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ABSTRACT
Autoimmune diseases are conditions in which the immune system mistakenly targets and
damages healthy tissue in the body. In recent decades, the incidence of autoimmune diseases
has increased, resulting in a significant disease burden. The current autoimmune therapies focus
on targeting inflammation or inducing immunosuppression rather than addressing the
underlying cause of the diseases. The activity of metabolic pathways is elevated in autoimmune
diseases, and metabolic changes are increasingly recognized as important pathogenic processes
underlying these. Therefore, metabolically targeted therapies may represent an important
strategy for treating autoimmune diseases. This review provides a comprehensive overview of
the evidence surrounding glucose metabolic reprogramming and its potential applications in
drug discovery and development for autoimmune diseases, such as type 1 diabetes, multiple
sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and systemic sclerosis.
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Introduction

The immune system is a crucial defense against infec-
tious agents, including viruses, bacteria, and fungi.
Although it is finely tuned not to attack our tissues
without losing its response to foreign invaders, it may
mistakenly attack healthy tissues, resulting in auto-
immune diseases (Schwartz 2012; Wang et al. 2015).
The frequency of autoimmune diseases has increased
over recent decades (Miller 2023). The means of annual
increases in the worldwide incidence and prevalence
of autoimmune diseases are 19.1% and 12.5%, respect-
ively (Lerner et al. 2015). Therefore, understanding the
underlying mechanisms of autoimmune diseases and
developing new therapeutic strategies have become
increasingly important.

Genetic factors, environmental factors, and dysregu-
lation of the immune system are believed to contribute
to the development of autoimmunity (Rosenblum et al.
2015). However, the exact mechanisms underlying the
development of autoimmune diseases remain unclear
(Rosenblum et al. 2015). Therefore, the most current
treatments for autoimmune diseases focus on replace-
ment therapies, anti-inflammation, or immunosuppres-
sion rather than addressing the underlying issues that
cause the initiation and progression of the autoimmune
process (Streeter and Wraith 2021; Jung and Kim 2022).
Moreover, long-term use of these anti-inflammatory or

immunosuppressive medicines increases the likelihood
of infections and cancer (Streeter and Wraith 2021).
Therefore, understanding how abnormal immune
responses are developed and sustained is necessary to
overcome these limitations and effectively address the
underlying cause of autoimmune diseases.

The metabolic shift is a well-established event in
the development of tumorigenicity. However, meta-
bolic reprogramming has become a key feature in
numerous other disease pathologies, including auto-
immune diseases (Pearce et al. 2013; Yin et al. 2016;
Vander Heiden and DeBerardinis 2017). Cancer and
immune cells have similarities in their need for
sufficient metabolic flux and bioenergetics to support
macromolecule synthesis, as well as cell growth and
expansion (Andrejeva and Rathmell 2017). The acti-
vation, proliferation, and differentiation of immune
cells can be further shaped and fine-tuned during
metabolic reprogramming (Chou et al. 2022). Emer-
ging evidence has revealed an important role for
metabolites in regulating the phenotype and effector
function of immune cells in response to energy
demands in resting or stimulated states (Guijas et al.
2018; Kolan et al. 2020; Kolliniati et al. 2022). Moreover,
by interrupting these metabolic pathways, it is poss-
ible to alter the fate of immune cells and modulate
immunity (Patel et al. 2019).
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In this review, we discuss the advances in the current
understanding of the glucose metabolic signatures of
various cells in autoimmune diseases and speculate on
the prospect of targeting metabolism as a novel thera-
peutic strategy.

Glucose metabolism in autoimmunity

Glucose metabolism is an important metabolic pathway
that provides energy to cells and is finely tuned to accom-
modate the cellular demands for energy and biosynthesis
(Park et al. 2022) (Figure 1). It comprises multiple enzymes
that catalyze the conversion of glucose into metabolized
products and energy in the form of ATP (Han et al. 2016).
Pyruvate produced through glycolysis is mainly used in
oxidative phosphorylation (OXPHOS) after the tricar-
boxylic acid (TCA) cycle to generate more ATP (Han
et al. 2016). Glycolytic intermediates such as glucose-6-
phosphate (G6P) and 3-phosphoglycerate (G3P) are
indirectly involved in the pentose phosphate pathway
(PPP) and amino acid synthesis, respectively (Ramos-Mar-
tinez 2017; Zhao et al. 2020).

