributions of the partial correlation in uv components (ruv) and the spatially averaged RCI, computed using the boot-

strapping method (for computer vision models with no free parameter) and via 2-fold cross-validation (for the other models with free param-

eters). See Figure S6 for the distribution of each index. For statistical testing of the differences in index values, we checked whether zero was

included in the 95% confidence intervals of the differences between each model pair computed by the bootstrapping method (for computer

models, Figures S7 and S9) or the cross-validation method (other models, Figures S8 and S10).

Figure 3. The perceived vector map for the MPI Sintel Flow Dataset

The response flowmap using the image coordinates of theMPI Sintel FlowDataset. At each location, the green arrow denotes the ground truth, the red arrow the

human response, and the diameter of the black circle the endpoint error. In each panel, the average endpoint error of the 36 movie locations is shown in the top

left corner. As the vector length was normalized within each movie, the spatial scale is shown by an arrow (of length 1 pixel/frame) in the bottom left corner. See

also Figure S5, Table S1 and Data S3.
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Using themap of RCIs, we visualized howwell themodels explained the human response errors at eachmovie probe location (see Figure 5

for the representative four models; Figures S11–S26 for all models). To compare the similarities of model prediction patterns, we computed

the correlations of the spatial RCI patterns between each model pair (Table S4).

Low-level pooling models

Consider first the effects of signal pooling. Previous studies have shown that the spatial resolution of human visual motion processing is low.

For example, the detection of spatial modulations in optical flow is most sensitive at spatial frequencies lower than 1 c/º and is difficult at

frequencies higher than 1 c/º.22,23 The sensitivity function is shifted to the lower frequency for motion detection in comparison with luminance

detection. The low spatial resolution of motion processingmay be one of the factors that explain why perceived vectors deviate from ground

truths. Althoughmany neural mechanisms at multiple processing stagesmay contribute to the low spatial resolution of visual motion percep-

tion,13,24,25 we approximated them by a 2D Gaussian pooling of the ground truth vectors and estimated the amplitude and sigma of the

Gaussian weighting function that best explained the human response. The reason the pooling model was run on the ground truth flow,

not on vectors estimated from the movie clips by some algorithm, was to evaluate the contribution of signal pooling to human errors as inde-

pendently as possible from the other factors.

The standard deviation of the best-fit function was found to be�5 pixels (Table S2). Small but positive cross-validated partial correlations

with the human response (ruv = 0.239) and a positive averaged RCI (0.015) indicate that the spatial pooling model can explain a small portion

of the response errors. In agreement with our expectation that spatial pooling would be associated with deviations from the ground truths at

points close to motion boundaries, the points with high RCIs indeed lie near object borders (Figure 5A). In addition, when points distant and

close to borders were separately analyzed (see Figure S27 for the definition of border points), the agreement between the model and the

responses was evident for only the border points (Table S5).

Table 1. Predictive performances of the models

Models

Average endpoint

error (Ground truth)

Average endpoint

error (Response)

Partial

correlation ruv

Average

RCI

Ground truth 0.000 0.928 NaN NaN

Low-level pooling models Spatial Pooling 0.342 (0.343) 0.868 (0.876) 0.285 (0.239) 0.016 (0.015)

Temporal Pooling 0.315 (0.324) 0.863 (0.890) 0.214 (0.101) 0.011 (0.010)

Spatiotemporal Pooling 0.347 (0.357) 0.867 (0.890) 0.310 (0.214) 0.016 (0.015)

Computer vision models Farneback 1.963 2.024 0.267 0.039

FFV1MT 1.282 1.479 0.309 0.043

FlowNet 2.0 0.472 0.935 0.386 0.034

StaRFlow 1.150 1.415 0.117 0.008

RAFT 0.261 0.889 0.344 0.026

Coordinate transformation

models

Translation (per-movie) 0.622 (0.625) 0.719 (0.742) 0.564 (0.534) 0.075 (0.072)

Translation-Rotation-Scaling

(per-movie)

0.692 (0.714) 0.602 (0.651) 0.652 (0.589) 0.098 (0.093)

Translation (per-object) 0.710 (0.729) 0.599 (0.658) 0.656 (0.573) 0.106 (0.098)

Translation-Rotation-Scaling

(per-object)

0.801 (0.875) 0.468 (0.619) 0.781 (0.597) 0.136 (0.121)

Hybrid models FlowNet 2.0 & Translation

(per-movie)

0.777 (0.789) 0.752 (0.776) 0.603 (0.587) 0.086 (0.083)

FlowNet 2.0 & Translation-

Rotation-Scaling (per-movie)

0.870 (0.892) 0.625 (0.675) 0.684 (0.648) 0.119 (0.114)

FlowNet 2.0 & Translation

(per-object)

0.825 (0.868) 0.594 (0.664) 0.689 (0.634) 0.121 (0.113)

FlowNet 2.0 & Translation-

Rotation-Scaling (per-object)

0.808 (0.873) 0.455 (0.598) 0.804 (0.653) 0.138 (0.123)

Endpoint error (Ground truth): endpoint error between themodel prediction and the ground truth. endpoint error (Response): endpoint error between themodel

prediction and the human response. ruv: Partial correlations of the uv components between the model predictions and the human responses with the effects of

ground truth removed. RCI: Response Consistency Index. For the fitting functions, in addition to values estimated for models fitted to all data, the medians of the

estimated values computed via two-fold cross-validation are shown in bold within brackets. NaN (Not a Number) was due to the ground truth as ‘‘predicted vec-

tors’’ and thus invalid operation in partial correlation and RCI. See also Tables S3–S4.
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The temporal resolution of human visual motion processing is also known to be low. This is suggested by poor detection of temporal

change in speed (acceleration/deceleration)26 as well as integration of direction signal over a few hundred milliseconds or longer.27 It is

thus likely that the observers integrate motion flow information across multiple frames. To evaluate the effect of temporal pooling on flow

illusion, we performed 1DGaussian pooling of the ground truthmotion vectors over time and estimated the best amplitude,mean, and sigma

of the Gaussian weighting function that explained the human response. The (cross-validated) partial correlations (ruv) and averaged RCI were

0.101 and 0.010, respectively. When the spatial and temporal pooling were combined into a 3D Gaussian spatiotemporal pool, the power

afforded in terms of explaining the human response was similar to that of the spatial pooling model (ruv = 0.214, average RCI = 0.015).

