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Water quality in surface bodies remains a pressing issue worldwide. While some regions have rich water
quality data, less attention is given to areas that lack sufficient data. Therefore, it is crucial to explore
novel ways of managing source-oriented surface water pollution in scenarios with infrequent data
collection such as weekly or monthly. Here we showed sparse-dataset-based prediction of water
pollution using machine learning. We investigated the efficacy of a traditional Recurrent Neural Network
alongside three Long Short-TermMemory (LSTM) models, integrated with the Load Estimator (LOADEST).
The research was conducted at a river-lake confluence, an area with intricate hydrological patterns. We
found that the Self-Attentive LSTM (SA-LSTM) model outperformed the other three machine learning
models in predicting water quality, achieving Nash-Sutcliffe Efficiency (NSE) scores of 0.71 for CODMn and
0.57 for NH3N when utilizing LOADEST-augmented water quality data (referred to as the SA-LSTM-
LOADEST model). The SA-LSTM-LOADEST model improved upon the standalone SA-LSTM model by
reducing the Root Mean Square Error (RMSE) by 24.6% for CODMn and 21.3% for NH3N. Furthermore, the
model maintained its predictive accuracy when data collection intervals were extended from weekly to
monthly. Additionally, the SA-LSTM-LOADEST model demonstrated the capability to forecast pollution
loads up to ten days in advance. This study shows promise for improving water quality modeling in
regions with limited monitoring capabilities.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Surface water is essential for global biogeochemical cycles
related to environmental health and humanwell-being [1,2]. Due to
the expansion of human activities (e.g., urbanization, agriculture,
and dam construction), the impaired water quality of various sur-
face water bodies (e.g., rivers and lakes) has been a major concern
worldwide [3e5]. Many lakes and river networks are directly
connected, affecting the accumulation and blend of pollutants in
surface water bodies [6,7]. River-lake systems comprise a mosaic of
ater Resources Engineering
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lotic and lentic landscapes [8,9]. The mass exchange of dissolved
constituents, sediment, and other loads between rivers and lakes is
significantly influenced by the river-lake flow interactions within
the system [10,11]. Compared with relatively stable lakes or rivers,
the variation of pollution loads at the river-lake confluence is more
complicated owing to the drastic hydrologic exchange regimes
[12,13]. Therefore, it is challenging tomodel the river-lake pollutant
load exchange for better-integrated surface water quality man-
agement [7,14].

Many mature hydrodynamic and water quality models can
simulate and predict the advection and diffusion of pollutants un-
der various complex flow regimes [15]. These process-based
mechanistic models often require substantial parameter calibra-
tion work and detailed topographic data that are difficult to obtain
[16e18]. In recent decades, machine learning has shown notable
success due to its cost-effectiveness, robustness, high accuracy, and
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Fig. 1. The distribution of the monitoring stations in Dongting Lake and the Yangtze
River. Daily streamflow and weekly water quality were measured at each monitoring
station, and the river-lake exchange loads were measured at the Chenglingji Station.
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superiority in nonlinear problems, making it a powerful alternative
to traditional water quality modeling techniques [19e22].
Increased frequency of machine learning research has been found
in water quality applications of rivers and lakes [23e27]. Long
short-term memory (LSTM), a variant of recurrent neural network
(RNN), stands out in water quality modeling with architectural
advances in sequence learning [28e30]. Recent work has shown
that LSTM behaves well in many aspects, such as chlorophyll con-
centration prediction for algal management [31,32], water quality
classification [33], and general water quality parameters or pollu-
tion loads simulation [34e36].

Machine learning is a data-driven approach that usually re-
quires many data to train parameters for adequate generalization
performance [30,37]. However, collecting and analyzing water
quality samples is costly and commonly requires significant work
compared to streamflow, which can be monitored on a daily-to-
minute scale [35]. In many undeveloped regions or small and
medium-sized rivers in the world, water quality data are typically
sparse, monitored at a low frequency (e.g., monthly and weekly),
and may even be partially missing owing to technology, cost,
environmental conditions, or man-made mistakes [38e40]. Previ-
ous research on machine learning (e.g., LSTM) modeling of water
quality was mainly focused on sufficient-data regions with well-
equipped monitoring stations that can obtain continuous high-
frequency data but less on insufficient-data regions with sparse
water quality measurement [22]. For example, most studies
employing LSTM are based on finer temporal scales, including in-
tervals of 15 min [41], 1 h [32], and daily observations [29,31,34,36].
The application of weekly or monthly datasets is restricted to water
quality classification or evaluation, as the sparsity of these data
presents a significant challenge for water quality prediction [26,33].
A few studies have employed trend-decomposition mathematical
methods for monthly-scale autoregressive prediction [110]. How-
ever, the autoregressive approach ignores upstream pollutant
sources (i.e., boundary conditions). This limitation makes it difficult
to apply to various projects (e.g., sudden pollution accidents, best
management practices, pollution reduction scenario, and dam
regulation) that require source-sink or upstream-downstream
pollution modeling [113,114]. The potential of machine learning
methods, like LSTM, for source-oriented surface water pollution
control with sparse and partially missing data, remains to be better
understood, especially in large water bodies with complex flow
regimes.

