A RTl C L E W) Check for updates

Large-scale genomic analyses reveal insights into
pleiotropy across circulatory system diseases and
nervous system disorders
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Clinical and epidemiological studies have shown that circulatory system diseases and ner-
vous system disorders often co-occur in patients. However, genetic susceptibility factors
shared between these disease categories remain largely unknown. Here, we characterized
pleiotropy across 107 circulatory system and 40 nervous system traits using an ensemble of
methods in the eMERGE Network and UK Biobank. Using a formal test of pleiotropy, five
genomic loci demonstrated statistically significant evidence of pleiotropy. We observed
region-specific patterns of direction of genetic effects for the two disease categories, sug-
gesting potential antagonistic and synergistic pleiotropy. Our findings provide insights into
the relationship between circulatory system diseases and nervous system disorders which
can provide context for future prevention and treatment strategies.
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irculatory system diseases and nervous system disorders

have a significant impact on mortality worldwide. Because

of the distinct disease manifestations, diseases in these
categories have long been diagnosed, treated, and studied inde-
pendently. However, for decades, clinicians and researchers have
noted a link between circulatory system diseases and nervous
system disorders. For instance, it is clear that cardiac pathologies
can be produced as a result of neurological illness!. Heart failure
is a potential risk factor for Alzheimer’s disease? and occurs more
than twice as often in Parkinson’s disease patients compared to
non-Parkinson’s disease patients®. However, the genetic variants
influencing both disease categories are largely unknown.

One of the potential genetic links can be via pleiotropy, a
phenomenon by which a gene or a genetic variant influences
more than one phenotypic trait®. Pleiotropy has long been
recognized in model organisms®, and its ubiquitous role has
recently been appreciated in the human genome—90% of
genome-wide association study (GWAS) loci are pleiotropic®”.
The definition of pleiotropy in this manuscript refers to ‘statistical
pleiotropy.” which describes a genetic variant that is statistically
associated with more than one phenotype/trait®. Large-scale
biobanks, coupled with Electronic Health Records (EHRs), offer
unprecedented opportunities to study pleiotropy. Nevertheless,
most studies of pleiotropy in the biomedical literature thus far are
solely inferred from GWAS studies® in multiple independent
datasets. For instance, a global overview of pleiotropy across
phenotypes with high disease prevalence has been demonstrated
using GWAS summary statistics®, highlighting the extent of
potential pleiotropy across broad disease categories. However,
genetic variants that contribute to a wide spectrum of diseases
(including the less common ones) across specific disease cate-
gories have not been extensively studied.

Methods for detecting pleiotropy can be broadly grouped into
univariate and multivariate categories. Univariate methods test
the association between one genetic variant and one phenotype
per statistical model. Phenome-wide association studies (Phe-
WAS) are among the most commonly used univariate methods
that examine the impact of genetic variants across a broad range
of phenotypes using univariate regression models!?. The appli-
cation of PheWAS has uncovered novel potential pleiotropy using
EHR phenotypes in many prior studies!!-1>. Additional uni-
variate methods in the literature also refer to a combined analysis
of summary statistics obtained from multiple GWAS studies!®-22.
Multivariate methods, or multi-trait joint methods, refer to the
inclusion of two or more phenotypes in the association test in the
same statistical model*. Multivariate methods have demonstrated
increased power for detecting pleiotropy but have not been widely
applied on large-scale natural biomedical datasets. In this study,
we used MultiPhen?? as our multi-trait joint analysis method as it
is designed for binary phenotypes and has shown sufficient sta-
tistical power?4. MultiPhen analyzes multiple phenotypes simul-
taneously by testing the linear combination of phenotypes with
the genotype using an ordinal regression model. In general,
multivariate methods are more powerful than combining uni-
variate GWAS summary statistics?®. Since no single method can
detect all types of genotype-phenotype relationships in natural
biomedical data, it has been suggested to apply both univariate
and multivariate methods?> and to view them as complementary
approaches?®. This is the strategy we adopted in our study design.

In this study, we aimed to characterize pleiotropy specifically
across circulatory system diseases and nervous system disorders.
We have applied genome-wide PheWAS and MultiPhen analyses
on 43,015 European-ancestry adults from the eMERGE network,
followed by a systematic replication analysis in 295,423
European-ancestry participants from the UK Biobank (UKBB)
(Supplementary Fig. 1). This effort yielded a comprehensive

comparison of the characteristics of applying univariate and
multivariate methods on independent biobank datasets. To
investigate pleiotropy, we further performed a formal statistical
test of pleiotropy, which pinpoints precisely which specific phe-
notypes show evidence of pleiotropy via performing multivariate
analyses iteratively using a method called Pleio?”. Through these
analyses, we have provided evidence to explain the relationship
between circulatory system diseases and nervous system disorders
that can be characterized as pleiotropic, recognizing that we
observed both synergistic and antagonistic pleiotropy between
these disease categories.

Results

Phenotypic characterization. The eMERGE Phase III dataset
consists of 99,185 subjects coupled with longitudinal EHR data
from the United States. The UKBB has genotypic and phenotypic
data on 487,409 individuals from the United Kingdom. Our
phenotypes of interest are a comprehensive set of circulatory
system diseases and nervous system disorders.

