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Frequency of disturbance alters diversity, function, and
underlying assembly mechanisms of complex bacterial
communities
Ezequiel Santillan 1,2, Hari Seshan1,2,4, Florentin Constancias1, Daniela I. Drautz-Moses1 and Stefan Wuertz 1,2,3

Disturbance is known to affect the ecosystem structure, but predicting its outcomes remains elusive. Similarly, community diversity
is believed to relate to ecosystem functions, yet the underlying mechanisms are poorly understood. Here, we tested the effect of
disturbance on the structure, assembly, and ecosystem function of complex microbial communities within an engineered system.
We carried out a microcosm experiment where activated sludge bioreactors operated in daily cycles were subjected to eight
different frequency levels of augmentation with a toxic pollutant, from never (undisturbed) to every day (press-disturbed), for
35 days. Microbial communities were assessed by combining distance-based methods, general linear multivariate models, α-
diversity indices, and null model analyses on metagenomics and 16S rRNA gene amplicon data. A stronger temporal decrease in α-
diversity at the extreme, undisturbed and press-disturbed, ends of the disturbance range led to a hump-backed pattern, with the
highest diversity found at intermediate levels of disturbance. Undisturbed and press-disturbed levels displayed the highest
community and functional similarity across replicates, suggesting deterministic processes were dominating. The opposite was
observed amongst intermediately disturbed levels, indicating stronger stochastic assembly mechanisms. Trade-offs were observed
in the ecosystem function between organic carbon removal and both nitrification and biomass productivity, as well as between
diversity and these functions. Hence, not every ecosystem function was favoured by higher community diversity. Our results show
that the assessment of changes in diversity, along with the underlying stochastic–deterministic assembly processes, is essential to
understanding the impact of disturbance in complex microbial communities.
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INTRODUCTION
Understanding what drives patterns of community succession and
structure remains a central goal in ecology1,2 and microbial
ecology,3 especially since community diversity and assembly are
thought to regulate the ecosystem function.4,5 Assembly pro-
cesses can be either stochastic, assuming that all species have
equal fitness and that changes in structure arise from random
events of ecological drift,6 or deterministic, when communities
form as a result of niche diversity shaped by abiotic and biotic
factors.7 Deterministic and stochastic assembly dynamics have
been proposed to simultaneously act in driving assembly patterns
observed in nature.8–12 This has stimulated scientific discourse
including modelling of experimental data13–16 and both observa-
tional and manipulative experimentation in a variety of ecosys-
tems, like deserts on a global scale,17 groundwater,18 subsurface
environments,2,19,20 soil plant–fungi associations,21 rock pools,22

water ponds,23 and sludge bioreactors.15,24,25 These prior studies
emphasized the need to understand what governs the relative
balance between stochastic and deterministic processes and what
conditions would lead to stochastic processes overwhelming
deterministic processes, particularly under disturbance.20 To
investigate their roles, well-replicated time series experiments
are needed.18,25

Disturbance is defined in ecology as an event that physically
inhibits, injures, or kills some individuals in a community, creating
opportunities for other individuals to grow or reproduce.26 When
disturbance is long-term or continuous, it is classified as press-
disturbance.27 Disturbance is deemed the main factor influencing
variations in species diversity28 and structuring of ecosystems,27,29

but a clear understanding of its outcomes is lacking.30 Particularly,
the intermediate disturbance hypothesis (IDH)31 predicts that
diversity should peak at intermediate levels of disturbance due to
trade-offs between species’ ability to compete, colonize ecological
niches, and tolerate disturbance. The IDH has been influential in
ecological theory, as well as in management and conservation,32

but its predictions do not always hold true.28,33 For example, in soil
and freshwater bacterial communities, different patterns of
diversity were observed with increasing disturbance frequency
with biomass destruction34 and removal35 as disturbance type,
respectively. Meanwhile, the effect of varying frequencies of non-
destructive disturbances on bacterial diversity remains unknown.
Furthermore, the IDH predicts a pattern but it is not a coexistence
mechanism as it was originally purported to be.36 Hence, its
relevance is being debated37,38 with multiple interpretations and
simplicity as the main points of critique. To date, the mechanisms
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behind the observed patterns of diversity under disturbance
remain to be elucidated.39,40