Here, we proposed combining LSTM models and the load esti-
mator (LOADEST) to model the pollution load with sparse water
quality measurement. The major objectives of this paper are to (1)
verify the effectiveness of the LSTM models combined with
LOADEST in pollution load modeling with sparse water quality
data; (2) test the application potential of the LOADEST-based ma-
chine learningmethodswith varyingwater quality sparsity; and (3)
explore the pollution load forecasting ability with lead-time days
using the optimal LSTM-LOADEST model. We conducted a case
study in Dongting Lake, which connects to the Yangtze River, the
largest river in China. We attempted to take advantage of machine
learning and LOADEST for sparse water quality modeling, thereby
facilitating the Yangtze River simulator that China is developing
now [42,111].

2. Material and methods

2.1. Study area and data collection

Dongting Lake is the second largest freshwater lake naturally
connected to the Yangtze River of China. The area of Dongting Lake
covers about 2600 km2, and its total volume is approximately
2

2.2 � 1010 m3. Dongting Lake (28�300e29�430 N and
111�400e113�100 E) has a subtropical monsoon climate with drastic
rainfall variation and distinct seasons. The annual precipitation
ranges from 1100 to 1400mm, and the annual average temperature
is about 14e18 �C [43,44]. There are four basin-wide tributaries of
Dongting Lake, namely the Xiang, Zi, Yuan, and Li Rivers. Their
streamflow and water quality are measured at Xiangtan, Taojiang,
Taoyuan, and Shimen stations, respectively (Fig. 1). In addition to
the water from the tributaries, part of the Yangtze River water
enters the lake through three main inlets, and then flow back into
the Yangtze River via the Chenglingji outlet, a pivotal river-lake
confluence located at 415 km downstream from the Three Gorges
Dam (TGD) [45]. The unique hydrology, climate, and environmental
conditions make Dongting Lake an important international
wetland under the Ramsar Convention, providing various habitats
for flora and fauna [43,46,47]. Typical submerged plants with the
widest distribution are Potamogeton malaianus, Hydrilla verticillata,
Vallisneria natans, and Ceratophyllum demersum, which are impor-
tant tools for lake ecosystem restoration [48].

With the dual effects of the four tributaries in the Dongting Lake
basin and the Yangtze River, a complicated river-lake regime has
formed near Chenglingji [49]. Since the mass exchange of pollution
loads at the Chenglingji Station was impacted by both the lake and
the river, we used the hydrological and water quality data from four
stations (Xiangtan, Taojiang, Taoyuan, and Shimen) at the
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tributaries of Dongting Lake and one (Nanjinguan) on the Yangtze
River as model inputs to predict the pollutant output at the river-
lake confluence (Fig. 1). The model input-output structure and
the upstream-downstream relationship are illustrated in Fig. S1. As
permanganate index (CODMn) and ammonia nitrogen (NH3N) were
key water parameters that could quickly reflect the pollution load
condition for government administration to issue water quality
early warning [26], we took these two indicators as the main
research objects. The weekly CODMn and NH3N concentrations of
the six sites in Xiangtan, Taojiang, Taoyuan, Shimen, Nanjinguan,
and Chenglingji from June 2012 to December 2018 were obtained
from the China National Environmental Monitoring Centre (http://
www.cnemc.cn/). There were only 293 weeks of data out of 344
weeks, and the missing data were concentrated in 2017 and 2018
(Fig. S2). The daily streamflow data of these six sites during the
same period were available from the official website of the Hubei
Water Resources Department (https://slt.hubei.gov.cn/sjfb/).