The phenotypes are defined by utilizing the International
Classification of Diseases (ICD) diagnosis codes obtained from
the EHR. Because of the differences in disease coding practices
and regulations between the US and the UK, the composition of
ICD codes differs between the two datasets. The eMERGE
network has mostly (~82%) ICD-9-CM codes, while the UKBB
has predominantly (~98%) ICD-10 codes. However, to our
current knowledge, there is no available official equivalence
mapping that maps ICD codes between the UK and the US, given
that the US uses its own national variation of ICD codes (known
as ICD-CM). To address this for our replication study design, we
collected the ICD codes from the official website in three broad
categories: ‘mental disorders’, ‘disease of the nervous system’, and
‘disease of circulatory system’, used the disease categories
provided by ICD to assign the ICD-9-CM and ICD-10 codes
into their respective categories, and then manually curated a
common list of phenotypes that are present in both eMERGE
and UKBB.

We excluded phenotypes based on the following criteria: 1.
Disease that was secondary to environmental or comorbid causes
such as drug or injury; 2. Childhood-onset developmental and
psychiatric disorders; and 3. Diseases mainly occurring in organs
other than heart and brain (such as the limbs). We applied a
minimum case number threshold of 200 to ensure adequate
statistical power of the association tests?8. In this study, we use
the term “nervous system disorders” to refer to mental disorders
and diseases of the nervous system??. In total, we curated 40 and
25 nervous system diseases in eMERGE and UKBB, respectively;
107 and 77 circulatory system diseases in eMERGE and UKBB,
respectively (Supplementary Data 1). These phenotypes are
categorized into seven groups of circulatory system diseases and
seven groups of nervous system disorders (Supplementary
Data 1).

Discovery and replication of univariate and multivariate
associations. After quality control, genome-wide PheWAS and
MultiPhen analyses were performed on 43,015 European-ancestry
adults and 7,629,801 common SNPs across 147 phenotypes in the
eMERGE network. A formal systematic replication analyses was
conducted in UKBB on 134,363 genetic variants that had an
exploratory p-value significance of p < 1x 10~% from analyses in
eMERGE dataset (and passed QC in the UKBB dataset). The use
of an exploratory p-value threshold such as 1x10~* enables
exploration of genetic variants beyond the most significant signals
at a genome-wide significance threshold. Other studies have
employed this strategy and it can be beneficial to identify variants
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Fig. 1 Landscape of PheWAS results. A position-to-position comparison of Phe WAS results between eMERGE and UKBB. eMERGE PheWAS was
performed genome-wide as the discovery analysis. UKBB PheWAS included the SNPs with p <1x10~4 across all tested phenotypes in eMERGE; only these
SNPs were evaluated in the replication analysis. The direction of each triangle indicates the direction of genetic effect. Colors denote various disease
groups. The assignment of ICD codes to disease groups can be found in Supplementary Data 1. The red line indicates the genome-wide significance
threshold p-value of 1x10~8. To reduce the margin induced by the extremely small p-values, we have collapsed SNPs with p-value < 1x10~9° into one

overlapping triangle indicated by an asterisk on chromosome 4 for UKBB.

that may not meet genome-wide significance in one dataset but
otherwise be potentially informative!2.

From PheWAS results for eMERGE and UKBB (Fig. 1), we
found that the top association signals from eMERGE analyses are
reproducible in the UKBB replication dataset, many of which
serve as positive controls as they were discovered in previous
studies in the literature. For instance, we observed that SNPs
located on chromosome 4q25 are significantly associated with
atrial fibrillation in eMERGE and replicated in UKBB. In
particular, we replicated a previously reported SNP rs2200733
near PIXT2 gene (eMERGE p-value: 5.898 x 10737, UKBB p-
value: 7.112x107142) that was shown to be significantly
associated with atrial fibrillation among individuals of
European-ancestry>?, We also identified SNPs near the APOE
gene at 19q13.32 to be associated with Alzheimer’s disease and
dementia; of these, we replicated a previously reported SNP,
rs429358, as our most statistically significant SNP (discovery
eMERGE p-value: 1.604 x 10774, replication UKBB p-value:
6.327 x 107°4) associated with Alzheimer’s disease?!. Similarly,
we found a previously-detected association between SNP
rs1333049 near CDKN2B-ASI (discovery eMERGE p-value:
6.016 x 10722, replication UKBB p-value: 7.982 x 10~77) and
coronary artery disease32, and found SNPs in the HLA region to
be highly associated with multiple sclerosis3>.

In the UKBB replication dataset, we observed lower p-values
(higher significance levels) for many genetic regions that showed
moderate significance (1 x 1078 <p-value<0.001) in the
eMERGE dataset. For example, SNPs on chromosome 4 that
were moderately associated with essential hypertension in the
eMERGE network demonstrated a very strong statistical
significance of association in the UKBB. Similar noticeable
association signals were observed in UKBB across the genome
(Fig. 1). Overall, the UKBB PheWAS identified 286 loci (Fig. 2:
218 + 57 + 11 = 286) from the discovery eMERGE PheWAS (out

of 35,352 SNPs that were evaluated in the UKBB replication
PheWAS) using an exploratory p-value threshold (Fig. 2).