The objective of this work was to test the effect of disturbance
on the bacterial community structure, diversity, and ecosystem
function of a complex bacterial system, with emphasis on the
underlying assembly mechanisms. We employed sequencing
batch bioreactors inoculated with activated sludge from an urban
wastewater treatment plant, in a laboratory microcosm setup with
eight different frequency levels of augmentation with toxic 3-
chloroaniline (3-CA) as disturbance. Triplicate reactors received 3-
CA either never (L0, undisturbed), every 7, 6, 5, 4, 3, and 2 days
(L1–6, intermediately-disturbed), or every day (L7, press-disturbed)
for 35 days. Chloroanilines are toxic and carcinogenic compounds
and few bacteria encode the pathways to degrade 3-CA,41 which
is also known to inhibit both organic carbon removal and
nitrification in sludge reactors.42 Microcosm studies are useful
models of natural systems,43 can be coupled with theory
development to stimulate further research,44 and by permitting
easier manipulation and replication can allow inference of causal
relationships45 and statistically significant results.46

We analysed changes in the ecosystem function over time by
measuring the removal of organic carbon, ammonia, and 3-CA, as
well as biomass. Changes in community structure were examined
at different levels of resolution using a combination of metage-
nomics sequencing and 16S rRNA gene fingerprinting techniques.
Such changes were assessed by employing a combination of
ordination tools, diversity indices, cluster analysis, univariate and
multivariate statistical analyses. We also explored how diversity
was related to function, focusing on trade-offs. Furthermore, the
role of stochasticity in community assembly was investigated by
employing null model techniques from ecology. We hypothesized
that time would lead to a decrease in α-diversity at the extreme
sides of the disturbance range due to deterministic adaptation to
the environment, while less predictable conditions at intermediate
disturbance levels would lead to higher α-diversity and stochastic
assembly. Consequently, replicates at intermediately disturbed
levels should display higher variability in terms of both community
structure and function, compared with the ones at the extreme
sides of the disturbance range where the opposite (that is, less
variability) should occur.

RESULTS AND DISCUSSION
Overall community dynamics and differentiation of clusters
Bacterial community structure displayed temporal changes and
varied between disturbance levels, as assessed by 16S rRNA gene
terminal restriction fragment length polymorphism (T-RFLP)
(Fig. 1). Constrained ordination showed a defined cluster
separation with 0% misclassification error of the outermost levels
L0 and L7 from the remaining intermediate levels L1–6 (Fig. 1a).
Overall community structure differed over time with a dispersion
effect after 14 days (Fig. 1b). Levels across disturbance and time
factors showed significant differences (PERMANOVA P= 0.003,
Supplementary Table 1), with a non-significant interaction effect
(P= 0.15). Disturbance was the factor responsible for the observed
clustering (Fig. 1a) and not heteroscedasticity (PERDIMSP
P= 0.35).

Ecosystem function dynamics and trade-offs
The undisturbed community (L0) was the only one with complete
dissolved organic carbon (COD) removal and nitrate generation
without nitrite residuals, while the press-disturbed community (L7)
was the only one where nitrification products were never detected
and also had the lowest biomass (Fig. 2). Initially, reactors at the
disturbed levels showed an inability to remove all of the 3-CA
(with the exception of L1). Such lack of 3-CA degradation was
accompanied by a reduction in organic carbon removal in the first
3 weeks (Fig. 2a, Supplementary Figure 2a,c,e), and a complete
inhibition of nitrification with subsequent accumulation of
ammonium (Fig. 2b, Supplementary Figure 2b,d,f). Removal of 3-
CA recovered and was above 95% for all disturbed levels after
28 days (Supplementary Figure 2g), but COD removal was still not
100% despite complete 3-CA removal towards the end of the
experiment (Fig. 2c).
Nitrification was detected on day 21 for L1 and later for other

disturbance levels, except for the press-disturbed L7. The
dominant NOX component was nitrite, but some nitrate was also
produced (Fig. 2d, Supplementary Figure 2h–j). At the end of the
study, there was a significant negative Spearman’s correlation
between organic carbon removal and nitrification (Supplementary
Figure 3a-b) in terms of nitrite (ρ=−0.901) and nitrate production
(ρ=−0.697). Biomass values on day 35 differed significantly
among levels with the highest value at L1 and the lowest at L7