2.2. The load estimator

Developed by the United States Geological Survey, the Load
Estimator (LOADEST) is a statistical method to estimate site-specific
constituent loads [50e52]. It uses continuous streamflow data and
discrete constituent concentrations to establish a regression model
to interpolate and supplement the entire constituent load time
series [53]. The LOADEST program includes several predefined
models with different forms of the regression equation. Also, it
provides users with an automated model selection option based on
Akaike information criteria (AIC) to pick the best form [51,54,55].
Taking the most generalized form as an example to explain the
working principle, the model can be expressed as

lnðLÞ¼ a0 þ
XN
i¼1

aiXi (1)

where L is an estimate of instantaneous load; a0 and ai are model
parameters that can be calibrated for different sites; Xi is an
explanatory variable, and N is the total number of explanatory
variables [51,52,56].

In this study, the daily CODMn and NH3N loads were computed
from the weekly water quality data using the LOADEST program;
that is, the water quality data were expanded and downscaled
temporarily. The adjusted maximum likelihood estimator (AMLE)
was adopted to calibrate the LOADEST model, and AMLE's coeffi-
cient of determination was used to test the model performance
[57,58]. Among the six sites, the determination coefficients ranged
from 0.73 to 0.88 for CODMn, and from 0.55 to 0.79 for NH3N
(Table S1). These results indicate that applying the LOADEST pro-
gram was feasible and reasonable.

2.3. Machine learning methods

Machine learning is a burgeoning data-driven approach to
artificial intelligence that includes models of various structures.
Among many machine learning models, RNN is commonly used for
hydrological and water quality sequence problems because of its
memory and parameter-sharing characteristics [37,59]. Traditional
RNN consists of an input layer, an output layer, and one or more
hidden layers. RNN was used as a benchmark model in this study.

2.3.1. Long short-term memory
LSTM is a variant that solves the problem of vanishing or

explosive gradients to learn long-term dependencies between
model inputs and outputs for time-series tasks [60,61]. Unlike
3

simple RNNs with one state variable, an LSTM layer comprises two
states (i.e., cell and hidden states) and a series of sequentially
connected memory cells [62]. Each memory cell mainly contains
three gates (i.e., input, forget, and output gates) and other small
units [63]. Such characteristics of LSTM are generally considered
suitable for exploring the implicit internal relationships of
nonlinear systems with hysteretic behavior in nature [64,65]. The
structure of data transfer and the steps of model running are
illustrated in Fig. 2a. The detailed algorithm for LSTM described
above can be expressed as follows [66,67]:

Input gate : it ¼ sðWixxt þWihht�1 þ biÞ (2)

Forget gate : ft ¼ s
�
Wfxxt þWfhht�1 þ bf

�
(3)

Output gate : ot ¼ sðWoxxt þWohht�1 þ boÞ (4)

Cell state : ct ¼ ft 1 ct�1 þ it1tanhðWcxxt þWchht�1 þ bcÞ (5)

Hidden state : ht ¼ ot1tanh ðctÞ (6)

Output : yt ¼Whyht þ by (7)

where the subscript t and t � 1 denote the time step for time-
dependent variables; W and b are the weight matrices and bias
vectors for calibration; xt is the input and yt is the predicted output;
1 is Hadamard product (i.e., element-wise multiplication); s is the
sigmoidal activation function.

2.3.2. Bidirectional long short-term memory
In time series tasks, sometimes the output at the current

moment is jointly determined by the previous state and the sub-
sequent state, which may make it more accurate, so bidirectional
RNN is proposed [68]. Bidirectional long short-term memory (Bi-
LSTM), based on the concept of bidirectional RNN [69], is developed
to encode backward-to-forward information and better capture
bidirectional dependencies. Because the diffusion and dispersion of
pollutants take time, a latent relationship may exist between the
pollution loads of consecutive days. Bi-LSTM could better capture
this relationship to improve modeling performance [70]. A Bi-LSTM
layer consists of a forward LSTM layer and a backward LSTM layer
(Fig. 2b). At each time step, the outputs of the forward and back-
ward layers are saved, and the final output of this Bi-LSTM layer is
obtained by combining them [70,71]. As a result, each node in the
output layer contains complete bidirectional contextual informa-
tion [72]. The mathematical expression is as follows:

yt ¼W
h
!

y
h
!

t þW
h
)

y
h
)

t þ by (8)

where h
!

t and h
)

t denote the outputs or hidden states of the for-
ward LSTM layer and backward LSTM layer, respectively; W

h
!

y
and

W
h
)

y
are the corresponding weight matrices, and by is the bias

parameter of the Bi-LSTM layer.