The cross-validation-based statistical tests revealed that ruv did not differ significantly among the three (spatial, temporal, and spatiotem-

poral) pooling models (Figure S8), while the average RCI was lower for the temporal pooling model than the other two models (Figure S10).

Also, there were high correlations among the spatial RCI patterns (Table S4), which indicates that the three pooling models might explain

similar aspects of human response errors. It should be noted that the movie clips tested here include only temporally smooth optical flows,

for which the effects of temporal pooling could be similar to spatial pooling; the results might be different if stimuli featuring large temporal

changes had been used.

In summary, we found evidence that signal pooling explains some but limited aspects of flow illusions.

Computer vision models for optical flow estimation

Next, we compared the human responses to the outputs of five computer visionmodels developed for optical flow estimation. Farnebäck28 is

a conventional model that estimates dense optical flow. FFV1MT29 is a biologically motivated model that includes a feedforward, primary

visual cortex (V1)-middle temporal area (MT) structure. FlowNet 2.0,30 StaRFlow,31 and RAFT32 are convolutional neural net models based

on supervised learning; they employ different architectures when seeking to improve ground truth flow estimations. Specifically, FlowNet

2.0 featuresmultiple subnetworks, StaRFlow a spatiotemporal recurrent architecture, and RAFT iterative refinement of optical flow (Seemodel

descriptions in the STAR methods for details).

Table 1 indicates that the RAFT model output was the closest to the human response in terms of the endpoint error, but this was

because the model output was also the closest to the ground truth. When comparing the partial correlation and the average RCI, the

power of explaining the human response errors was highest for FlowNet 2.0 (ruv = 0.386, average RCI = 0.034), but only slightly lower for

the other models except for StaRFlow. To statistically compare the performance among the computer vision models, we used boot-

strapping, not cross-validation, since the models have no free parameter to fit our data. The results indicated that ruv did not differ

significantly between FlowNet 2.0, RAFT, Farnebäck, and FFV1MT (Figure S7), but the average RCI was higher for FFV1MT than

RAFT (Figure S9).

The RCI spatial map of FlowNet 2.0 (Figure 5B) reveals at which probe locations the model and humans make similar errors. Most such

locations lie where dark objects make movements that differ from those of adjacent regions (see the lower right corner of Video S2, and

the lower part of Video S3). Estimating correct vectors at such points may be difficult for both computer vision models and humans because

of a lack of image information (signal loss).

Figure 4. Scatterplots of the partial correlations of the uv components (ruv) versus the average RCIs

In the center panel, each point represents the median performance index distribution computed by the bootstrapping method for the computer vision models

and by the 2-fold cross-validation for the fitting models. The other four panels show the performance index distributions of 1,000 sampling sets and 2D boxplots

with the (25% percentile, median, 75% percentile) ranges (boxes) and the 95% confidence intervals (whiskers). See also Figures S6–S10.
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The pattern of RCI spatial maps is similar among the computer vision models. The correlation exceeded 0.8 between Farnebäck and

FFV1MT andbetween FlowNet 2.0 and RAFT (Figures S14–S18; and Table S4). This suggests that thesemodels share themechanisms explain-

ing flow illusions.

When compared to the poolingmodels, cross-validation-based tests on ruv (Figure S8) and the average RCI (Figure S10) indicated that the

explanatory power for the human responsewas significantly higher for FFV1MT, FlowNet 2.0, and RAFT than for any poolingmodels. Thismay

be partially because the computer vision models implicitly include a pooling process. In agreement with this idea, we found positive corre-

lations in the RCI spatial maps between the computer vision models and the pooling models (Table S4).

Coordinate transformation models

The mechanisms included in the pooling models and computer vision optic-flow models can explain some, but only a portion of the

deviations of human responses from the ground truth flow (ruv % 0.386). What kinds of mechanisms are additionally necessary to

explain the remaining deviations? Since the models considered so far process optical flow on the retinal image coordinates, as does

early visual motion processing in humans, they cannot explain the illusions occurring at non-retinotopic processing. Nevertheless,

certain visual motion illusions, including induced motion33,34 and biological motion,7 may be associated with higher-level vector analysis

that transforms optical flows from image coordinates to world- or object-centered coordinates. Specifically, vector analysis decomposes

element movements into a global common movement and local relative movements7,35,36 It is also known that deformations in

perceived vectors are produced by mutual repulsion/attraction between adjacent objects, such as motion contrast,37 direction repul-

sion,38 and motion capture.39 To evaluate the contributions of these higher-level optical flow illusions to human motion perception

when viewing naturalistic scenes, we fitted the following four transformation models to our data (See model descriptions in the

STAR methods for details).