Fig. 1 Microbial community dynamics across disturbance frequencies and time, as assessed by 16S rRNA gene terminal restriction fragment
length polymorphism (T-RFLP) fingerprinting. a Canonical analysis of principal coordinates (CAP, constrained ordination) plot, with
disturbance levels as differentiation criteria, shows cluster differentiation for L0 (CAP1 axis) and L7 (CAP2 axis) from intermediately disturbed
levels (L1–6). Disturbance levels: L0 [light-green triangles], L1 [blue upside-down triangles], L2 [light-blue open squares], L3 [open red
rhombuses], L4 [purple circles], L5 [black crosses], L6 [green x-symbols], and L7 [blue stars]. b Non-metric multidimensional scaling (NMDS,
unconstrained ordination) shows temporal dispersion effect. Days: 14 [open triangles], 21 [light-grey upside-down triangles], 28 [dark-grey
squares], and 35 [black rhombuses]
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(Fig. 2c). There was a significant positive correlation between
biomass and nitrification in terms of nitrite (ρ= 0.466) and nitrate
production (ρ= 0.656) (Supplementary Figure 3c-d).

Intermediate levels of disturbance displayed increased
dissimilarity with time
To distinguish the effect of disturbance from temporal community
dynamics (Fig. 1), community dissimilarity was assessed on the
T-RFLP dataset at each time point by ordination analysis using
principal coordinates analysis (PCO) (Fig. 3a, b), non-metric
multidimensional scaling (NMDS), and canonical analysis of
principal coordinates (CAP) with cluster similarity analysis
(Supplementary Figure 4). The combination of constrained and
unconstrained ordination methods allowed differentiating loca-
tion from dispersion effects in community structure.47 L0 was
consistently different in all ordination plots and L7 differed after
21 days, both with 0% misclassification error at all time points for
CAP plots. Dispersion effects within intermediate levels were
evident in the unconstrained ordination plots with higher
differentiation of biological replicates after 35 days (Fig. 3b),
coinciding with the production of nitrite and low levels of nitrate
(Fig. 2d). Community differentiation was statistically significant
from day 21 onwards as supported by PERMANOVA and
PERMDISP (Supplementary Table 1).

Metagenomics community analysis validates observations from
fingerprint dataset
β-Diversity patterns observed from 16S rRNA gene amplicon
T-RFLP data on day 35 were significantly similar to those from
shotgun metagenomics data. A Mantel test on Bray–Curtis
distance matrixes for both datasets (n= 24) yielded significant
similarity (r= 0.73, P= 0.002). Procrustes tests of comparisons
within ordination methods of PCO (Fig. 3c) and NMDS also yielded
significant similarities for both datasets (P= 0.002, Supplementary
Table 2). Multivariate PERMANOVA tests on the metagenomics
dataset produced statistically significant results, but with sig-
nificant heteroscedasticity as shown by PERMDISP (Supplementary
Table 1). We resolved these mean–variance relationship concerns
by running a general linear multivariate models (GLMMs) test to fit
the data to a negative binomial distribution. Both residuals vs
fitted and mean–variance plots supported the choice of a negative
binomial distribution for the regression model (Supplementary
Figure 5). The analysis of deviance of the regression rejected the
null hypothesis of no difference between communities at different
disturbance levels, independent of heteroscedasticity (P= 0.0149).

Fig. 2 Process performance indicators across disturbance levels.
Effects include temporal changes and trade-offs in community
function. a, c Percentage of organic carbon as chemical oxygen
demand (COD, black circles) and 3-CA (open purple rhombuses)
removal for all levels (negative values represent accumulation).
c Biomass as volatile suspended solids (VSS, open green squares).
b, d Concentration of ammonium (black rhombuses), nitrite (open
blue triangles), and nitrate (open red circles) as nitrogen for all
levels. Data are from days 7 (a, b) and 35 (c, d) of the study (for all
time points sampled, see Supplementary Figure 2). Mean ± s.d. (n=
3) are shown. Undisturbed L0 replicates had consistent organic
carbon removal and complete nitrification, whereas press-disturbed
L7 never showed nitrification and had the lowest final biomass.
Intermediate levels L1–6 displayed changing functionality with
higher s.d. values that increased over time