2.3.3. Self-Attentive long short-term memory (SA-LSTM)
Although LSTM can partly alleviate the long-term dependence

problem in RNN, the attention mechanism is introduced in various
machine learning tasks to further improve the information
extraction ability [73,74]. The self-attention mechanism is a variant
of the attention mechanism, and it reduces the dependence on
external information and is better at capturing the internal

http://www.cnemc.cn/
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Fig. 2. The structure of three long short-term memory (LSTM) models: a, traditional LSTM; b, Bidirectional LSTM; c, Self-Attentive LSTM. The subscript t denotes the time step for
time-dependent variables; xt is the input and yt is the predicted output; it , ft , ot are the input, forget, and output gates; ct and ht are the cell and hidden states; s is the sigmoidal
activation function; h

!
t and h

)

t denote the hidden states of the forward LSTM layer and backward LSTM layers, which is similar for cell states c!t and c
)

t ; Q , K , and V are three
feature vectors called query, key, and value; dk is the dimension of the feature vector K; WQ , WK , and WV are the projection matrices; a is the self-attention weight.
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correlation of data or features. It allows inputs to interact and
determine what they should be paying more attention to. When
using LSTM for pollution load prediction, its hidden nodes extract
various features of upstream pollution sources. However, LSTM
cannot recognize which node is significantly different from the
others (e.g., the one that contains the most information of the
peak), whereas the self-attentionmechanismmay assist in focusing
more on these critical nodes. Suppose H ¼ fh1;h2;/;htg is the
hidden state vector of the last LSTM layer. The self-attention layer
converts the hidden state vector to three feature vectors: query Q,
key K; and value V , respectively [75].

Q ¼H �WQ (9)

K ¼H �WK (10)

V ¼H �WV (11)

where WQ , WK and WV are the projection matrices. Note that Q in
self-attention is a transformation of its own input vector, as shown
in equation (9) and Fig. 2c, while it comes from the outside (e.g.,
target vector) in the traditional attention mechanism. The self-
attention weight and the output vector can be expressed as

a¼ softmax

 
QKTffiffiffiffiffi
dk

p
!

(12)

AttentionðQ ;K;VÞ¼ softmax

 
QKTffiffiffiffiffi
dk

p
!
V (13)

where dk is the dimension of the feature vector K; and softmax is a
normalized exponential function. Here we got the value weight by
the similarity of query and key and used a scale factor

ffiffiffiffiffi
dk

p
to keep

the gradient stable. And this method is called scaled dot-product
4

attention [74].
2.3.4. Model settings and parameterization
The main objective of this study is to explore a feasible method

for predicting pollution loads using sparse and partially missing
water quality data rather than simply pursuing the highest accu-
racy. Therefore, we adopted a general method to select parameters
or used default settings and tried to make the parameters have
more interpretable physical meanings. All machine learning
models in this study were run on the publicly available and stan-
dardized library PyTorch in the Spyder environment of Anaconda.
All inputs and outputs were normalized using min-max normali-
zation to avoid dimension interference on experimental results.
Considering the limited data, the models were conducted using the
five-fold cross-validation method to avoid the problem of unbal-
anced data partitioning [23]. This approach involves randomly
partitioning the data into five subsets over five cycles, selecting
one-fifth of the data as the testing set and the remaining four-fifths
as the training set. The hyperparameters were determined before
performing the cross-validation operation, which divided the
sequential data into training, validation, and testing sets in a ratio of
6:2:2, aligning with the cross-validation ratio of 8:2. The number of
hidden layers was set to 2 through trial and error [76,77]. The
learning rate was optimized by adaptive moment estimation
(Adam) algorithm [78]. The epoch was controlled by an early
stopping method to avoid overfitting [79]. Then, three feature-
related parameters, i.e., observation time step, batch size, and
hidden-state size, were fine-tuned using the grid search method
[80]. Since it takes no more than aweek for the water from the TGD
and the four stations in the tributaries of Dongting Lake to reach the
Chenglingji outlet [81,82], the observation time step (also referred
to as memory length) was searched from 3 to 7 days. The search
range of batch size and hidden-state size was {23, 24, 25, 26, 27, 28}.
The optimal observation time step, batch size, and hidden-state size
obtained by the grid search method are shown in Table S2.