Figure 5. The RCIs of the representative models

Spatial maps showing the extent of consistency between human responses andmodel predictions for (A) a pooling model (spatial pooling), (B) a computer vision

model (FlowNet2.0), (C) a coordinate transformation model (Translation [per-movie]), and (D) a hybrid model (FlowNet 2.0 & Translation-Rotation-Scaling [per-

object]). In each panel, the first row is the color-coded visualization of themotion vectors in the optical flows predicted by eachmodel. The second rowdepicts the

motion vectors in each location; the black arrow denotes the model-predicted response, the red arrow denotes the human response, and the green arrow

denotes the ground truth. The plotting scale (the length of a 1 pixel/frame vector) is shown by an arrow in the top left corner of each panel. The diameters of

the circles in the third row indicate the RCIs, with red circles indicating positive values (the deviations from the ground truth were consistent between the

model predictions and the human responses) and green circles indicating negative values (the deviations from the ground truths were inconsistent). The

average RCIs of the 36 locations in each movie are shown in the top left corners. See also Figures S11–S26 and Data S3 for the results of all models tested.
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In the Translation (per-movie) model, a common translation vector is subtracted from the ground truths at all points in the samemovie clip.

The translation parameters that best explain the human response were estimated by fitting. This is one of the simplest descriptive models of

induced motion based on vector analysis,7,35,36 where a motion pattern of multiple objects is decomposed into a global common translation

of the movie scene and local relative motions. We assumed that the observers completely ignored or underestimated the global translation

component when reporting the perceivedmotion. Using the ground truth as the input makes the model biologically implausible, but enables

us to purely estimate the contribution of coordinate transformation to flow illusion.

In the Translation-Rotation-Scaling (per movie) model, which tests more complex coordinate transformations, a common rotation (in di-

rection) and rescaling (of speed), in addition to a common translation, are applied to the ground truths of all points in the samemovie clip. This

model can cope with cases where the common motion includes a global rotation and/or a global scale change, in addition to a global

translation.

The remaining two models were identical to the first two, except that different parameters were estimated for different parts of the

scene. For this analysis, 36 points in each movie were classified into 2–3 groups depending on the object layer to which each point belongs

(see Figure S27 for how to define object layers). Separate parameter-fitting for different objects can capture flow distortions among mul-

tiple objects that cannot be captured by global transformations, such as motion repulsion37,38 and attraction.39 In the Translation (per-ob-

ject) model, a common translation vector is subtracted from the ground truths at all points in the same object layer of each movie. In the

Translation-Rotation-Scaling (per-object) model, a common translation, a rotation in direction, and a rescaling of speed are applied to the

ground truths at all points in the same object layer of each movie. The last one is the most complex model with the largest number of free

parameters. In all cases, the transformation parameters for each movie or object layer that best fit the human responses were estimated

(see Table S2).

These four models are not independent. The first model is a special case of the other threemodels, while the second and the third models

are special cases of the fourth model. The model with a smaller number of parameters may not be sufficient to describe the coordinate trans-

formation effects in our movie clips, but the model with a larger number of parameters may overfit the data. We used cross-validation to

compare the models with different numbers of free parameters.

The four models captured the pattern of human errors rather well (ruv = 0.534–0.597, average RCI = 0.072–0.121). Compared to the low-

level pooling and computer vision models, the coordinate transformation models showed significantly higher partial correlations (Figure S8)

and average RCIs (Figure S10). Also, the RCI spatial maps differed from those of the low-level models, which indicates that the transformation

models can explain such flow illusion components that the low-level models cannot explain. For example, the coordinate transformation

models well-predicted the pattern of human errors in Video S4 (Figures 5C and S19–S22), where induced motion appeared to alter the

perceived motion of a flying chicken.

The successful fitting of coordinate transformationmodels to human response data suggests that human perception of naturalistic movies

is affected not only by lower-level effects but also by higher-level factors such as inducedmotion and vector decomposition. A comparison of

the absolute values of the partial correlations and averageRCI also suggests that the higher-level factors dominate the low-level factors in flow

illusions. There were, however, caveats. Global performance indices accumulating local effects over many locations could overestimate the

effects of global factors in comparison with local factors. Furthermore, even thoughwe used cross-validation, the transformationmodels were

optimized to explain the human data by parameter fitting, while computer vision models were made without the knowledge of human

response.

When the four translation models were compared, statistical tests on the average RCIs (Figure S10) indicated that model complexity

increased the explanatory power of the response data; the Translation-Rotation-Scaling models outperformed the Translation models,

and per-object models outperformed per-movie models. However, statistical tests on ruv (Figure S8) indicated that only the difference be-

tween the Translation (per-movie) model and the Translation-Rotation-Scaling (per-movie) model attained statistical significance. Note

also that the RCI spatial maps of the four models (Figures S19–S22) are similar (see also Table S4), suggesting that themechanisms underlying

the perceived errors predicted by these models may be shared or overlap significantly.

These results indicate that the simplest transformation model that computes local relative motions by subtracting a single global trans-

lation for each movie can explain a significant portion of flow illusions seen in our movie clips, but more complex models that can also

cope with global rotation, scale change, and/or inter-object interactions can explain the human response better. A significant proportion

of the flow illusions humans perceive in naturalistic movies can be ascribed to inducedmotion based on vector decomposition with inter-ob-

ject interactions.