The landscape of MultiPhen results is shown in Fig. 3. Most of
the strong association signals that were observed in PheWAS
(Fig. 1) were also significant in MultiPhen analyses. As with the
PheWAS results, MultiPhen identified previously known SNPs in
both datasets, including the previously-mentioned rs2200733
(eMERGE multi-trait joint p-value: 8.305 x 1016, UKBB multi-
trait joint p-value: 5.873 x 10782), rs429358 (eMERGE multi-trait
joint p-value: 3.137 x 10748, UKBB multi-trait joint p-value:
3.888 x 10~4%) and rs1333049 (eMERGE multi-trait joint p-value:
1.309 x 10715, UKBB multi-trait joint p-value: 6.208 x 10762).
Compared to PheWAS results, there is a lower number of
significant loci identified by MultiPhen, especially in the eMERGE
analysis (Fig. 2). One of the reasons for this observation is that the
univariate method is slightly more powerful than a multivariate
method when the genetic effects are consistent with the
phenotypic correlation?3, and the inclusion of uncorrelated
phenotypes in a model may reduce the association signal for
MultiPhen. To extract how many unique SNPs were significant in
the discovery and replication analyses using univariate (PheWAS)
and multivariate (MultiPhen) approaches, we created an UpSet34
plot (Fig. 2). For example, in eMERGE, 40 loci passed the
exploratory p-value threshold (1 x 1074) in both PheWAS and
MultiPhen analyses (Fig. 2: 29 + 11 = 40). For UKBB, there were
68 loci that passed the p-value threshold (1 x107%) in both
PheWAS and MultiPhen results (Fig. 2: 57 + 11 = 68).

We characterized the 11 loci (607 SNPs) that had statistically
significant associations with at least one phenotype in both
eMERGE and UKBB via both PheWAS and MultiPhen (Fig. 2 -
column 5 of UpSet plot). These SNPs mapped to 32 genes using
the RefSeq database®> in ANNOVAR3® (Supplementary Data 2
and Supplementary Fig. 2A). A total of 2 loci (76 SNPs) met a
Bonferroni correction for multiple testing burden (Supplementary
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Fig. 2 Comparison of the number of significant loci identified by PheWAS and MultiPhen from eMERGE and UK Biobank. The p-value threshold is
1% 10~4. The number of loci are counted when they suggest significant associations with at least one phenotype. For PheWAS, we included the SNPs when
its minimum p-value among phenotypes passed the threshold. Here, the total number of loci represents the independent loci we tested in both eMERGE

and the UK Biobank.

Fig. 2B). Pleiotropic effects of these loci were formally tested as
reported in the next section for both eMERGE and the UK
Biobank.

Formal test of pleiotropy. The formal test of pleiotropy was
conducted on the 11 loci (607 SNPs) using a p-value threshold of
1x 1078 for a selected set of phenotypes in each of the two
datasets, independently. There were 3 loci (52 SNPs) in eMERGE
and 2 loci (59 SNPs) in UKBB that showed associations with both
circulatory system diseases and nervous system disorders (Fig. 4;
details in Supplementary Data 3). We characterized the direction
of the genetic effects from the PheWAS results (Supplementary
Data 4). An illustration of identified pleiotropic relationships
among disease categories is shown in Fig. 5 (details in Supple-
mentary Data 5). We reviewed the NHGRI-EBI GWAS catalog®’
for discovered pleiotropic common SNPs, and their associated
traits relevant to our trait of interest and the direction of genetic
effects are reported in Supplementary Data 3. We also discussed

the number of cases that overlap between traits as well as the
correlation among traits in the Supplementary Note.

We identified rs157582 at chromosome 19q13.32 that
suggested pleiotropy across circulatory system diseases and
nervous system disorders from UKBB. There are 20 SNPs that
suggested pleiotropy in the region (Supplementary Data 3,
regional LD in Fig. 6). Those SNPs mapped to a region
containing the genes APOCI, APOCIP1, TOMM40, APOE, and
NECTIN2. All SNPs are associated with atherosclerotic heart
disease, Alzheimer’s disease, and dementia, while 14 SNPs are
also associated with angina pectoris and 18 SNPs are associated
with delirium. This region was found to be significantly
associated with Alzheimer’s disease in previous studies38-40,
There are 8 SNPs that have previously demonstrated associations
with cardiovascular disease risk factors such as HDL cholesterol,
LDL cholesterol, total cholesterol, and triglycerides*!-44. Only
one SNP, rs4420638, has previously been associated with
coronary artery disease*> based on our review of the NHGRI-
EBI GWAS catalog®”. Our study showed the associations of these
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value of 1x 108, To reduce the margin induced by the extreme small p-values, we have collapsed SNPs with p-value < 1x 1075 into one overlapping circle
indicated by an asterisk on chromosome 4 for UKBB.
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SNPs with additional circulatory system disease phenotypes such
as acute transmural myocardial infarction of inferior wall and
occlusion and stenosis of carotid artery. All of the SNPs
demonstrated risk pleiotropic effects across all the identified
circulatory system diseases and nervous system disorders, which
is consistent with suggested trait-related associations from
previously published studies in the GWAS catalog (Supplemen-
tary Data 3). Based on the evidence in the literature, the

chromosome 19 results are predominantly positive control
associations that confirm previous findings (thus, these are
proof-of-concept signals).