Fig. 3. The flow chart and study framework. The black arrows with start and end
points indicate the input and output of a model. The blue arrows indicate model
application, and the dashed arrows indicate data transfer.
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2.4. Framework overview and evaluation

Machine learning models (e.g., LSTM) can take upstream
boundary conditions as input to predict water quality at down-
stream sites for better watershed pollution control [79], unlike site-
specific autoregressive prediction (e.g., LOADEST) that cannot
forecast in advance based on pollution source variation. Therefore,
our first step was to combine the two methods, run machine
learning models with LOADEST-expanded daily data, and pick out
the best-combined model (Fig. 3). We would compare it with the
single machine learning without LOADEST to verify the availability
of the combined model. Secondly, to explore the potential of the
best combination in sparse water quality modeling, we continu-
ously selected odd-numbered weeks of water quality measured
data at equal time intervals to obtain a bi-weekly water quality
series. We repeated the operation to obtain a four-weekly (about
monthly) water quality series. Then we used LOADEST to expand
the bi- and four-weekly water quality data to daily data for LSTM
modeling. Finally, we also tested the lead-time forecast ability of
the best-combined model. The detailed flow chart of this study is
shown in Fig. 3.

Three statistical metrics, namely Nash-Sutcliffe efficiency coef-
ficient (NSE), the square of Pearson's correlation coefficient (R2),
and root mean squared error (RMSE), were used to evaluate the
model performance [35,110]:

NSE¼1�
Pn

i¼1

�
yo;i � ys;i

�2
Pn

i¼1

�
yo;i � yo

�2 (14)

R2 ¼

" Pn
i¼1

�
ys;i � ys

��
yo;i � yo

�#2
Pn

i¼1

�
ys;i � ys

�2Pn
i¼1

�
yo;i � yo

�2; (15)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
ys;i � yo;i

�2
n

vuut
; (16)

where yo;i is the measured pollution load and ys;i is the predicted
pollution load for time step i; yo and ys are the measured mean and
the predicted mean, respectively; n is the total data length within
the analysis period. Although the LOADEST-LSTM model can pro-
duce a pollution load value daily, the days without measured data
must be excluded from the evaluation. Hence, only the days with
available sparse water quality data were extracted for accuracy
calculation.

3. Results

3.1. Model performance for CODMn and NH3N loads

The performance of RNN and LSTMs combined with LOADEST
was significantly better than those without LOADEST as shown in
Fig. 4 and Table S3 (i.e., larger NSE, larger R2, and smaller RMSE),
especially for NH3N with a more obvious gap. The CODMn was
better predicted than the NH3N, both for the single or LOADEST-
combined machine learning models, which was consistent with
the pollution load interpolation performance of LOADEST
(Table S1). The accuracy of RNN was slightly inferior to that of
LSTMs based on the LOADEST-expanded dailywater quality data. As
for the three LSTM-LOADEST models for the CODMn and NH3N
loads, SA-LSTM-LOADEST outperformed the other models, and Bi-
5

LSTM-LOADEST performed similarly as, if not better than, the
traditional LSTM-LOADEST model. Furthermore, the error bars
show that the SA-LSTM-LOADEST model also had relatively less
uncertainty on the data across different cross-validation epochs.
Overall, the best-performing SA-LSTM-LOADEST successfully
captured the variation trend of the CODMn and NH3N pollution
loads for the whole study period, although there were a few mis-
matches at extreme loads (e.g., June 22, 2015 for CODMn and July 3,
2017 for NH3N; see Fig. 5). A detailed look indicated that SA-LSTM-
LOADESTwas superior to the other LSTM-LOADESTmodels because
of its more accurate simulation of CODMn load peaks (Fig. S3). The
pollution load peak of CODMn and NH3N in July 2017 was mainly
caused by the double peak of pollutant concentration and flooding
(Fig. S2). In this case, the SA-LSTM-LOADEST model successfully
captured the CODMn peak but failed to capture the NH3N peak. In
addition, compared with the single SA-LSTM model without
LOADEST, the RMSE value of SA-LSTM-LOADEST model was 24.6%
lower for CODMn (21.3% lower for NH3N).

To better probe into the performance of SA-LSTM-LOADEST in
various pollution load ranges, we divided the predicted values into
high, intermediate, and low load intervals at a ratio of 1:1:1. As
illustrated in Fig. 6, the CODMn and NH3N predictions mostly
overestimated in the low-load interval and underestimated in the
high-load intervals. However, the correlation between predictions
and observations was higher in the high-load and low-load in-
tervals than in the intermediate-load interval.