Fig. 3 Community dissimilarity assessed by principal coordinates analysis (PCO) plots for all disturbance levels on T-RFLP datasets on days
a 14 and b 35 of the study. Ovals with dashed lines represent 80% similarity calculated by group average clustering. Disturbance levels: L0
[light-green triangles], L1 [blue upside-down triangles], L2 [light-blue open squares], L3 [open red rhombuses], L4 [purple circles], L5 [black
crosses], L6 [green x-symbols], and L7 [blue stars]. c Procrustes analysis on PCO at day 35 comparing metagenomics (circles) and T-RFLP
(triangles) datasets. Lines unite data points from the same reactor (n= 24). Same colour palette as for disturbance levels. Tests comparing both
methods were statistically significant (Supplementary Table 2). Intermediate treatments’ (L1–6) within-treatment dissimilarity increased with
time. L0 and L7 clusters consistently displayed higher similarity after 14 days
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Higher α-diversity for intermediately disturbed treatments and
diversity-function correlations
The observed patterns in α-diversity were time-dependent, as
diversity decreased over time with respect to the initial sludge
inoculum (Fig. 4a, T-RFLP dataset). Such a temporal decrease in
diversity was higher at the extreme ends of the disturbance range,
resulting in a parabolic pattern on day 35 (Fig. 4b, c). The final
α-diversity pattern based on Hill number 2D was similar for both
T-RFLP and metagenomics methods (Fig. 4b), although the latter
showed higher variability. For the metagenomics dataset we also
calculated the lower-order Hill numbers (0D, 1D) which give higher
weight to less abundant operational taxonomic units (OTUs). They
displayed the same parabolic pattern (Fig. 4c). Welch’s ANOVA
tests were statistically significant for all Hill numbers (P < 0.01, P=
0.022 for 2Dmetagenomics). Additionally, there were strong significant
correlations between α-diversity and ecosystem function (Supple-
mentary Figure 6), focusing on the more robust estimators of
microbial diversity 1D and 2D.48 Both 1D and 2D correlated
positively with ammonia removal and nitrite generation (Supple-
mentary Figure 6a-b), while 2D had a positive correlation with
biomass (Supplementary Figure 6c) but a negative correlation with
organic carbon removal (Supplementary Figure 6d).

Null model analysis suggests different assembly mechanisms
across disturbance frequencies
To test if the observed changes in β-diversity (Figs 1a and 3,
Supplementary Figure 4) were due to variations in the underlying
stochastic and deterministic mechanisms or due to changes in α-
and γ-diversity ratios (α:γ) alone,49 we employed a null model
analysis from Kraft et al.50 on the bacterial genus-level metage-
nomics datasets on day 0 and day 35. The model estimated null β-
diversity values after randomizing the location of each individual
within the three independent reactors for each of the eight
disturbance treatment levels, while keeping the total quantity of
individuals per reactor, the relative abundance of each OTU, and
the γ-diversity constant over 10,000 iterations. Under this model,
stochastic assembly mechanisms were found to be higher for
some intermediately disturbed levels (L2–L5) in terms of stochastic
intensity (SI) and standard effect size (SES) values, which
corresponded to communities less deviant from the null expecta-
tion (Fig. 5). SI was also higher at d35 with respect to the sludge
inoculum (d0).

Deterministic and stochastic patterns of assembly amongst
different disturbance levels
Niche-structuring at both ends of the disturbance frequency range
was suggested by community structure patterns and ecosystem
function. The undisturbed (L0) and press-disturbed (L7) levels
were distinct from each other as well as from the remaining
intermediate levels, as supported by multivariate tests (both
distance-based and GLMMs). The ordination plots and cluster
analyses showed a clear separate clustering for the independent
replicates of these two disturbance levels along the experiment,
and particularly the constrained ordination plots displayed this
with 0% misclassification error. Furthermore, the ecosystem
function was clearly differentiated between L0 and L7, as well as
being consistent across replicates at each level. We contend that
the observed clustering is an indication that both the undisturbed
and press-disturbed levels favoured deterministic assembly
mechanisms, where the selective pressure due to unaltered
succession (L0) or sustained toxic-stress (L7) promoted species
sorting, resulting in similar community structuring among
biological replicates over the course of the experiment.
Conversely, the communities from intermediately disturbed

levels (L1–6) did not form distinct clusters for any particular level
through the experiment. Within-treatment dissimilarity among
replicates increased over time, with some replicates being more
similar to those of other intermediate levels. Concurrently,
ecosystem function parameters also displayed within-treatment
variability for L1–6. For example, the conversion of ammonia to
NOX products, which was initially hampered when communities
were still adapting to degrade 3-CA, was not the same across all
equally handled independent replicates. The observed divergence
across independent replicates is considered here as a strong
indicator of stochasticity in community assembly. Additionally, the
lower deviation for L2–L5 from expected β-diversity values
estimated via null model analysis indicates a higher role of
stochasticity at intermediate disturbance levels. Several processes
might be promoting stochastic assembly, like strong feedback
processes51 that are linked to density dependence and species
interactions,52 priority effects,53 and ecological drift.54 Reactors
within this study were designed as closed systems, hence
stochastic dispersal processes55 could not affect community
assembly.
We argue that there were different underlying

stochastic–deterministic mechanisms operating in the resulting
community assembly along the disturbance range of our study.
Similarly, a study on groundwater microbial communities18 found