We identified locus rs10811656 (63 SNPs) at chromosome
9p21.3 that demonstrated pleiotropic associations with a wide
range of circulatory system diseases and major depressive
affective disorders from the eMERGE and UKBB (Supplementary
Data 3, regional LD in Supplementary Fig. 3A). The SNPs
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bottom plot is atherosclerotic heart disease.

mapped to the CDKN2B antisense RNA 1 region, which has long
been known as a hot spot that is associated with cardiovascular
diseases?®. We not only detected previously known SNPs
associated with cardiovascular diseases, such as rs10757278%7
and rs1333045%%, but also demonstrated a novel potential
pleiotropic effect on major depressive disorders in this region,
which was not observed in the GWAS catalog. Most of the SNPs
were found to have opposite directions of genetic effect on
circulatory system diseases and major depressive disorders
(Supplementary Data 3); an example of antagonistic pleiotropy.
For SNPs previously known to be associated with circulatory
system diseases, the direction of genetic effects was consistent
with previous studies in the GWAS catalog (Supplementary
Data 3).

We characterized two loci rs9273532 and rs7767167 that have
suggested pleiotropy on chromosome 6 near the HLA complex
region at 6p21.3 in eMERGE (Supplementary Data 3, regional LD
in Supplementary Fig. 3B, C). The genetic variants near locus
rs9273532 showed novel pleiotropic associations with athero-
sclerosis of arteries of extremities, multiple sclerosis, and
Parkinson’s disease (Supplementary Data 3), none of which have

been reported in the GWAS catalog (though there are other SNPs
in the HLA region that have previously been associated with
multiple sclerosis?*>%). SNPs near the rs9273532 locus demon-
strated opposite directions of effect on circulatory system diseases
and nervous system disorders (Supplementary Data 3). Similarly,
there are 9 SNPs that were identified near rs9273532 locus
(LOC101929163/NOTCH4 region) in the UK Biobank, which are
in high LD, have opposite directions of effect on essential
hypertension and multiple sclerosis, which also has not been
characterized before in the GWAS catalog. SNPs near the
rs7767167 locus showed the same direction of effect (risk effect
of tested allele) on pulmonary embolism and infarction and
multiple sclerosis.

Finally, we also identified the rs16998073 locus (3 SNPs) near
PRDMS8/FGF5 at chromosome 4q21.21 that are associated with
essential hypertension and severe depressive episode with
psychotic symptoms from UKBB, with a risk genetic effect on
both diseases (Supplementary Data 3, regional LD in Supple-
mentary Fig. 3D). All SNPs were suggested in the studies from the
GWAS catalog to increase the risk of hypertension or related
traits>1->¢ (positive controls in our study), but we did not find any
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evidence that they increase the risk of severe depressive disorders
in the literature, thus potentially novel pleiotropy.

Discussion

Many clinical and epidemiological studies have suggested the co-
occurrence of circulatory system diseases and nervous system
disorders. However, the genetic contributions to this relationship
are largely unknown. To bridge this knowledge gap, we have
characterized pleiotropy across these two broad disease categories
by applying an effective analytical framework on two biobank
cohorts: eMERGE and UKBB. Even though the prospective
UKBB cohort has a large overall sample size, the case number for
specific disease phenotypes is overall comparable to the medical
eMERGE Network in most scenarios (Supplementary Data 1).

One of the advantages of our analytical design is the applica-
tion of standardized univariate PheWAS and multi-trait joint
analyses on two independent large datasets. As the availability of
summary statistics from the GWAS catalog continues to increase,
our ability to compare the summary statistics from univariate
analyses, which is the commonly used approach to characterize
pleiotropy, will continue to grow. However, multivariate methods,
which have demonstrated generally greater power in simulation
scenarios®’, have not been widely applied to natural biomedical
datasets to study pleiotropy among disease states. The primary
reasons are that most multivariate analyses in general are char-
acterized by the following: 1. Most require individual-level data; 2.
Are computationally intensive, and 3. Only test a null hypothesis
that a variant affects none of the phenotypes examined (rather
than identifying which subset of phenotypes are associated). We
have addressed these challenges by obtaining individual-level
data, splitting the genotype file into small chunks and running the
analyses in parallel, and we have conducted a formal test of
pleiotropy to pinpoint the specific associated phenotypes. We
have applied both univariate PheWAS and multi-trait joint ana-
lyses as complementary methods to provide supporting evidence
for our findings and identify a smaller set of SNPs to explore a
formal statistical test of pleiotropy. Subsequently, there are mul-
tivariate methods, such as MTAG!¢ or MultiABEL8, that per-
form multi-trait analysis using GWAS summary statistics in a
more computationally efficient manner. However, some of the
summary-statistics based methods treat sample overlap as a
nuisance and correct for it, while also being unable to consider
scenarios where an individual has multiple phenotypes diagnosed.
This is an additional motivation for using a method, like Multi-
Phen, that handles the scenario when a phenotype has been
collected for the same set of individuals - e.g. EHR linked bio-
bank datasets. Summary-statistics based methods are generally
computational efficient and preserving data privacy, while the
accuracy or precision is often reported to be lower compared to
individual-level data based methods?>°. Since we had access to
individual-level data, we chose to use MultiPhen for our multi-
trait analyses.