Hybrid models

If we are correct in stating that computer vision models (that include signal pooling) reflect lower-level visual motion processing and trans-

formation models reflect higher-level motion processing, with each explaining different aspects of the human errors, it would be expected

that combinations of such models would predict human errors better than either alone. We, therefore, computed the outputs of coordinate

transformation models after changing the inputs from ground truth flows to the optical flows estimated by FlowNet 2.0, which evidenced the

highest ruv of all five testedmodels. As expected, we found that the ruv values and average RCIs for the hybridmodels were better than those

of the computer visionmodels and the original transformationmodels employing ground truths. The increases in both indices (Figures S8 and

S10) attained statistical significance for the two per-movie models, and the increase in average RCI attained statistical significance for the

Translation (per-object) model. Although neither reached the statistical significance for the Translation-Rotation-Scaling (per-object) model,
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many free parameters gave this model the ability to describe some aspects of flow illusions FlowNet 2.0 explains (see positive correlation of

the twomodels in Table S4). In summary, the results support our interpretation that both lower-level and higher-level mechanisms contribute

to the flow illusions that humans perceive in naturalistic movie clips, and the hybrid model consisting of a high-performance retinotopic mo-

tion flow algorithm and a coordinate transformation with a reasonable complexity is a promising architecture to explain the human-perceived

optical flow.

DISCUSSION

Traditionally, vision scientists have sought to understand themechanisms of human visual perception by analyzing relationships between sub-

jective perceptual experiences and the responses of neural mechanisms and/or the predictions of computational models. Recent technical

advances have enabled researchers to access large-scale data on neural responses andmodel behaviors for complex inputs including natural

stimuli. Thus, data on human visual perception should become big and rich. Here, we psychophysically measured the human-perceived mo-

tion vectors in the optical flows of dynamic naturalistic movie clips, using a novel method based on motion matching and flash probing.

We found that the perceived flows of naturalistic stimuli deviated from the ground truths in ways that depended on the stimulus structures

(‘‘flow illusions’’). By comparing the human-perceived flows to the predictions of a variety of models, we concluded that the illusions were

attributable to both lower-level factors, such as spatiotemporal pooling and signal loss, and higher-level factors, such as inter-object inter-

actions and coordinate transformations resulting from vector analysis. Earlier studies showed that such factors produced specific illusions

when certain experimental stimuli were presented to the observers, but we are the first to show that a combination of such factors explains

the human-perceived optic flows of naturalistic scenes. Our method provides a way to scale up the data on subjective visual experience,

paving the way for a leap in human motion perception research.

To the best of our knowledge, the dense maps of human-perceived optical flow of naturalistic scenes have not been reported previ-

ously. There are several reasons. First, appropriate stimuli are lacking. When exploring how the visual system processes a stimulus of the

external world embedded in images, one needs to know the ground truth of the variable. Many movies with natural scenes are available,

but the ground truth of the optical flows is not easy to derive. To overcome this problem, the computer vision community uses synthesized

movies for training and evaluation of models, and the MPI Sintel Dataset is one of the most popular among such resources. We thus used

this dataset.

The second difficulty is the workload. When estimating human-perceived flows, perceived motion vectors must be measured at many

points. In psychophysical experiments, such measurements cannot be made in parallel, but must be made separately for each location.

Use of a strict psychophysical procedure (e.g., estimation of the point of perceptual equality via a forced-choice paired comparison of direc-

tion or speed employing the method of Constant) would be very time-consuming. Thus, we derived a quick (thus practical) psychophysical

method: motion vector matching by a method of adjustment. We limited the number of points to 180, sampled at 1� intervals within 5 3 5�

regions of five movie clips.

One contribution of the present study is the direct comparison of human-perceived flows with the flows predicted by computer vision

models. Four of the five models that we tested, including FlowNet2.0, similarly explained some aspects of human response errors caused

principally by input signal loss and spatial pooling. However, the agreement between the model prediction and human response was not

high. This is not because the models knew the ground truth. The training image dataset of the machine learning models did not include

the test stimuli we used. On the other hand, we did not fine-tune the parameters and/or structure of the cutting-edge computer visionmodels

to make them close to humans.

Our basic motivation for comparing human motion perception with cutting-edge computer vision algorithms that are optimized to esti-

mate retinotopic optic flows as close as possible to the ground truth of input images was not to test their plausibility as the model of human

motion processing, but to seewhich components of flow illusionwere shared by humans and themodels. The shared components are likely to

reflect a general computational difficulty in determining motion correspondence (produced by signal loss and the aperture problem, for

example), rather than the specific characteristics of the processing mechanism.

The limited capacities of the computer vision models in terms of explaining human response errors may reflect differences in the compu-

tational goals. Themodels that we tested are aimed at estimating local image shifts accurately between frames in image coordinates. Human

visual motion processing is aimed not only at estimating optical flows in retinal image coordinates but also at estimating object motions in

appropriate coordinate frames, self-motions relative to the environments, and relative object depths as revealed by motion parallax. Based

on optic flows estimated via lower-level processing, higher-level processing attains biologically meaningful goals when viewing complex nat-

ural stimuli, while produces motion illusions when viewing simple artificial stimuli. The fact that transformation models explain human re-

sponses well supports this view.

The ultimate but unachieved goal of this project is to develop an image-computable model that can account for the perceived human

flows for arbitrary visual inputs. One promisingmodel architecture is a hybrid model in which optical flows estimated by image-basedmotion

detectors are fed to higher-level processing, including coordinate transformation. The question then is how to predict the behaviors of the

higher-level processing (e.g., coordinate transformation parameters) directly from the input image sequence. One strategy is the develop-

ment of a computational model for high-level human motion processing.35,36 An alternative is a data-driven approach; artificial neural

networks could be trained using human response data. In either case, it is necessary to scale up the data size, i.e., collecting more human

responses at higher spatiotemporal densities with a broader range of stimuli.
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We expect our study will usefully connect psychophysics and neuroscience, since our data can be directly compared to the cortical activ-

ities of humans or animals measured via fMRI, optical imaging, or other methods, while observers watch the same movie clips.