3.2. Pollution load modeling with varying sparsity (from weekly to
monthly)

Machine learning usually requires mass data to learn the im-
plicit relationship between variables. LOADEST was used to expand
the sparse water quality data into the dense to serve the LSTM
models in our research. To investigate the different impacts of
sparse and dense water quality data on the prediction accuracy, we
tested the SA-LSTM-LOADEST performance with varying sparsity
(i.e., weekly, bi-weekly, and four-weekly) of the raw water quality
(Fig. 7). When the frequency of water quality monitoring changed
from weekly to bi-weekly, or even four-weekly (about monthly),
the model still performed well without much loss of accuracy. The



Fig. 4. Accuracy of the CODMn (a) and NH3N (b) pollution loads at the river-lake confluence using various machine learning models (i.e., RNN, LSTM, Bi-LSTM, and SA-LSTM) with
and without LOADEST. The error bars are the standard deviation of the five-fold cross-validation accuracy.

Fig. 5. Predicted and measured CODMn (a) and NH3N (b) pollution load values at the
river-lake confluence using the best-performing SA-LSTM-LOADEST model.

Fig. 6. Predicted pollution loads at the high, intermediate, and low load intervals using
the SA-LSTM-LOADEST model: a, CODMn; b, NH3N. The results are plotted with a
logarithmic scale to show the model performance for high and low loads. The dotted
lines are the corresponding trend lines.
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RMSE value of CODMn load increased by 7.9% when water quality
sparsity fromweekly to monthly, while it surprisingly decreased by
1.6% for NH3N load, perhaps because some data with high error
were not selected when re-produce the LOADEST-expanded data.
Moreover, the uncertainty of three evaluation metrics (i.e., NSE, R2,
and RMSE) to the data reduced slightly with the data becoming
more sparse. In any case, the SA-LSTM-LOADEST model effectively
modeled the monthly-scale CODMn and NH3N loads.

3.3. Pollution load forecasting with a lead-time by the SA-LSTM-
LOADEST model

Accurate and reliable pollution load forecasts with specific lead
times are helpful for pollution control and water quality manage-
ment. We tested the forecast ability of the SA-LSTM-LOADEST
model with a three-, seven-, or ten-day lead time (Fig. 8). With
an increased lead time, the model's performance became slightly
worse. Specifically, the RMSE values increased by 1.2%, 13.5%, and
13.8% for CODMn, and 5.2%, 3.0%, and 14.6% for NH3N with a three-,
seven-, or ten-day lead-time, respectively. Because of the limited
loss of short-term forecast accuracy, which might be less than the
model error itself, the RMSE value of NH3N with a seven-day lead-
time was smaller than that with a three-day lead time. Besides, the
stages when the model cumulative error increased rapidly differed
for CODMn and NH3N. The forecast accuracy of CODMn decreased
more when the lead time went from three to seven days, while it
was seven to ten days for NH3N. Overall, the SA-LSTM-LOADEST
model could forecast pollution loads up to ten days in advance
with the RMSE value increasing no more than 15% than that of the
0-day.

4. Discussion

4.1. Uncertainty analysis of data and models

Due to different monitoring equipment and methods, water
quality sequence data are interfered with by some complex noise
that can cause a large penalty in the accuracy of water quality
modeling [115]. Research from Zhang et al. (2023) [116] and Song



Fig. 7. The prediction results of the SA-LSTM-LOADEST model with varying water quality sparsity. The daily data for SA-LSTM are obtained using LOADEST to re-expand the bi- and
four-weekly data continuously selected from raw weekly water quality data. Error bars are only shown half for the clearer figure.

Fig. 8. The waterfall plot of CODMn (a) and NH3N (b) pollution load forecasts with three, seven, and ten-day lead-time steps using the SA-LSTM-LOADEST model.

Fig. 9. Model performance based on raw and denoised data. The denoising algorithm
is a discrete wavelet transform from the PyWavelets library.
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et al. (2021) [117] showed that wavelet transform could denoise
water quality data to facilitate the recent prediction of LSTM
models. Therefore, we used wavelet transform to denoise the raw
data (Fig. S4) and compared the impact of noise reduction on the
SA-LSTM-LOADEST model results (Fig. 9). The denoising algorithm
slightly improved the combined model performance in this study,
but not much. We subsequently applied the same wavelet trans-
form technology to the LOADEST-expanded data. We found that the
denoising effect was very weak (Fig. S5), which showed that
LOADEST played a certain role in noise reduction when expanding
the water quality data. Additionally, although denoising is expected
to enhance model prediction, it is necessary to avoid mistakenly
deleting some abnormal peak data caused by severe pollution
events, especially in water quality modeling with sparse and
limited data.