Glycolysis plays a crucial role in immune cells, particu-
larly during immune activation and effector functions
(Pearce and Pearce 2013). Immune cells, such as T
cells, B cells, macrophages, and dendritic cells,
undergo metabolic reprogramming to meet their
energy demands and support their specialized functions
(Pearce and Pearce 2013; Woo et al. 2021). Although gly-
colysis produces less ATP compared to that from the TCA
cycle or OXPHOS, it serves a crucial role in providing
energy to these cells. The glycolytic process enables
innate immune cells to undergo functional changes,
such as the production and secretion of cytokines (Rodrí-
guez-Prados et al. 2010; O’Neill and Pearce 2016).
Resting T cells obtain energy primarily through the oxi-
dative phosphorylation of glucose, lipids, and amino
acids (Chen et al. 2015). However, when T cells are acti-
vated, they switch to aerobic glycolysis as their primary
source of energy to support the rapid changes in their
phenotype (Chen et al. 2015). This change in metabolism
provides the necessary energy and building blocks for
the cells to grow and divide rapidly, and carry out their
immune functions. Further, the shift to glycolysis in acti-
vated T cells plays an important role in regulating gene
expression. For example, glucose uptake through the
GLUT3 transporter plays a crucial role in Th17 cell func-
tion in autoimmune diseases (Shi et al. 2011; Gerriets
et al. 2016), and it regulates the metabolic pathways
that control the expression of genes involved in the
inflammatory response of Th17 cells (Hochrein et al.
2022). Therefore, although metabolic reprogramming
occurring in immune cells is necessary for cell

differentiation, proliferation, and effector function, it
may mediate the imbalance of immune homeostasis,
contributing to the onset and progression of auto-
immune diseases (Mohammadnezhad et al. 2022).

Besides generating energy, glycolytic intermediates
play an important role in helping immune cells alter
their characteristics in response to external signals
(Ganeshan and Chawla 2014; Shyer et al. 2020). The
PPP is a metabolic pathway that diverges from glycolysis
at the first irreversible step and involves catalysis by
glucose-6-phosphate dehydrogenase (G6PD) with G6P
as its primary substrate (Ramos-Martinez 2017). The
PPP is a major source of nicotinamide adenine dinucleo-
tide phosphate hydrogen (NADPH) and plays a pivotal
role in maintaining the cellular redox state (Xiao et al.
2018). During oxidative stress, glycolytic enzymes such
as phosphofructokinase 1 (PFK1) can become inacti-
vated, increasing NADPH production through the diver-
sion of G6P to the oxidative PPP (Patra and Hay 2014).
This interaction between glycolysis and the PPP allows
cells to adjust their metabolism for survival and prolifer-
ation (Patra and Hay 2014). NADPH is a crucial molecule
that plays a key role in maintaining the balance of redox
reactions within cells and defending against oxidative
stress (Koju et al. 2022). Disruptions in the balance of
NADPH levels within cells have been linked with the
development of various diseases, including autoimmune
diseases (Panday et al. 2015). According to a recent
study, the PPP has been shown to regulate the
removal of exhausted cells and immune tolerance (He
et al. 2022). Further, enhancing PPP activity has been
observed to reduce the removal of dead cells by macro-
phages and exacerbate the symptoms of systemic lupus
erythematosus (SLE) in a mouse model (He et al. 2022).