Complex naturalistic stimuli and simple artificial stimuli are both useful for understanding visual processing.40 In our case, several visual

illusions having been studied using artificial stimuli can explain a significant proportion of flow illusions arising during the perception of natu-

ralisticmovies. This is reasonable based on the idea thatmany of the visual illusions arisingwhen viewing simple artificial images should reflect

visual processing that attempts to achieve higher-level visual functions (e.g., perceptual constancy) in complex natural scenes. Extending this

idea, it could be argued that visualization and modeling of complex human perceptions of natural scenes, which we are challenging, is the

ultimate way to understand the computational goals and mechanisms producing the conventional illusions triggered by simple artificial

stimuli.

Limitations of the study

The human-perceived flows we reported here were those measured with the specific stimulus and procedural parameters we chose, and

slightly different perceived flows may be obtained when different parameters are used. This is an issue one should consider when comparing

our psychophysical data to neural and behavioral data collected under different viewing conditions. We measured perceived motion vectors

at single spatiotemporal points while directing each observer’s gaze and attention to those points. The perceived flowmap of a collection of

independent local measurements may significantly differ from a neural response map that is recorded in parallel at a time. Our procedure

might underestimate context effects. In addition, the use of a random-dotmotion field as amatching stimulusmay direct the observer’s atten-

tion more to textural motion flow than to high-level object trajectories. Our current dataset is limited in the variation of movie clips and the

number of observers.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and any related requests should be directed to and will be fulfilled by the lead contact, Shin’ya Nishida (shinyanishida@

mac.com)

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Raw data derived from human samples, ground truth, and all models have been deposited at Open Science Framework and are pub-

licly available as of the date of publication. The DOI is listed in the key resources table.
� This paper does not report the original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Three of the authors and a naive laboratory member (all males aged 22 to 39 years old) participated in the experiments. All observers had

normal or corrected-to-normal vision and gave informed consent before the study. This study was approved by the Research Ethics Commit-

tee of the Graduate School of Informatics, Kyoto University (approval no. KUIS-EAR-2020-003). The experiments were performed in accor-

dance with the Declaration of Helsinki, except for preregistration.

METHOD DETAILS

Apparatus

All experimental codes were written in Python 341 using PsychoPy.42 Visual stimuli were presented on the display of a 13-inch

MacBook Pro (resolution 1,440 3 900, refresh rate 60 Hz, gamma 2.2, background gray luminance 150 cd/m2, viewing distance

57 cm) in a normally illuminated room, or on a monitor (Eizo CG303W, 1,920 3 1,200, 60 Hz, 2.2, 45 cd/m2, 72 cm) controlled

by a desktop Windows PC in a darkened chamber. For each setup, the viewing distance was adjusted so that 50 pixels subtended

a visual angle of 1� to the observer.

Stimuli

To evaluate the basic vector-matching accuracy, we first measured the human responses to Random-Dot Kinematogram (RDK) with spatio-

temporally uniformoptical fields in a preliminary experiment. The RDK stimulus consisted of 5,000 white and black dots at a density ratio of 50-

50 in a 600-pixels (12�) circular aperture on a gray background. Each dot was 3 pixels (3.6 arcmins) in diameter, and the total dot density was

�20%. Throughout the experiment, four dots (each five pixels in diameter) were presented 60 pixels above, below, left, and right of the display

center (as position markers) to indicate the location of the display center to which attention was to be paid during the task. The four position-

marker dots and the probe dot were red. Note that this traditional random-dot pattern differs from that of the Brownianmatching-noise stim-

ulus (see design and procedures).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw data OSF storage https://doi.org/10.17605/OSF.IO/BU7PD

Software and algorithms

MATLAB 2021a RRID:SCR_001622

Python http://www.python.org/ RRID:SCR_008394

Psychopy http://www.psychopy.org RRID:SCR_006571

High-Speed Sintel Dataset https://www.cvlibs.net/projects/slow_flow/ N/A

Other

Videos S1–S6 This manuscript (supplemental information) Videos S1–S6
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In themainMPI Sintel experiment, we used a higher-frame-rate version19 of theMPI Sintel dataset18 originally rendered at 1,008 frames per

second (FPS) and a resolution of 2,0483 872 pixels.We selected five short movie clips that contained relatively complicated spatial structures,

multiple objects, and backgrounds.We presented these clips at 60 FPS aftermagnifying the clip image to 4,0983 1,744 pixels before clipping

it to fit a 600-pixels (12�) circular aperture, which had a sufficient viewing angle containing multiple objects and contents to avoid aperture

problem. This also enabled spatial sampling of reasonably dense perceived flow in a local image area while suppressing long-range jumps

between adjacent frames, for which human motion detection may rely more on high-level feature tracking than low-level motion detec-

tion.44–46 In each clip, we defined 36 probed locations on a six-by-six grid with a spacing of 1� (see Figure 1C). The grid location was chosen

so that the 36 probed points covered a variety of figure objects and the background. In each trial, the target motion clip was relocated such

that the to-be-probed location came to the center of the aperture (Videos S2–S6). Unlike the uniformoptical fields in the RDK stimulus, theMPI

Sintel dataset included images with varying chromatic and brightness characteristics. To render the flashed probe dot and the surrounding

four position marker dots equally salient, regardless of the movie context, we computed the HSV values of the dot locations in the movie clip

and imparted the reverse HSV values to the dots. Each movie clip was presented under four flipped conditions: no flip (original orientation),

horizontal flip, vertical flip, and horizontal and vertical flips (Figure 1E). This allowed us to decompose the two types of response error. One is

an error defined by the display coordinates, thus determined by the relationship between the observer and the display, not by the image

pattern. For example, an observer may tend to overestimate rightward motion or over-report vectors located left of the flashed probe.