We characterized 11 loci (607 SNPs) that were identified by
both PheWAS and MultiPhen methods in the discovery analyses
eMERGE and replicated in UKBB (Supplementary Data 2). The
SNPs in these 11 loci were associated with at least one tested
phenotype. However, the definition of pleiotropy requires a
genetic variant to influence more than one phenotype. Therefore,
we have identified the precise set of phenotypes associated with a
SNP via the sequential multivariate method (a formal test of
pleiotropy). To assist the interpretation of pleiotropy, genetic
effect sizes were collected from univariate PheWAS results.
Additionally, the evaluation of the proportion of case overlap and
conditional analyses on each identified phenotype set indicate
that our discovered pleiotropy signals are likely genetic

associations of potential pleiotropy rather than due to comor-
bidity between circulatory system diseases and nervous system
disorders (see Supplementary Note and Supplementary Fig. 6).

SNPs that were identified on chromosome 19 were previously
known to increase the risk of Alzheimer’s disease and cardio-
vascular disease risk factors from GWAS catalog®® (proof of
concept findings). We have identified consistent pleiotropic
effects in this region with multiple cardiovascular disease states
such as atherosclerotic heart disease, left ventricular failure,
occlusion and stenosis of carotid artery, and acute transmural
myocardial infarction. The associations with atherosclerotic heart
disease, Alzheimer’s disease and dementia were found in both
combined analyses and sex-stratified analyses (see Results and
Supplementary Data 5-7). The decreased cerebral blood flow due
to atherosclerosis is known to be associated with pathogenesis of
Alzheimer’s disease®!l. Roher et al. found increased cerebral artery
occlusion and stenosis as a consequence of severe atherosclerotic
heart disease in Alzheimer’s disease from 54 consecutive autopsy
cases. Moreover, reducing cardiovascular disease risk offers
opportunities for intervention for Alzheimer’s disease®. Under-
standing the disease mechanisms of pleiotropic genes, like this
region on chromosome 19, will inform disease treatment options.

We observed an association based on SNPs near CDKN2B-AS1,
which is associated with cardiovascular diseases, with the opposite
genetic effect on the phenotype of severe depressive episode
without psychotic symptoms. Although we did not identify any
significant associations between CDKN2B-ASI and major
depressive disorders in the GWAS catalog, a recent bivariate scan
study suggested that the genetic variants near CDKN2B-AS1 have
the opposite effect on type 2 diabetes and major depressive
disorders®3; this confirms our findings. A recent study on 2,743
individuals suggested that coronary artery disease and obesity
occur in patients with depression treated by selective serotonin
reuptake inhibitors (SSRIs, antidepressant)®*. The potential
antagonistic pleiotropic effect of CDKN2B-ASI might explain the
occurrence of coronary artery diseases in patients treated for
depression.

We have identified novel pleiotropy signals based on genetic
variants near the HLA locus that are associated with athero-
sclerosis of arteries of extremities, multiple sclerosis, and Par-
kinson’s disease, with opposite genetic effects on the circulatory
system and nervous system diseases. Our discovered SNP asso-
ciations have not been reported before. The HLA gene region,
though, has been previously associated with multiple sclerosis and
Parkinson’s disease®%. Moreover, it has been recognized that
inflammation is involved in atherosclerosis and coronary artery
disease®”-98, thus highlighting the possible importance of auto-
immune mechanisms and HLA polymorphisms. The SNPs near
the HLA (NOTCH4; LOC101929163) region demonstrated asso-
ciation between essential hypertension and multiple sclerosis,
with opposite direction of genetic effect. The association was also
seen in the female-only analyses (see Supplementary Note). We
have not identified associations of our identified SNPs with
hypertension or related traits and multiple sclerosis from the
GWAS catalog, although SNP rs9267992 has been suggested to be
associated with multiple sclerosis by one early GWAS study on
978 cases and 883 group-matched controls®®.

The SNPs we report near PRDMS8/FGF5 on chromosome
4 showed pleiotropic risk associations with essential hypertension
and severe depressive episode with psychotic symptoms. While
these variants have previously been associated with hypertension
or related traits such as diastolic and systolic blood pressure (per
the GWAS catalog), they have not, to our knowledge, been
associated with depressive disorders. Previous epidemiological
studies have consistently shown an increased risk of hypertension
in patients with depression and vice versa®-71. Our observed
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novel pleiotropic associations might contribute to the explanation
of the relationships between these diseases.