Type 1 diabetes

Type 1 diabetes (T1D) is an organ-specific autoimmune
disease caused by the selective destruction of pancreatic
β-cells. T1D pathogenesis is mainly mediated by auto-
reactive T cells that infiltrate the islets, playing a key
role in the process of β-cell destruction (Burrack et al.
2017). Emerging evidence suggests that metabolic per-
turbations of immune cells play an important role in
initiating and exacerbating T1D (Sysi-Aho et al. 2011;
Pflueger et al. 2011; Oresic et al. 2013; La Torre et al.
2013). Upon encountering islet β cell autoantigens,
naïve T cells are activated and undergo robust metabolic
reprogramming to utilize aerobic glycolysis, which is
required to generate ATP quickly for supporting T cell
activation, clonal expansion, and effector cytokine pro-
duction (Pearce and Pearce 2013; Chang et al. 2013;
Pearce et al. 2013).
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Figure 1. Glucose metabolism and its inhibitors.
Note: After entering cells, glucose is phosphorylated by HK to form G6P. This step helps trap glucose inside the cells and initiate its metabolism. G6P serves as a
substrate for the PPP, a metabolic pathway that runs parallel to glycolysis. PPP generates R5P, which is essential for nucleotide synthesis and produces abun-
dant amounts of NADPH. NADPH is an important reducing agent used in various biosynthetic processes and helps protect cells from oxidative damage. G6P
undergoes a series of oxidative decompositions known as glycolysis to generate pyruvate. Along the glycolytic pathway, intermediate metabolites are formed,
providing raw materials for the biosynthesis of other molecules such as serine and glycine. PKM2 controls the final step of glycolysis, converting PEP to pyr-
uvate. PKM2 is a specific isoform of pyruvate kinase, which is often observed in proliferating cells and plays a crucial role in regulating the balance between
glycolysis and other metabolic pathways. Pyruvate generated by PKM2 can be utilized in multiple ways. One major pathway is OXPHOS, where pyruvate is
converted to acetyl-CoA, which enters the TCA cycle. The TCA cycle further breaks down acetyl-CoA to produce ATP and reducing agents (NADH, FADH2)
used in OXPHOS. Additionally, pyruvate can be converted to lactate through a pathway called anaerobic glycolysis. During glycolysis, glucose is metabolized
to pyruvate, producing a small amount of ATP and NADH. The conversion of pyruvate to lactate is catalyzed by the enzyme LDH, and lactate is transported
across the cell membrane by specific transporters known as monocarboxylate transporters (MCTs). Illustrations of human organs, obtained from Freepik at
https://www.freepik.com, are presented to remind the main targets of autoimmune diseases. Abbreviations: GLUT: glucose transporter; HK: hexokinase;
PFKFB3: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PFK1: phosphofructokinase 1; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; PGK1:
phosphoglycerate kinase 1; PKM2: pyruvate kinase isoenzyme M2; LDH: lactate dehydrogenase; MCT: monocarboxylate transporter; OXPHOS: oxidative phos-
phorylation; 2-DG: 2-deoxy-D-glucose; 3-BrPA: 3-bromopyruvate; LND: lonidamine; 3-PO: 3-(3-pyridinyl)−1-(4-pyridinyl)−2-propen-1-one; DMF: dimethyl fuma-
rate; MnP: manganese metalloporphyrin; T1D: type 1 diabetes; MS: multiple sclerosis; SLE: systemic lupus erythematosus; RA: rheumatoid arthritis; SSc: systemic
sclerosis.
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Activation of T cells provided by proinflammatory
cytokines and reactive oxygen species (ROS) is
suggested to play a critical role in T1D pathogenesis
(Tse et al. 2007; Padgett et al. 2013). ROS are required
to drive and sustain T cell activation-induced metabolic
reprogramming (Previte et al. 2017); ROS production and
ATP synthesis are tightly regulated by maintaining mito-
chondrial membrane potential (Zorov et al. 2014).
However, T cells from patients with T1D exhibit mito-
chondrial hyperpolarization, which is associated with
increased ROS production and interferon (IFN)-γ
secretion, indicating that mitochondrial dysfunction pro-
motes the effector functions of autoreactive T cells due
to an altered proinflammatory T cell effector response
(Chen et al. 2017). Therefore, treatment of T cells with
manganese metalloporphyrin (MnP), a ROS-scavenging
and potent antioxidant, was observed to impede the
metabolic transition from OXPHOS to aerobic glycolysis,
indicating that ROS are required during the switch from
OXPHOS to aerobic glycolysis during T cell activation
(Previte et al. 2017). Further, PFK15, a small molecule
inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 3 (PFKFB3), inhibits the metabolic repro-
gramming of diabetogenic CD4+ T cells to glycolysis and
delays T1D onset in an animal model by inducing T cell
exhaustion (Martins et al. 2021). These findings indicate
that metabolic regulation can be considered a new
therapeutic strategy for T1D by controlling T cell metab-
olism and restoring immune tolerance.