One can visualize errors of this type by averaging the response errors of the four flipped conditions without unflipping them to the original

coordinates (e.g., Figure S3). We analyzed the responses on display coordinates to evaluate the accuracy of our method. The other type is

response errors defined on the image coordinates whose directions flip together with the image flip. Most visual motion illusions (e.g.,

induced motions) are determined by the relative relationships of image components, and we thus analyzed responses in the image coordi-

nates by averaging the response errors of the four flipped conditions after unflipping them to the original coordinates (e.g., Figures 3, 5,

and S4).

Design and procedures

In the preliminary RDK experiment, the speed and direction were randomly and uniformly selected from 1 � 10 pixels per frame (PPF) and

0� 360� respectively. All dots moved coherently in one direction at a constant speed within each trial. There were two blocks, each with

144 trials. Each observer underwent 288 trials. On the other hand, in the main MPI Sintel experiment, the five movie clips were tested in sepa-

rate blocks, each consisting of 144 trials (36 flash-probed locations 3 four flip conditions). Each observer performed 720 trials.

Both preliminary RDK and themainMPI Sintel experiments were conductedwith the same procedure;We used amethod of adjustment to

measure the motion vector that the observer perceived at a specific spatiotemporal location in a short video clip (Figure 1A and Video S1).

During each trial, a target motion stimulus and a matching stimulus were repeatedly presented on a uniform gray screen. One cycle of repe-

tition consisted of the target clip (250ms, 15 frames), an interstimulus interval (ISI, 750 ms), thematching stimulus (250ms), and an ISI (750ms).

The target clip was presented at the center of the display in a circular aperture. In the middle of the target clip presentation (i.e., in the 8th

frame of 15 frames, Figure 1B), a probe dot (five pixels in diameter) was flashed at the display center for 1 frame (16.67 ms). The matching

stimulus was a circular Brownian (1/f2) noise field (120 pixels in diameter, 100% peak contrast) presented at the center of the display. The

broadband Brownian noise aided observers to perceive a wide range of image speeds without aliasing attributable to under-sampling in

time. To reduce the abrupt stimulus onset/offset of the target and matching stimuli, the stimulus contrast was linearly increased during

the first half of the presentation, attained full contrast in the eighth frame, and decreased linearly in the latter half of the presentation. Ob-

servers were asked to reproduce themotion vector at the location/time indicated by the target probe bymatching the speed and direction of

the stimulus using themouse cursor. There was a purple dot (five pixels in diameter) freely moveable within a central circular area (600 pixels in

diameter). Depending on the distance of the mouse cursor from the display center (from 0 to 300 pixels in radius), the speed of the matching

stimulus varied logarithmically from 0 to 20 pixels per frame (PPF). When satisfied with the matching, the observers terminated the trial by

clicking the mouse, but early termination before completion of three repetition cycles was not accepted (See Video S1).

At the end of each trial, the speed and direction of the target and the matching stimuli of the trial were shown as numbers on the display.

One difficulty associated with the method of adjustment was the setting of an appropriate criterion for trial termination. It was likely that too-

early termination would sacrifice accuracy, but that longer observation would not necessarily improve performance. The main purpose of

feedback was to help observers develop appropriate response strategies. This input should not be used as training feedback by the observers

because each location and flip presentation was only presented once.

Model descriptions

We used the least-squares fitting method to determine the best-fit parameters that minimized the summed endpoint error of human optical

flow (see Table S2 for all best-fit parameters). The numbers of free parameters were 2 (spatial pooling), 3 (temporal pooling), 4 (spatiotemporal

pooling), 0 (computer visionmodels), 10 (Translation [per-movie], 23 5movies), 20 (Translation-rotation-scaling [per-movie], 43 5movies), 24

(Translation [per-object], 23 12 objects). and 48 (Translation-rotation-scaling [per-object], 43 12 objects). All model predictions can be found

in Datas S3 and S4. Since the numbers of free parameters differed among the models, to evaluate statistically the explanatory powers of the

models with fair comparisons, the values estimated via 2-fold cross-validation and bootstrapping were also calculated (see quantification and

statistical analysis for details).
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Parameter-fitting models

Spatial Pooling

This fitting function spatially aggregates local ground truth flow vector fields ðuGT; vGTÞ to obtain a predicted perceived vector ðuest;vestÞ. A 2D

Gaussian kernel gSðx; yÞ parameterized by the amplitude (A ) and sigma ( sS ) is used to weight the ground truth vectors surrounding the

probed location ðxP; yPÞ. We did not consider the offset between the center of the Gaussian kernel and the probed location because the

endpoint errors were symmetrically distributed between the human response and the flow vector field in 2D space (Figure S3C). Therefore,

the vector components ðuest; vestÞ for each ðxP; yPÞ were defined as in Equation 1:

8><
>:

uestðxP; yPÞ =
X
x

X
y

gSðx � xP; y � yPÞuGTðx; yÞ

vestðxP; yPÞ =
X
x

X
y

gSðx � xP; y � yPÞvGTðx; yÞ
; (Equation 1)

where:

gSðx; yÞ = A exp

�
�
�

x2

2sS
2
+

y2

2sS
2

��
:

To reduce computational complexity, we constrained the spatial extent of the 2DGaussian kernel to�30 to +30 pixels on both the x and y

axes, with the probe at 0.