We acknowledge that we only characterized pleiotropic com-
mon variants in individuals of European-ancestry due to statis-
tical power considerations. Future research on rare genetic
variants as well as both common and rare variants in other
ancestries will shed more lights on the shared biology between
these classes of diseases. We also acknowledge that our manu-
script reported statistical pleiotropy, which might include spur-
ious pleiotropy which occurs when one tag SNP captures multiple
casual variants or genes in high LD%, such as can be seen in the
HLA region. It is challenging to distinguish it from biological
pleiotropy and caution should be taken into consideration of the
possible underlying mechanisms driving the potential pleiotropy.
Another limitation of our analyses is that we only tested a set of
phenotypes for the sequential multivariate model using a uni-
variate p-value < 0.01 in each dataset, which resulted in different
phenotypes tested between datasets and thus the formal test of
pleiotropy was not an exact replication. The reason behind the
selection of phenotypes is the drastically increased computational
time as the number of associated phenotypes increases. For
example, SNP rs1333046 that is associated with 20 phenotypes
detected by sequential multivariate model in UKBB costs 587 h of
CPU time. It currently would not be feasible for us to conduct
sequential multivariate analyses for over 100 phenotypes. Future
development of more computationally efficient methods would
greatly facilitate the detection of pleiotropy.

We have characterized pleiotropy across circulatory system
diseases and nervous system disorders by applying a combination
of univariate, multivariate, and sequential multivariate methods
on eMERGE and UKBB datasets. Our results have provided new
insights into the genetics underlying the relationships between
these disease categories, which may assist in future disease pre-
vention and treatment. Our integrative analytical framework can
also be applied to other disease categories to study pleiotropy
comprehensively.

Methods

This study was conducted under all relevant ethical regulations. UK Biobank was
approved under application ID 32133. eMERGE study was approved by the
eMERGE Network Publications Committee.

Biobank datasets. The eMERGE Phase III dataset contains high-density genotype
data for 99,185 subjects coupled with longitudinal electronic health records
(EHRs). Subjects were genotyped across 78 genotype array batches and imputed to
~40 million variants’2. Details of the imputation have been discussed elsewhere”2.
Among 12 contributing study sites across the United States, we have included six
adult study sites in this study: Marshfield Clinic Research Foundation, Kaiser
Permanente/University of Washington, Vanderbilt University Medical Center,
Mayo Clinic, Geisinger, and Partners Healthcare. The eMERGE dataset was used
for discovery analysis.

UKBB cohort release version 2 has deep genetic and phenotypic data on
~500,000 individuals across the United Kingdom. Individuals were genotyped on
two similar types of genotype array across 106 batches and imputed to 96 million
variants”3. eMERGE network and UKBB have the same genome build, GRCh37/
hg19. The replication analyses in UK Biobank was performed on the statistically
significant SNPs from eMERGE (p < 10~ described more below) that were also
present and passed QC in the UK Biobank dataset.

Phenotype definitions. The phenotypes were defined based on the International
Classification of Diseases (ICD) diagnosis codes extracted from the EHR. Since the
disease coding practices and regulations differ between the US and the UK, the
composition and distribution of diagnosis codes are different. To maximize the
phenotypic information, we have accordingly applied different, yet complementary
strategies to the two datasets.

Since ICD-10 codes have added specificity compared to ICD-9 codes, we chose
to convert ICD-10 codes to ICD-9 codes. For UKBB, we have only included
individuals who had ICD-10 occurrences to retain its original collection of disease
codes and because fewer data were available for ICD-9 codes in the UKBB and
during a more remote time period than the ICD9-CM codes found in the eMERGE
dataset. Because the disease diagnosis codes in UKBB were curated and represented

by the presence or absence of a certain ICD codes, this information was used to
define case status; this means that if a person has a certain ICD-10 code present in
the EHR, that person would be assigned as a “case” for that phenotype. If the
person did not have that diagnosis code, he/she would be assigned as a “control”.
As for eMERGE, we have converted ICD-10-CM to ICD-9-CM codes using a
combination of general equivalence mappings’# and manual review. Because
eMERGE offers longitudinal measures on diagnosis codes, we have applied a “rule
of three” on ICD-9 codes to define case status. This means that if a person had
three or more occurrences of a certain ICD-9 code in their EHR on different clinic
visits, that person would be assigned as a “case”. If a person had either one or two
occurrences of a particular ICD-9 code, an “NA” status would be assigned. Finally,
if a person did not have any occurrence of a particular ICD-9 code, a “control”
status would be assigned for that phenotype. This approach was used to assign case
status for all available phenotypes. One general caveat of EHR data in the eMERGE
dataset is that the absence of certain disease diagnosis code for some individuals
does not equal the absence of the disease, as the patients might get the medical care
at another institution thus may not present in our datasets. This would bias results
toward the null, thus we don’t expect that this impacted our study in a
significant way.