Fig. 4 α-Diversity patterns. a Temporal dynamics of Hill number 2D for abundant OTUs, calculated from T-RFLP data across disturbance levels.
b Hill number 2D calculated from T-RFLP (black dashed bars) and metagenomics (grey solid bars) data at days 0 (seed) and 35 (disturbance
levels L0–L7). c Hill numbers 0D (black solid bars) and 1D (blue solid bars) from metagenomics data on days 0 (seed) and 35 (L0–L7). Values
represent mean ± s.d. (n= 3). Characters above bars indicate Games–Howell post-hoc grouping
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through null model analysis that both deterministic and stochastic
processes played important roles in controlling community
assembly and succession, but their relative importance was
time-dependent. The greater role of stochasticity we found on
day 35 concurred with higher observed variability in the
ecosystem function and structure among replicates for
intermediately-disturbed levels. Likewise, previous work on fresh-
water ponds tracking changes in producers and animals49 found
β-diversity (in terms of dissimilarity) increasing with stochastic
processes. These observed patterns are also in accordance with
ecological studies proposing deterministic and stochastic pro-
cesses balancing each other to allow coexistence,10 with commu-
nities exhibiting variations in the strength of stabilization
mechanisms and the degree of fitness equivalence among
species.9 Thus, it is not sufficient to ask whether communities
mirror either stochastic or deterministic processes,8 but also
necessary to investigate the combination of such mechanisms
that in turn explain the observed community structures along a
continuum.9

Diversity–disturbance patterns and trade-offs with function
We observed the highest α-diversity at intermediate levels as
predicted by the IDH,31 both in terms of composition (0D) and
abundances (1D, 2D). This finding is non-trivial in two aspects. First,
Svensson et al.32 have shown that most studies find support for
the IDH by using species richness (0D) rather than evenness or
other abundance-related indices (like 1D and 2D). They suggested
that low evenness at high disturbance levels could be caused by
the dominance of a few disturbance specialists. Second, the use of
richness for microbial communities is not reliable48 since it is
heavily constrained by the method of measurement,56 which
makes it hard to compare results from different studies using this
metric. Additionally, for complex communities there is often a
huge difference between the abundance of rare and abundant
taxa. Hence, for microbial systems, it is reasonable to assess
diversity in terms of more robust compound indices rather than
richness, the reason why we focused on 1D and 2D for diversity-
function analyses.
Importantly, the observed pattern in α-diversity was time-

dependent and resulted in an IDH pattern after 35 days. Temporal
dynamics were expected since the sludge community experi-
enced an initial perturbation in all reactors after transfer from a
wastewater treatment plant to our microcosm arrangement. For
the sludge inoculum, this implied changes in reactor volume,
frequency of feeding (continuous to batch), type of feeding

(sewage to complex synthetic media), immigration rates (open to
closed system), and mean cell residence time (low to high). This
was a succession scenario in which communities had to adapt to
such changes along with the designed disturbance array. For L0
and L7, 2D decreased over time in agreement with
deterministically-dominated processes, probably because such
levels represented the most predictable environments within our
disturbance range. In contrast, intermediate levels either increased
or maintained the same 2D over time (after an initial decrease
within the first 2 weeks), seemingly a case where niche overlap
promoted stochastic assembly.8 The emergence of an IDH pattern
after time is coherent with findings in previous microcosm studies
using synthetic communities of protists57 and freshwater enrich-
ment microbial communities.35 Yet, none of these studies
evaluated the relative importance of the underlying assembly
mechanisms for the observed diversity dynamics.
Additionally, both 1D and 2D were positively correlated with

nitrification and productivity, suggesting that higher community
evenness favours functionality under selective pressure,58 but
were negatively correlated with organic carbon removal. Thus, we
cannot affirm that more diverse communities have better
functionality without considering trade-offs. This supports the
notion that higher α-diversity does not necessarily imply a “better”
or “healthier” system.56 In addition to the observed changes in
OTU diversity, there was an evident variation in ecosystem
function along the disturbance range studied (Fig. 2c, d), a similar
finding to that of previous studies with simpler planktonic
communities.59