Multiple sclerosis

Multiple sclerosis (MS) is an autoimmune disease charac-
terized by chronic inflammation, demyelination, gliosis,
and neurodegeneration of the central nervous system
(Noyes and Weinstock-Guttman 2013). Although the
precise cause of MS remains unclear, autoreactive
CD4+ T cells are considered to recognize and destroy
myelin in the central nervous system by releasing proi-
nflammatory cytokines, including IFN-γ and IL-17,
which play significant roles in MS pathogenesis
(Kaskow and Baecher-Allan 2018; Segal 2019).

Several studies have demonstrated altered energy
metabolism and mitochondrial injury in MS pathogen-
esis (Graumann et al. 2003; Mahad et al. 2008; Tavazzi
et al. 2011; Braidy et al. 2013). Analysis of the gene
expression profile in post-mortem MS brains revealed
upregulation of genes reflecting higher energy metab-
olism (Graumann et al. 2003). Additionally, significantly
elevated nitrite and nitrate levels were identified from
the serum metabolic profile analyses of patients with
MS, indicating that they suffered from severe purine
and pyrimidine metabolic abnormalities, potentially

because of altered mitochondrial function (Tavazzi
et al. 2011). Higher levels of nicotinamide adenine dinu-
cleotide hydrogen (NADH) were observed in the serum
of patients with MS compared to those in healthy sub-
jects; these are associated with disease progression con-
sidering the role of NADH in maintaining genomic
integrity and mitochondrial energy production (Braidy
et al. 2013). Defects in the mitochondrial respiratory
chain complex IV, which are represented by the loss of
cytochrome c oxidase-1 and 4, are observed in acute
MS lesions (Mahad et al. 2008).

A recent study revealed the unknown mechanism of
action of dimethyl fumarate (DMF), an immunomodula-
tory drug used to treat MS. DMF inactivates the glyco-
lytic enzyme glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) in peritoneal macrophages
and CD4+ T cells in both mice and humans (Kornberg
et al. 2018). Similarly, glatiramer acetate, a random copo-
lymer of glutamic acid, lysine, alanine, and tyrosine,
which is used for treating MS, enhances the mitochon-
drial activity of CD4+ T cells and improves their response
to oxidative stress (De Riccardis et al. 2016). Metformin
can function as an AMP-activated protein kinase
(AMPK) activator or mitochondrial OXPHOS inhibitor,
depending on its concentration, and is used for treating
type 2 diabetes by suppressing liver glucose production
and increasing insulin sensitivity (He 2020). A cohort
study on metformin-treated patients with MS demon-
strated a significant reduction in the number of brain
lesions with elevated AMPK expression, decreased pro-
duction of IFN-γ and IL-17, and an increased percentage
of regulatory T cells (Tregs) (Negrotto et al. 2016).

In MS, the demyelination and remyelination pro-
cesses are imbalanced, which may result in dysregula-
tion of energy metabolism, followed by axon
destabilization and damage (Nave 2010). Oligodendro-
cyte precursor cells (OPCs) can differentiate into myeli-
nating oligodendrocytes (Kirby et al. 2019). Metformin
restores the regenerative capacity of aged OPCs and
promotes remyelination in the stem cells of elderly rats
(Neumann et al. 2019). Additionally, a recent study
showed that phloretin, an inhibitor of glucose transpor-
ter 1 (GLUT1), enhances remyelination by directly stimu-
lating OPC maturation through peroxisome proliferator-
activated receptor γ (PPARγ) activation (Dierckx et al.
2022). These results suggest that inhibition of glucose
metabolism promotes remyelination, which could be a
new therapeutic strategy for MS.

Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is an autoimmune
disease characterized by the inappropriate activation
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of autoreactive T and B cells, which leads to the pro-
duction of autoantibodies and immune complexes that
can cause chronic inflammation and multiple organ dys-
functions (Tsokos 2011). The clinical manifestations of
SLE are diverse, including rash, arthritis, pleuritis, nephri-
tis, and even neuropathy (Tsokos 2011; Hanly 2014).

CD4+ T cells from lupus-prone mice and patients with
SLE exhibited enhanced glycolysis and mitochondrial
metabolism, indicating that altered intrinsic metabolism
reprogramming occurs in SLE (Wahl et al. 2010; Yin et al.
2015). During immune responses, T cells increase their
glucose uptake and glycolysis through the action of
phosphatidylinositol 3-kinase (PI3K) and Akt through
CD28 costimulation (Frauwirth et al. 2002). Inhibition
of glucose transporters by CG-5 ameliorated the SLE
phenotypes in lupus-prone mice by suppressing Th1
and Th17 cell differentiation, inducing regulatory T
cells, and reducing the expansion of germinal center B
cells and the production of autoantibodies (Li et al.
2019). Further, the T cells of patients with SLE exhibited
mitochondrial dysfunction, as evidenced by mitochon-
drial hyperpolarization, intracellular pH elevation,
increased production of reactive oxygen intermediates
(ROI), decreased glutathione levels, and ATP depletion
(Gergely, Grossman, et al. 2002; Gergely, Niland, et al.
2002; Perl et al. 2004). Inhibition of mitochondrial ROS
by MitoTEMPO reduces disease severity and type I IFN
responses in lupus-prone mice (Lood et al. 2016).
Further, treatment with a combination of glycolysis
inhibitor 2-deoxy-D-glucose (2-DG) and mitochondrial
OXPHOS inhibitor metformin restored T cell metabolism
and reverted disease phenotypes in lupus-prone mice
(Yin et al. 2015, 2016). These results suggest that inhibit-
ing glycolysis or mitochondrial metabolism in T cells can
be a promising therapeutic strategy for SLE.

Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic inflammatory auto-
immune disease that affects joints and extra-articular
tissues (Smolen et al. 2018). The main pathological fea-
tures of RA include synovial hyperplasia, inflammatory
cell infiltration, pannus formation, and erosion of carti-
lage and bone, ultimately leading to progressive joint
destruction (Nygaard and Firestein 2020; Mahmoud
et al. 2022). The accumulation of cells in the inflamed
synovium induces hypoxic conditions, which modify
the metabolic environment (Quiñonez-Flores et al.
2016). As a result, altered metabolites are observed in
patients with RA, and the altered metabolic pathways
can exacerbate synovial inflammation by activating
immune cells and synovial fibroblasts (Young et al.
2013; Fearon et al. 2022).

Glucose metabolism is significantly increased in the
inflamed joints of early-stage RA, which is associated
with phenotypic changes in synovial cells (Chang and
Wei 2011; Masoumi et al. 2020). Increased glycolysis
shifts macrophages towards an inflammatory pheno-
type, producing IL-1β, IL-6, and TNF-α. Hexokinase 2
(HK2) and pyruvate kinase isoenzyme M2 (PKM2) are
upregulated in RA macrophages, further promoting gly-
colytic flux (Xu et al. 2020; Hanlon et al. 2022). Further,
the metabolic intermediates generated during glycoly-
sis, such as lactate, can modulate immune responses
and perpetuate chronic inflammation in RA joints
(Biniecka et al. 2016; Fearon et al. 2022). Moreover, T
cells from patients with RA display distinct metabolic
alterations favoring PPP over glycolysis, which enables
RA T cells to become invasive and pro-inflammatory
(Weyand et al. 2017; Fearon et al. 2022).