When separately analyzing the effects of spatial pooling on border and non-border areas, we categorized 55 of the 180 probed locations

as border points, as indicated by the bracketed numbers in Figure S27, dependingonwhether awindowofG2:5sS around that point included

more than one object layer or not, where sS was the best-fit sigma (5:025pixels).

Temporal Pooling

This fitting function temporally aggregates ground truth flow vectors at the probed location. A 1DGaussian kernelgTðtÞ parameterized by the

amplitude (A ), mean ( mT ), and sigma ( sT ) is used toweight the ground truth vectors from t=�7 to +7 frames (t= 0 refers to the probed frame)

as shown in Equation 2:

( uestðxP; yPÞ =
X
t

gTðtÞuGTðxP; yP; tÞ

vestðxP; yPÞ =
X
t

gTðtÞvGTðxP; yP; tÞ
; (Equation 2)

where:

gTðtÞ = A exp

 
� ðt � mTÞ2

2sT
2

!
:

Spatiotemporal Pooling

This fitting function spatiotemporally aggregates the ground truth flow vectors. A 3D Gaussian kernel gSTðtÞ parameterized by the amplitude

(A ), spatial sigma ( sS ) temporal mean ( mT ), and temporal sigma ( sT ) is used to weight the ground truth vectors as in Equation 3:

8<
:

uestðxP; yPÞ =
X
x

X
y

X
t

gSTðx � xP; y � yP; tÞuGTðx; y; tÞ

vestðxP; yPÞ =
X
x

X
y

X
t

gSTðx � xP; y � yP; tÞvGTðx; y; tÞ
; (Equation 3)

where:

gSTðx; yÞ = A exp

(
�
 

x2

2sS
2
+

y2

2sS
2
+
ðt � mTÞ2

2sT
2

!)
:

Weconstrained the spatial extent of theGaussian kernel to�30 to +30 pixels on both the x and y axes, and the temporal extent to�7 to +7

frames.

Coordinate transformations

The translation transformation decomposes the ground truth vectors, including the global translation vector (u0;v0), to parameters that fit the

human response. The predicted perceived vector for each position is computed as shown in Equation 4:
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�
uest = uGT � u0

vest = vGT � v0
: (Equation 4)

The translation-rotation-scaling transformation includes additional scaling (s) and rotation (a) parameters that affine-transforms ground

truth vectors to fit the human response as shown in Equation 5:�
uest = ðs cos aÞuGT + ðs sin aÞvGT � u0

vest = ð� s sin aÞuGT + ðs cos aÞvGT � v0
: (Equation 5)

Per-object transformation models

The per-object transformation models served as proxies of optical flow object-based processing. Wemanually defined object layers for each

movie. In these models, we classified the 36 probed locations in each movie into layers with two or three objects and backgrounds based on

their boundaries and the unique motion flows. The object layers are numbered as shown in Figure S27. Video S1 contained a hand and back-

ground layers. Video S2 contained left hand, right hands, and background layers. Video S3 contained arm, animal, and background layers.

Video S4 contained a rooster and background layers. Video S5 contained a bat’s wing and background layers.

Computer vision models

Farnebäck

This model uses a polynomial expansion transform to estimate the speed and direction of dense optical flows by approximating neighboring

pixels between two frames based on the classic constant brightness assumption (I(x+udt,y+vdt,t+dt) = I(x,y,t)) and global flow smoothness

constraints.28 We estimated the displacements at five levels of the image pyramid via three iterations per level, using a 153 15 average win-

dow size and a Gaussian weighting function of SD = 1.1 for averaging over the neighborhoods. Each pixel neighborhood used to find poly-

nomial expansions contained five pixels.

FFV1MT

This model is biologically inspired and includes V1 motion energy estimations employing spatiotemporal Gabor filters and normalization,

static nonlinear pooling of feedforward V1 responses in the MT layer, and a velocity estimate derived by decoding a linear weighted average

of theMT response. Themodel also includes non-linear filtering of theMT response to handle spatial flowdiscontinuitiesmore effectively.We

selected�2�2 subframes from the probed frame using the parameters of the original study29 (Table 1 in 29) and the code on the group site.47

FlowNet 2.0

This is a convolutional neural network-based motion model that includes iterative refinement via multiple applications of FlowNetSimple (to

extract motion vectors directly from two stacks of paired images) and FlowNetCorr (to extract motion vectors from a correlation layer for com-

parison of two separate images), to handle large displacements. FlowNet-SD is used to fine-tune the model with a focus on small displace-

ments, and a final fusion network estimates motion flows.30 We trained the FlowNet 2.0 model using the Flyingchair, ChairsSDHom, and

3DFlyingthings datasets.

StaRFlow

This is a temporally dynamic, convolutional neural network-based motion model that includes spatiotemporal recurrent cells to generate

multi-frame optical flow estimations and handle occlusion information.31 We trained this model on the MPI Sintel dataset (without experi-

mental stimuli). Four continuous frames covered each training iteration with a batch size of 8, and the model attained convergence after

50,000 iterations.

RAFT

This deep network motion model includes a feature encoder to extract features from two frames, a context encoder to extract context fea-

tures from the first frame, a 4D correlation layer that computes the visual similarities of all pairs of pixel features at the 1/8 level, and an updat-

ing Gated recurrent unit to refine optical flow iteratively.32 Following the original study, we used the official model pre-trained on Flying chair

and KITTI, and then fine-tuned the MPI Sintel dataset (without experimental stimuli) over 100,000 iterations with a batch size of 8.