Functional trade-offs are expected under disturbance since
organisms need to allocate resources normally used for other
functions to recover after a disturbance.60 In our study, commu-
nities with higher biomass had lower organic carbon removal
efficiencies, which together with the trade-offs described for
nitrification, suggest the adoption of different community life-
history strategies depending on the frequency of disturbance. The
results presented here were all taxonomy-independent since our
focus was on diversity, function, and mechanisms of community
assembly (phylum-level community changes are provided as
supplemental material Supplementary Figure 7). Taxonomy-
independent approaches continue to be useful to describe
diversity patterns and mechanisms of community assembly.2,61

However, it has been proposed that species’ traits can predict the
effects of disturbance and productivity on diversity.62 Hence,
further analysis of the different taxa and their genetic potential
paired with the observed trade-offs in ecosystem function will aid

Fig. 5 Influence of stochastic assembly mechanisms in bacterial communities as assessed by a stochastic intensity and b standard effect size
(SES). Both metrics were calculated through null model analysis on the metagenomics genus-level dataset at days 0 (seed) and 35 (disturbance
levels L0–L7). Each calculation involved all replicates of each treatment (nseed= 2, nL0–L7= 3) evaluated over 10,000 null model iterations. SES
values closer to zero represent communities less deviant from the null expectation, implying stronger stochastic assembly processes. Overall,
stochasticity was stronger for intermediate disturbance levels L2–L5 and also increased with respect to the sludge inoculum
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in the understanding of potential life-history strategies60 and their
relationship with community aggregated traits63 in the near
future.

Merging mechanisms of community assembly and alpha-diversity
patterns: an intermediate stochasticity hypothesis
Knowing that the validity of the IDH is still under debate37,38 and
that many different diversity–disturbance patterns have been
reported,28,30,33 we asked whether there is a relationship between
the peaked pattern in diversity observed and the underlying
stochastic–deterministic processes of community assembly. Under
purely stochastic processes, diversity should vary randomly as all
species have equal fitness,55 unless some other mechanism acts to
prevent this. It is recognized that, beyond empirical pattern
description, an understanding of the underlying mechanisms is
necessary to comprehend the outcomes of intermediate dis-
turbance regimes.30,40,64 We hypothesize that higher α-diversity at
intermediate disturbance frequencies is the result of weaker
stabilizing mechanisms (niches), which are stronger at extreme
ends of the disturbance range. Stochastic mechanisms will
produce even assemblages (higher α-diversity) at intermediately
disturbed levels, whilst infrequent or too-frequent disturbances
will favour some species over others (lower α-diversity). We
propose this idea as the intermediate stochasticity hypothesis
(ISH, Fig. 6) and contend that it should hold particularly for
compound α-diversity indices,48 since the underlying assembly
mechanisms would affect taxa abundance distributions.
The ISH can be further portrayed by noting a key reasoning

behind the IDH, namely, that a competition–colonization trade-off
would lead to higher diversity at intermediate levels of
disturbance.31 In the context of our study, which comprised a
closed system, colonization would come from the low abundance
taxa that have an opportunity to grow after different disturbance

frequencies reduced the competitive ability of previously domi-
nant taxa. Stochastic mechanisms of ecological drift could then
play a critical role in shaping the emerging structure of microbial
communities3 where random processes of birth, death, and
reproduction can have an effect on which of these low abundance
taxa will be more benefited as a result of intermediate disturbance
frequencies. Drift could also lead to historical contingency and
priority effects that are also stochastic,53 where taxa that occupy
early the disturbance-opened niches could reduce the availability
of resources to other taxa whose abundance will then be limited.
Such reasoning could explain why, while higher α-diversity was
found at intermediate levels of disturbance in our study,
community structure and ecosystem function differed across
identically treated replicates.