The model uncertainty mainly comes from the LOADEST pro-
gram and LSTM. Since LSTMs are driven by LOADEST-generated
synthetic data, it is logical that their simulation capability is
limited by how accurately the LOADEST program expands water
quality data at a specific site, such as the Chenglingji station [53,58].
The errors generated when LOADEST expands the data will prop-
agate to the final results through LSTMs. In this study, the accuracy
of the CODMn predictions was better than that of NH3N. This
discrepancy can be attributed to the measurement data and, more
likely, to the weaker correlation between NH3N and streamflow
7

compared to that between CODMn and streamflow. When some
data with larger errors had been removed, the four-weekly NH3N
load simulation was better than the bi-weekly. Therefore, the ac-
curacy of the LOADEST-expanded data explained part of the un-
certainty in the LSTM-LOADEST model [51].

Machine learning models like LSTM also have some common
errors in fitting. The rivers' peak flow or peak water quality is not
always that much, causing the LSTM insufficient peak training and
making it difficult to predict the loads that significantly deviate
from the mean loads range [35,79]. Such a drawback of machine
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learning in water quality modeling has also been confirmed by
other studies [32,35]. In this study, the LSTMmodels could perceive
the temporal variation of the pollution loads, but it is difficult to
match the magnitude of actual pollution loads. But satisfactorily,
self-attention helped LSTM improve the generalization ability, and
SA-LSTM achieved better CODMn performance than the traditional
LSTM in the peak prediction. This generalization ability facilitated
the short-term lead-time forecasting of SA-SLTM. In fact, when the
lead time increased, the temporal gap between input and output
would also be increased, thereby generating more noise from the
input data and less correlation between the input and output of the
model [32,83,84]. However, the cumulative error of SA-LSTM in
multi-day lead-time prediction appeared to be less than that of the
traditional LSTM used in other studies [83,84]. In general, more
complex structures and more parameters also bring greater model
uncertainty. Therefore, to reduce the uncertainty of machine
learning like SA-LSTM, the model characteristic parameters should
be more physically meaningful and explicable [79,85].

4.2. External environmental factors affecting pollution load
modeling

External environmental factors affect the accuracy of pollution
load modeling. Due to the limited data, in this study, streamflow
was taken as the only explanatory variable of the LOADEST program
to compute pollution loads, but in fact, the pollution loads in rivers
may also be affected by other factors such aswater temperature and
climate phenomena [86e88]. For instance, El Ni~no influences the
variability of water quality through biogeochemistry, which goes
beyond simple flow-load relationships [89]. Changes in water
temperature can alter the rate of nutrient release from sediments in
rivers and lakes, consequently affecting the flux exchange of
pollutant loads at the sediment-water interface [90,91]. Rossi et al.
(2021) [112] found that ignoring pH when using LOADEST could
cause larger errors for constituents highly controlled by pH-
dependent reactions. As a result, the model's accuracy is prom-
ising to be improved with more environmental explanatory vari-
ables introduced into the LOADEST program. It is convenient to
include user-defined variables (e.g., conductance, pH, water tem-
perature, and turbidity) in addition to streamflow in LOADEST,
which is already integrated into the application. Furthermore, the
LOADEST program provides an example of alkalinity load calibra-
tion using streamflow and specific conductance [51].

Water quality monitoring needs to be improved, and the lack of
boundary conditions increases the difficulty of pollution load
modeling. More automatic water quality monitoring stations are
being built [92,93]. However, due to the technical problems of
water quality sensors, the water quality data are not so reliable and
representative [94,95]. The pollutants in Dongting Lake are moni-
tored in the tributaries considering China's environmental man-
agement policies, but it cannot rule out that unmonitored
agricultural water or domestic sewage directly entered the lake and
interferedwith themodel results [96,97]. Advances inwater quality
management will facilitate more accurate simulation and predic-
tion of pollution loads [98,99].