QUANTIFICATION AND STATISTICAL ANALYSIS

To compare the human responses with model predictions, we initially averaged the four human responses and the data for the four flip con-

ditions in the original image coordinates, thus obtaining 180 data points (i.e., fivemovies3 36 positions) to contrast with vectors predicted by

each model. To evaluate model performance (summarized in Table 1), we computed average endpoint error, partial correlations, and the

Response consistency index (RCI) to evaluate how the models predicted human response errors at each location.
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Coefficient of determination for the ideal response model R2

R2 refers to the proportion of variance in the human response (Respi ) that can be predicted by the ground truth as shown in Equation 6:

R2 = 1�
P
i

�
Respi � GTi

�2
P
i

�
Respi � Resp

�2 : (Equation 6)

Endpoint error

The endpoint error is the Euclidean distance between the ground truth (uGT ;vGT ) and human response (uResp;vResp) motion vectors as shown in

Equation 7:

EPE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
uResp � uGT

�2
+
�
vResp � vGT

�2q
: (Equation 7)

Comparison of direction

When we compared correlations in direction (r and r), we evaluated the shortest angular distance of the angle of the response, or the model

(qResp;or modelÞ; from the angle of the ground truth (qGT Þ, by adjusting the phase of qResp;or models as shown in Equation 8:

qresp or model = qresp or model� 2p;while
�
qresp or model � qGT

�
>p

qresp or model = qresp or model + 2p;while
�
qresp or model � qGT

�
< �p: (Equation 8)

Partial correlation r

For each model, we calculated partial correlation coefficients between the predicted outputs and the human response by controlling for the

effect of ground truth to determine which fitting functions/computer vision models best explained the pattern of deviations in the human

response from the ground truth as shown in Equation 9:

rmodel = rresp model�GT =
rresp model � rresp GT rmodel GTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2resp GT

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2model GT

p : (Equation 9)

Response consistency index

The RCI is the product of three terms, A,B,C, where:

A =

			GR

!						OG



!			+			OR

!			 : (Equation 10.1)

B =
GR

!

,GM


!			GR


!						GM


!			 : (Equation 10.2)

C = 0:5

 			GM


!			 � 			RM
!						GM


!			+			RM
!			 + 1

!
=

			GM


!						GM



!			+			RM
!			 (Equation 10.3)

and G, R, andM, are the endpoints of the ground truth, response, andmodel prediction vectors respectively, andO is the origin. A highlights

points of interest (i.e., those evidencing flow illusions). A is 0 when the ground truth and the response are in perfect agreement (
			GR

!			= 0 ) but

1 when they completely disagree (
			GR

!			 =

			OG


!			+ 			OR


!			). B specifies the direction similarity (the cosine of the direction difference angle) be-

tween the response error relative to the ground truth (GR

!

) and the model error relative to the ground truth (GM


!

). B is 1 when agreement is

perfect, and�1 when there is complete disagreement. C compares the distance between the model prediction and the ground truth (
			GM


!			)

and the distance between the model prediction and the response (
			RM
!			Þ. C is 1 when the prediction agrees with the response (

			RM
!			= 0 ) but

0 when the model agrees with the ground truth (
			GM


!			 = 0). When the terms are combined, the RCI becomes positive and approaches 1 at

locations where the model predicts conspicuous flow illusions; the RCI becomes negative at locations where the model predicts illusions in

the opposite direction. This index is similar to the partial correlation between themodel predictions and responses with the effects of ground

truth removed (rdir = 0.886, rspd = 0.909 and ruv = 0.974 when calculating the correlation between mean RCI and non-cross-validated partial
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correlations across 16 models), but the index evaluates model predictability at each location with integrating the direction and speed

components.

Cross-validation

2-fold cross-validation48 was employed to evaluate model fitting statistically. During each cross-validation repetition, the 180 probed loca-

tions were split into two halves, thus subsets X and X-tilde, in a constrained random manner (see below). The model predictions for X

were computed based on the best-fit parameters for X-tilde, and the model predictions for X-tilde were computed based on the best-fit pa-

rameters for X. Evaluation index values such as ruv were computed from the combined set of predictions for all 180 points. This was repeated

1,000 times to estimate the population distribution of each index value. Such analysis enables the direct comparison of models with different

numbers of free parameters. For models with no free parameters, the estimated index values were always the same (we thus used a boot-

strapping method to evaluate computer vision models statistically).

For the statistical comparison of the index values between models, the same cross-validation was used to compute the population distri-

bution of differences in each index value between each pair of models. To exclude the effects of random subset selection on variation in the

index value difference, the same sets of X and X-tilde were used for all models during every cross-validation repetition. If the 95% confidence

interval of the index value difference did not include zero, we regarded the difference between the models as statistically significant (alpha =

0.05, two-sided).

During cross-validation of the per-movie and per-object transformationmodels, we added a constraint to the random selection of subset X

such that the locations were split into two halves within each movie and within each object layer (or approximately so when the number of

points was odd). Except when otherwise noted, we used such constrained subset selection for all models and the same sets of X and X-tilde

for comparisons across the models, as noted above. We found that this constraint exerted only very minor effects on the estimated index

values.

Bootstrapping

A bootstrapping method49 was employed to estimate the population distributions of performance index values for each model and during

statistical comparison of the models, the distributions of the differences in index values between each model pair. The fitting models em-

ployed the best-fit parameters for the response data at all probed locations (without cross-validation). During each of 1,000 repetitions,

we re-sampled 180 locations from the original 180 locations with replacement, and computed the index values of each model and the differ-

ences amongmodels. As during cross-validation, when comparing themodels, we used the same re-sampling sets. Re-sampling was random

with the constraint that the number of re-sampled data points was the same as the original number of locations within each object layer. We

found that this constraint exerted very minor effects on the estimated index values.
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