Implications and concluding remarks
The implications of this study relate to both process engineering
and environmental management. Sludge communities within
wastewater treatment are not only model systems in microbial
ecology,65 but also a key driver for water sanitation and the
environmental impact of anthropogenic water discharges.66

Disturbances could promote stochastic assemblages of the sludge
communities, which despite harbouring higher diversity could
lead to variable overall ecosystem function. This could be the
reason why after similar perturbations the process outcome
differs, causing operational problems for water utilities.67 Further-
more, cases where disturbance temporally favours stochastic
assembly could lead to a different final community after the
perturbation,27 which could compromise the expected ecosystem
function. More research is needed to identify such scenarios in
practice.
We described how different frequencies of disturbance affected

ecosystem function and bacterial community diversity and
assembly in a closed microcosm bioreactors system. Communities
were assessed through different molecular methods that none-
theless yielded very similar patterns. Furthermore, besides the
wastewater treatment microbial community, other complex
microbial systems (e.g., the gut microbiome) might display similar
responses to disturbance. We argue that changes not only in
diversity but also in the underlying deterministic–stochastic
assembly mechanisms should be evaluated in studies of the
effects of disturbance on such systems. For such an assessment,
both replication and wide-enough disturbance ranges are key.
Additionally, the ISH could be evaluated within open systems to
include the effect of dispersal processes. This calls for more studies
in microcosm45,68 and mesocosm settings, as well as meta-analysis
from full-scale application studies.

METHODS
Experimental design
We employed sequencing batch microcosm bioreactors (20-mL working
volume) inoculated with activated sludge from a full-scale plant and
operated for 35 days. The daily complex synthetic feed (adapted from
Hesselmann et al.69) included toxic 3-CA at varying frequencies. Eight
levels of disturbance were set in triplicate independent reactors (n= 24),
which received 3-CA every day (press-disturbed), every 2, 3, 4, 5, 6, or
7 days (intermediately-disturbed), or never (undisturbed). Level numbers
were assigned from 0 to 7 (0 for no disturbance, 1 to 7 for low to high
disturbance frequency, Supplementary Figure 1). Ecosystem function, in
the form of process performance parameters at the end of a cycle, was
measured weekly in accordance with Standard Methods70 where appro-
priate, and targeted soluble chemical oxygen demand (COD), nitrogen
species (ammonium, nitrite, and nitrate ions) and 3-CA, and volatile
suspended solids (VSS). On the initial day and from the second week
onwards, sludge samples (2 mL) were collected weekly for DNA extraction.

Fig. 6 Intermediate stochasticity hypothesis (ISH) for community
assembly under varying disturbances. Conceptual representation of
the classic relationship between α-diversity and disturbance,31

including the effect of underlying stochastic and deterministic
processes driving bacterial community assembly. When intermedi-
ate disturbance regimes result in less predictable environments,
specialized traits would be less advantageous to taxa, and the
stochastic equalization of competitive advantages would lead to
higher α-diversity. On the contrary, extreme ends of the range where
conditions are recurrent would select for adapted organisms whose
dominance would result in a lower α-diversity
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16S rRNA gene amplicon fingerprinting and processing
DNA extracted from all sludge samples (n= 99) was analysed by T-RFLP of
the 16S rRNA gene using the 530F–1050R primer set targeting V4–V5
regions. The PCR program included initial denaturation at 95 °C for 10min,
followed by 30 cycles of denaturation (95 °C, 1 min), annealing (58 °C, 30 s)
and extension (72 °C, 1 min), and final extension at 72 °C for 7 min. Purified
DNA products were digested using the BsuRI (HaeIII) enzyme through
incubating at 37 °C for 16 h. Enzyme inactivation was performed at 80 °C
for 20min. Digested DNA was subjected to T-RFLP on an ABI 3730XL DNA
analyser. Sequence alignment files from T-RFLP runs were assessed for
quality control and pre-processed using the software GeneMapper v.5
(Applied Biosystems).71 Peak areas were normalized to the total area per
sample72 and de-noised using a conservative fluorescence threshold of
200 units.73

Metagenomics sequencing and reads processing
Purified genomic DNA from sludge samples on d0 (inoculum) and d35 (n
= 24) were subjected to metagenomics sequencing at the SCELSE
sequencing facility (Singapore). Library preparation was performed
according to Illumina’s TruSeq Nano DNA Sample Preparation protocol.
Libraries were sequenced in one lane on an Illumina HiSeq 2500 sequencer
in rapid mode at a final concentration of 11 pM and a read-length of
250 bp paired-end. Around 173 million paired-end reads were generated in
total and 7.2 ± 0.7 million paired-end reads on an average per sample.
Illumina adaptors, short reads, low quality reads or reads containing any
ambiguous base were removed using cutadapt (–m 50 –q 20 - --max-n 0,
v.1.11).74 Taxonomic assignment of metagenomics reads was done
following the method described by Ilott et al.75 High quality reads
(99.2 ± 0.09% of the raw reads) were randomly subsampled to an even
depth of 12,395,400 for each sample prior to further analysis. They were
aligned against the NCBI non-redundant (NR) protein database (March
2016) using DIAMOND (v.0.7.10.59) with default parameters.76 The lowest
common ancestor approach implemented in MEGAN Community Edition
v.6.5.577 was used to assign taxonomy to the NCBI-NR aligned reads with
the following parameters: maxMatches= 25, minScore= 50, min Support
= 20, paired= true. On average, 48.2% of the high-quality reads were
assigned to cellular organisms, from which in turn 98% were assigned to
the bacterial domain. Adequacy of sequencing depth was corroborated
with rarefaction curves at the genus taxonomy level (Supplementary
Figure 8) using the rarefy function of the vegan R-package (v.2.5-2). We did
not include genotypic information as it was outside the scope of this study,
but will do so in future investigations arising from this work.