4.3. Application of machine learning in modeling water quality
with sparse data

The performance of a machine learningmodel improves with an
increase in training data size [100]. Due to the complexity and high
cost of measurements, water quality series are often at weekly or
monthly frequencies [38,40,101]. However, some meteorological
8

data and streamflowmonitoring have been done onminute to daily
frequency [102,103]. Therefore, in our study, the LOADEST program
was used to increase the density of the water quality series by
utilizing the high-frequency streamflow data, creating more op-
portunities for machine learning models to train and learn the
implicit relationship between input and output while also refining
the temporal scale of pollution load modeling. Besides, the self-
attention mechanism strengthened the learning ability of LSTM,
making it more efficient to perceive important information, espe-
cially peaks. The SA-LSTM-LOADEST method provided a new idea
for machine learning modeling in sparse water quality measure-
ment. Since the model demonstrated good accuracy at a river-lake
confluence with a complex flow regime, it could also be imple-
mented at basin outlets and key cross-sections with sufficient
streamflow monitoring. More importantly, this upstream-
downstream modeling method can potentially promote flow-
controlled water quality management (e.g., dam regulation, sud-
den water pollution accidents, and pollution reduction scenarios in
watersheds) because it can reflect the relationship between
downstream pollution loads and variations in upstream pollution
sources.

There are also other techniques and methods for machine
learning to deal with a small amount of water quality data. Transfer
learning techniques can help machine learning apply knowledge
learned in domains with sufficient data to related domains with
insufficient data [104]. Combining the advantages of LSTM in
capturing long-term dependencies and themodel transfer ability of
transfer learning, the features of a series of small temporal scales
can be applied to increase the density of large temporal scale data
or impute missing data [105e107]. It is also possible to expand the
series of data-deficient sites by transferring the characteristics of
long-term high-frequency monitoring data of adjacent sites [70].
However, the limitation of this method is that there must be a
suitable water quality series as the source domain; that is, the data
volume of the series is large enough and has a certain similarity
with the target series [105]. In addition, innovative technologies
with specialized functions show potential for integration with
machine learning models (e.g., LSTM) to enhance the accuracy of
source-sink water quality modeling. For example, few-shot
learning is developed for small-sample tasks [108,109], and the
seasonal-trend decomposition procedure based on loess (STL) can
capture seasonal features more effectively [110]. Whether it is the
LOADEST program used in this study, transfer learning, or other
specific methods for sparse data [39], errors are inevitably intro-
duced during the processing of water quality data with machine
learning. Hence, developing strategies to control data preprocess-
ing errors and improve the water quality prediction accuracy re-
mains a crucial area for further exploration.
5. Conclusion

To conclude, this study explored the traditional RNN and three
LSTMs combined with LOADEST to improve the modeling accuracy
of pollution loads with sparse water quality data, especially at the
complicated river-lake confluence. The best-performing SA-LSTM-
LOADEST model was established. We further analyzed its perfor-
mance in varying sparsity (i.e., weekly, bi-weekly, and four-weekly)
and its forecasting ability. The main findings of this study are
summarized as follows.

� The SA-LSTM performed best among the RNN and three LSTMs
(NSECODMn

¼ 0:71, NSENH3N ¼ 0:57) combined with LOADEST
program. Compared with the single SA-LSTM without LOADEST,



S. Huang, J. Xia, Y. Wang et al. Environmental Science and Ecotechnology 20 (2024) 100402
the SA-LSTM-LOADEST lowered the RMSE by 24.6% for CODMn
and 21.3% for NH3N. Additionally, the prediction accuracy of the
SA-LSTM-LOADEST model could be further improved by using
wavelet transform to denoise the raw data.

� The SA-LSTM-LOADEST model still performed well when the
data sparsity changed fromweekly to four-weekly (NSECODMn

¼
0:67, NSENH3N ¼ 0:58), indicating the SA-LSTM-LOADEST could
be potentially used for pollution loads modeling with observa-
tions at monthly or even longer temporal scales.

� The SA-LSTM-LOADEST model could forecast with a lead time of
ten days. The ten-day lead-time RMSE value increased no more
than 15% than that of the 0-day.

The SA-LSTM-LOADEST method effectively modeled and fore-
casted pollution loads with sparse water quality data at the river-
lake confluence. This work can be further improved by adding
explanatory variables, such as water temperature, and upgrading
water quality monitoring technology. Moreover, advanced machine
learning techniques should be explored to tackle the challenges in
water quality modeling effectively with sparse or missing water
quality series.
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