Several studies have reported that glycolysis inhibitors
suppress the aggressive phenotype of RA fibroblast-like
synoviocytes (RA-FLS) and immune cells and alleviate
arthritis in animal models. Inhibition of glycolysis using
2-DG, 3-bromopyruvate (3-BrPA), or 3-(3-pyridinyl)−1-
(4-pyridinyl)−2-propen-1-one (3-PO) decreases the
aggressive phenotypes of RA-FLS by reducing cytokine
production, proliferation, and migration (Garcia-Carbo-
nell et al. 2016; Biniecka et al. 2016; Abboud et al.
2018). In addition, 3-BrPA modulates Th17/Treg cell
differentiation and suppresses dendritic cell activation
(Okano et al. 2017). Accordingly, treatment with 2-DG
or 3-BrPA decreased inflammatory arthritis in mouse
models (Garcia-Carbonell et al. 2016; Okano et al. 2017;
Abboud et al. 2018). Another glycolysis inhibitor, PFK15
reduces the activation and aggressive phenotypes of
RA-FLS and attenuates the severity of arthritis in col-
lagen-induced arthritis (CIA) mice (Zou et al. 2017). HK2
is specifically expressed in the RA synovial membrane
and has been shown to regulate the aggressive function
of RA-FLS (Bustamante et al. 2018). Lonidamine (LND), an
HK2 inhibitor, induces apoptosis in RA-FLS, suppresses
the production of inflammatory factors by RA-FLS, and
attenuates arthritis phenotypes in the CIA model (Song
et al. 2019). Similarly, PGK1 is increased in RA synovial
tissues, whereas PGK1 knockdown decreases the prolifer-
ation andmigration of RA-FLS, as well as reduces the pro-
duction of IL-1β and IFN-γ in RA-FLS (Zhao et al. 2016).
Therefore, targeting glycolysis can be a novel approach
for treating RA by modulating the pathological activities
of RA-FLS and immune cells.

Systemic sclerosis

Systemic sclerosis (SSc), also known as scleroderma, is an
autoimmune disease characterized by vasculopathy and
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progressive fibrosis of various tissues and organs, includ-
ing the skin, lungs, heart, and kidneys (Volkmann et al.
2023). SSc has the highest mortality among rheumatic
diseases; interstitial lung disease (ILD) involving inflam-
mation and fibrosis is one of the leading causes of
death in patients with SSc (Elhai et al. 2017; Volkmann
et al. 2023). Effective therapies to prevent fibrosis are
currently limited.

Positron emission tomography/computed tomogra-
phy (PET/CT) scans in patients with SSc have shown
increased 18

fluorodeoxyglucose (18F-FDG) uptake in
the skin and soft tissue calcinosis (Oksuzoglu et al.
2015; Vadrucci et al. 2016). Further, glycolysis has been
recently revealed as a key metabolic pathway in
fibrosis (Henderson and O’Reilly 2021). SSc dermal fibro-
blasts have increased glycolysis and lactate levels, which
leads to myofibroblast transition, the key process in SSc
pathogenesis (Henderson et al. 2020; Andreucci et al.
2021). High glycolytic metabolism and the resulting
acidic extracellular microenvironment contribute to the
impairment of angiogenesis and the induction of endo-
thelial cells to myofibroblast transdifferentiation,
thereby driving the fibrotic process in SSc (Andreucci
et al. 2021). Inhibition of glycolysis by 2-DG or 3-PO
can attenuate transforming growth factor β1 (TGF-β1)-
induced fibrosis in dermal fibroblasts (Henderson et al.
2020). Glycolytic reprogramming is an important
driving force behind lung myofibroblast differentiation
and pulmonary fibrosis (Kottmann et al. 2012; Xie et al.
2015). Additionally, microarray analysis of lung tissues
from patients with SSc and pulmonary fibrosis demon-
strated perturbation of bioenergetics, including

glycolysis (Renaud et al. 2020). As a result, inhibition of
glycolysis by 3-PO attenuated the profibrotic pheno-
types of lung myofibroblasts in vitro and pulmonary
fibrosis in vivo (Xie et al. 2015). According to a recent
study, anlotinib, a multiple receptor tyrosine kinase
inhibitor, reversed pulmonary fibrosis by inhibiting
PFKFB3-driven glycolysis in myofibroblasts (Chen et al.
2021). These results suggest that glycolysis plays a key
role in the pathogenesis of SSc by regulating fibrosis
and can be a promising therapeutic target for SSc.