Genotype quality control. For the eMERGE dataset, we dropped imputed geno-
type array batches with a mean R-squared of imputation score < 0.3 as well as
batches that had fewer than 50 samples’2. We also excluded genetic variants with a
mean R-squared of imputation score <0.3 calculated across batches. We used a
combination of self-reported European ancestry and principal component analyses
to extract individuals of European ancestry for inclusion. We applied genotype call
rate and sample call rate of > 99% and selected genetic variants with a minor allele
frequency (MAF) > 0.01. We excluded SNPs with Hardy-Weinberg Equilibrium
exact test p-value below 1 x 10710, We dropped related individuals that were
second-degree relatives or closer with pi-hat larger than 0.25. Since our phenotypes
of interest are the late-onset nervous system and circulatory system diseases, we
selected European ancestry adult individuals only with age >25 years old. After QC,
there are 43,015 individuals and 7,629,801 SNPs included for analysis. We gen-
erated principal components (PCs) for the final set of individuals using high
quality, common SNPs (with MAF > 0.05 and R-squared > 0.7)72 and adjusted for
the first two PCs in all subsequent association analyses based on the proportion of
variance explained by the PCs. The projection of the first two PCs and the pro-
portion of variance explained by the PCs are provided in Supplementary Fig. 4.

For quality control in the UKBB, we largely followed the protocols of a previous
publication’? and utilized information provided as part of the data release. We
excluded poor quality individuals according to previous publication”3. We dropped
related individuals that were second-degree relatives or closer with pi-hat >0.25.
We have also removed individuals who had sex mismatches between self-reported
and genetically inferred sex. Genetic variants with an imputation info score <0.3
and MAF < 0.01 were excluded. European ancestry individuals were extracted using
a combination of self-reported white British ancestry and principal component
analyses”3. Since age at recruitment for the UKBB cohort is 40-6973, we did not
apply any age filter. After quality control, there were 377,921 individuals and
9,505,767 SNPs available for analysis. After applying the above-described
phenotype filtering, there were 295,423 individuals from UKBB that had ICD-10
codes documented in their EHR data. This was the final sample size for UKBB used
in all subsequent analyses. We used the first 20 PCs that were provided by the data
release for the association analyses’>.

Association analyses

PheWAS. We performed genome-wide PheWAS for 43,015 eMERGE individuals
and 7,629,801 SNPs across a total of 147 circulatory system diseases and nervous
system disorders via PLINK”> v1.9 software. Logistic regression models were
adjusted by age, sex, eMERGE study site, and the first two PCs. There were about 1
billion association tests conducted in this genome-wide PheWAS. Out of the 147
phenotypes evaluated, nine phenotypes did not converge using PLINK due to the
small case number per study site. To address this, we performed the same logistic
association tests for those nine phenotypes using PLATO?®. The larger number of
default iterations in PLATO successfully resolved the non-convergence issue. The
loci are defined using LD pruning in PLINK with parameter “-~indep-pairwise 100
5 0.1”. From approximately 1 billion association tests, 11,822 loci (145,131 SNPs)
were statistically significant with a p-value < 1 x 104 from either univariate and/or
multivariate analyses in eMERGE; these SNPs were selected for replication in
UKBB. From this set of SNPs, we performed PheWAS on 10,472 loci (134,363
SNPs) that passed quality control in the UKBB dataset (SNPs were either dropped
during QC or do not present in UKBB). To address the ambiguity of SNPs with
MAF near 0.5 in each of the two datasets, we have flipped the direction of genetic
effect sizes for 552 SNPs in UKBB that had (a) MAF > 0.4 and (b) reference and
alternative alleles switched in eMERGE network. In the UKBB PheWAS, the fol-
lowing covariates were included for adjustment: age, sex, genotyping array, and the
first 20 PCs. For UKBB we also re-ran the associations with Townsend Deprivation
Index (TDI) as an additional covariate; the results did not change and since we do
not have TDI for eMERGE, we did not include it in the results reported.
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Multi-trait joint analysis. For multi-trait joint analyses, we used the MultiPhen?3 R
package to perform our analyses. MultiPhen tests the linear combination of phe-
notypes by treating SNPs as response variables, and phenotypes as predictor
variables. It uses a proportional odds regression model to test for statistical asso-
ciation. As was done for the PheWAS described above, we performed a genome-
wide MultiPhen analysis for eMERGE. The MultiPhen analyses in UKBB were
performed the same set of 134,363 SNPs (see PheWAS Methods section). The same
set of covariates described in PheWAS Methods section were used in the Multi-
Phen analyses. All of the phenotypes (including both circulatory and nervous
system diseases) have been jointly analyzed in the MultiPhen model. Because the
current version of MultiPhen is not able to deal with NA phenotypes, we imputed
NA with 0.5 for the eMERGE phenotypes. The presence of an NA indicates that a
person had at least one instance of the ICD code in their EHR. This leads to a
greater likelihood that the person is a case rather than a control. In a previous pilot
study, we performed a sensitivity analysis on significant SNPs to evaluate this
imputation method in eMERGE; we found that it retained the same level of sta-
tistical significance as imputing to 0 or 177. Thus, based on our previous study, we
kept the imputation of 0.5 for NA. The time and memory for running MultiPhen
increases with the sample size and the number of phenotypes. In order to run
analyses efficiently, we parallelized our operations by dividing the genome into
subset files (2000 variants per file for eMERGE and 500 variants per file for UKBB).