Microbial community analysis and statistical tests
All reported P-values for statistical tests in this study were corrected for
multiple comparisons using a false discovery rate (FDR) of 10%.78

Community structure was assessed by a combination of ordination
methods (PCO, NMDS, CAP) and multivariate tests (PERMANOVA,
PERMDISP)79 on Bray–Curtis dissimilarity matrixes constructed from
square-root transformed normalized abundance data using PRIMER (v.7).
Additionally, GLMMs, which deal with mean–variance relationships,80 were
employed using the mvabund R-package81 fitting the metagenomics
dataset to a negative binomial distribution, to ensure that the observed
differences among groups were due to disturbance levels and not
heteroscedasticity. The 500 most abundant genera (97% of total assigned
reads abundances) were employed to ensure random distribution of
residuals fitted in the model. Significance was tested using the anova
function in R with PIT-trap bootstrap resampling (n= 999).82 Hill diversity
indices83 were employed to measure α-diversity as described else-
where,48,84 and calculated for normalized non-transformed relative
abundance data.

Comparison between metagenomics and T-RFLP community
datasets
Mantel and Procrustes tests85 were applied to compare metagenomics and
T-RFLP datasets from all bioreactors on day 35 (n= 24, subsample of the
full T-RFLP dataset). Such an approach is valid for the questions asked in
this study, since comparisons between NGS and fingerprinting techniques
support the use of T-RFLP to detect meaningful community assembly
patterns and correlations with environmental variables,61 and such
patterns can be validated by NGS on a subset of the fingerprinting
dataset.2

Bray–Curtis dissimilarity matrixes were computed using square root
transformed T-RFLP data and bacterial genus-level taxa tables generated
using a metagenomics approach. Mantel tests were then used to
determine the strength and significance of the Pearson product–moment
correlation between complete dissimilarity matrices. Procrustes tests

(PROTEST) were also employed as an alternative approach to Mantel tests
in order to compare and visualize both matrices on PCO and NMDS
ordinations. The resultant m2-value is a statistic that describes the degree
of concordance between the two matrices evaluated.86 All these statistical
tests were performed using the vegan R-package (functions: procuste,
mantel, metaMDS, vegdist).

Null model analysis on diversity
To disentangle the roles of stochastic and deterministic processes as
drivers of change in β-diversity it is necessary to incorporate a statistical
null model in the analysis,87 which assumes that species interactions are
not important for community assembly.88 We employed a null model
approach originally applied to woody plants50 and more recently to
microbial communities.18 The model defines β-diversity as the β-partition
ðβ ¼ 1� α=γÞ89 and takes into account both composition and relative
abundances. To adapt it to handle microbial community data, we
considered species as OTUs (genus taxonomic level) and each individual
count as one read within the metagenomics dataset. The model
randomizes the location of each individual within the three independent
reactors for each of the eight disturbance treatment levels, while
maintaining the total quantity of individuals per reactor, the relative
abundance of each OTU, and the γ-diversity. We applied it to the
metagenomics datasets from d0 and d35.
Each step of the null model calculates expected mean α-diversities for

each disturbance level and then estimates an expected β-partition. After
10,000 repetitions, the mean and standard deviation of the distribution of
random β-partitions for each disturbance level are calculated. The output
of this model is a β-deviation or SES, which is the observed β-diversity
(βobs) minus the mean of the null distribution of β-diversity values ðβexpÞ,
divided by the standard deviation of this distribution (σexp), SES=
ðβobs � βexpÞ=σexp. We further calculated the SI as the difference between
the observed and mean expected β-diversities divided by the observed β-
diversity, SI= ðβobs � βexpÞ=βobs.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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