Conclusions

Glycolysis and OXPHOS are key metabolic processes
involved in cellular energy metabolism. The balance
between glycolysis and OXPHOS is tightly regulated
and essential for maintaining cellular homeostasis.
Under normal conditions, cells preferentially utilize
OXPHOS to meet their energy demands. However, in
certain situations, such as continuous stimulation or
chronic inflammation, there can be a shift towards
increased glycolysis, even in the presence of oxygen.
This metabolic reprogramming, known as aerobic gly-
colysis, is a hallmark of many pathological conditions,
including autoimmune diseases. Increased glycolysis
provides immune cells with the necessary energy and
metabolic intermediates to support proliferation, survi-
val, and cytokine production. However, an imbalance
favoring glycolysis over OXPHOS can lead to excessive
activation of immune cells, the persistence of inflam-
mation, and tissue damage that is observed in auto-
immune diseases. Thus, understanding the factors that

Table 1. Glucose metabolism inhibitors studied in autoimmune diseases.
Disease Inhibitor Target Reference

Type 1 diabetes
(T1D)

PFK15 PFKFB3 Martins et al. (2021)
MnP Antioxidant Previte et al. (2017)

Multiple sclerosis
(MS)

DMF GAPDH Kornberg et al. (2018)
Glatiramer acetate Antioxidant De Riccardis et al. (2016)
Metformin Complex I of OXPHOS / AMPK activator Negrotto et al. (2016)
Phloretin GLUT1 Dierckx et al. (2022)

Systemic lupus erythematosus
(SLE)

2-DG HK Yin et al. (2015)
Metformin Complex I of OXPHOS / AMPK activator Yin et al. (2016)
CG-5 GLUT Li et al. (2019)
MitoTEMPO Antioxidant Lood et al. (2016)

Rheumatoid arthritis
(RA)

2-DG HK Garcia-Carbonell et al. (2016); Abboud et al. (2018)
3-BrPA HK Garcia-Carbonell et al. (2016)
3-PO PFKFB3 Biniecka et al. (2016)
PFK15 PFKFB3 Zou et al. (2017)
LND HK2 Song et al. (2019)
PGK1 knockdown PGK1 Zhao et al. (2016)

Systemic sclerosis
(SSc)

2-DG HK Henderson et al. (2020)
3-PO PFKFB3 Xie et al. (2015); Henderson et al. (2020)

Note: PFK1: phosphofructokinase 1; PFKFB3: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; MnP: manganese metalloporphyrin; DMF: dimethyl fuma-
rate; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; OXPHOS: oxidative phosphorylation; AMPK: adenosine monophosphate (AMP)-activated protein
kinase; GLUT: glucose transporter; 2-DG: 2-deoxy-D-glucose; HK: hexokinase; 3-BrPA: 3-bromopyruvate; 3-PO: 3-(3-pyridinyl)−1-(4-pyridinyl)−2-propen-1-
one; LND: lonidamine; PGK1: phosphoglycerate kinase 1.
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disrupt the balance between glycolysis and OXPHOS,
which leads to excessive immune cell activation, is an
active area of research in autoimmune diseases.

Several studies have shown that glycolysis is
increased in autoimmune diseases such as T1D, MS,
SLE, RA, and SSc, confirming that glycolysis plays a sig-
nificant role in the pathogenesis of autoimmune dis-
eases. Although autoimmune diseases affect various
organs and tissues, they all share a common character-
istic of metabolic disruption. Considering the impor-
tance of these specific metabolic changes in various
autoimmune diseases, targeting glucose metabolism
predictably shows beneficial effects for treating auto-
immune diseases (Table 1). All these results highlight
the significance of metabolic changes in autoimmune
diseases and suggest promising therapeutic approaches
for autoimmune diseases.
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