Sequential multivariate analysis. To evaluate which association show evidence of
pleiotropy, the next step in our study was to perform a formal test of pleiotropy.
We selected the sequential multivariate analysis using the ‘pleio’ R package?’ to
perform this test for pleiotropy. ‘Pleio’ extended the multivariate analysis frame-
work to sequentially test the hypothesis that k + 1 traits are associated with the
genotype given the null that k traits are associated?’. It characterizes the exact traits
that are associated with the SNP while accounting for the correlation among the
traits. Note that the alternative hypothesis for the general multivariate framework is
that there is at least one phenotype being associated with the genotype, i.e., we
would not know the exact associated traits. One of the limitations of the method is
that it does not provide individual genetic effect estimates for each phenotype, thus,
we utilized the genetic effect estimates from the PheWAS of each corresponding
phenotype as our interpretation of the genetic discovery (such as in Fig. 4). We
have conducted sequential multivariate analysis on a set of 607 SNPs. This set was
derived from the list of SNPs that met a p-value threshold of 1 x 10~% in eMERGE
PheWAS and/or MultiPhen AND replicated in UKBB at a p-value threshold of
1% 10~% in the UKBB PheWAS and/or MultiPhen. The same set of covariates have
been adjusted as described in the PheWAS Methods section. Since the number of
sequential tests increases drastically as the number of associated phenotypes
increases, we have performed our analyses on a subset of selected phenotypes. We
selected this set of phenotypes based on the univariate PheWAS analysis results.
Each phenotype that had a PheWAS p-value < 0.01 for each SNP was selected for
the sequential multivariate test. The set of phenotypes tested can be different
between the two datasets due to differences in univariate p-value for each SNP-
phenotype pair. The p-value significance threshold for rejecting the null hypothesis
in the sequential multivariate model was set at 1 x 1078, the same as the genome-
wide significance level. This threshold was chosen due to the same number of
association tests being potentially performed using a general multivariate frame-
work and in a univariate GWAS study. In other words, the output phenotypes of
‘pleio’ would need to have a multivariate joint significance of <1 x 1078 to reject the
null hypothesis.

Conditional analyses. We performed conditional analyses on the whole set of
phenotypes that are associated with each identified pleiotropic SNP (see Results
section). We evaluated all pairwise combinations of the phenotypes, with one as the
dependent variable while another one as independent variable. Specifically, we
applied logistic regression on dependent variable while treating another phenotype
as an independent variable, along with previously mentioned covariates. We
evaluated the impact of adjusting for another phenotype on the significance of the
SNP by measuring the log odds ratio of the p-value from two events: conditional

analysis and independent analysis (without adjusting for another phenotype). The
P

form of log odds ratio is log,, (%), where p. denotes the p-value from the
(=

conditional analysis and p denotes the p-value from the independent analysis. We
plotted the mean of log odds ratio (across SNPs in the same region) in heatmap,
where the phenotype on each row denotes the dependent variable and each column
denotes the phenotypes that were being adjusted in the conditional analysis
(Supplementary Fig. 5). When the log odds ratio deviates from zero, it suggests that
adjusting for that particular phenotype (independent variable) changes the sig-
nificance of the association with the other phenotype (dependent variable), thus
suggesting that the association (for certain SNP) between one phenotype is related
to another phenotype. On the other hand, if the value is close to zero, it’s likely that
the SNP is independently associated with both phenotypes rather than affect one
trait through influencing the other one.

Case overlap calculations. We obtained the number of overlapping cases between
pairwise phenotypes of identified pleiotropy. Since the case sample size varies

among phenotypes due to different disease prevalence, we plotted the proportion of
overlapping cases, calculated as the number of overlapping cases divided by the
total case sample size. We demonstrated this distribution in heatmap, where the
phenotype in the row refers to the total case sample size used as the denominator
when calculating the proportion (Supplementary Fig. 5).

Sex-stratified analyses. The rationale of sex-stratified analyses is the same as the
combined analyses except that we stratified the analyses by gender in the eMERGE
and UKBB. There are 22,129 female and 20,886 male individuals in the eMERGE;
there are 161,296 female and 134,127 male individuals in the UKBB. We performed
PheWAS followed by sequential multivariate analyses to characterize pleiotropy.
The covariates that were adjusted were the same as before except that ‘sex” was
excluded. The p-value threshold was also the same: the tested phenotypes in
sequential model were selected using a PheWAS p-value of 0.01, and the p-value
threshold for sequential multivariate testing is 1 x 10~8, We did not apply case
number filtering in sex-stratified analyses.

Data visualization. The Hudson R package’®7% was used for comparing associa-
tion results from eMERGE and UK Biobank (Figs. 1 & 3). The Venn diagram
(Fig. 2 and Supplementary Fig. 2B) was created by UpSetR34. The demonstration of
pleiotropy among disease categories were presented in circos plots® (Fig. 5 and
Supplementary Fig. 5). Regional LD plots were generated by locuszoom3!. The
heatmap were generated using heatmap.2 function in ‘gplots’ R package$2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

This project is under UK Biobank application ID 32133. The eMERGE data have been
deposited in the dbGaP database under accession code phs001584.v1.p1 [https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000360.v3.p1]. The access
of UK Biobank and eMERGE can be obtained by application. The raw biobank data are
protected and are not available due to data privacy laws. The summary statistics
generated from eMERGE and UK Biobank in this study are provided in the
Supplementary Data 4.
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