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Abstract

Background: Mammalian genomes encode for thousands of microRNAs, which can potentially regulate the
majority of protein-coding genes. They have been implicated in development and disease, leading to great interest
in understanding their function, with computational methods being widely used to predict their targets. Most
computational methods rely on sequence features, thermodynamics, and conservation filters; essentially scanning
the whole transcriptome to predict one set of targets for each microRNA. This has the limitation of not considering
that the same microRNA could have different sets of targets, and thus different functions, when expressed in

different types of cells.

Results: To address this problem, we combine popular target prediction methods with expression profiles, via
machine learning, to produce a new predictor: TargetExpress. Using independent data from microarrays and
high-throughput sequencing, we show that TargetExpress outperforms existing methods, and that our predictions
are enriched in functions that are coherent with the added expression profile and literature reports.

Conclusions: Our method should be particularly useful for anyone studying the functions and targets of miRNAs in
specific tissues or cells. TargetExpress is available at: http://targetexpress.ceiabreulab.org/.

Keywords: microRNA target prediction, Support Vector Machine, Gene expression profiles, Biological context,

microRNA perturbation experiments

Background
MicroRNAs (miRNAs) are small non-coding RNAs that
guide Argonaute proteins to post-transcriptionally re-
press target messenger RNAs (mRNAs) [1]. In animals
they act by binding mainly to sites in the 3’ untranslated
region (3'UTR) of their targets that are complementary
to the 5 end of the miRNA (often called the “seed” re-
gion), causing translation repression and transcript
destabilization [2]. There are 1881 annotated miRNA
genes in the human genome [3], and these are predicted
to target the majority of protein coding genes [4]. The
large number of potential targets renders experimental
validation a complicated task, and computational
methods have risen as a useful alternative for high-
throughput prediction.

Most computational methods to predict miRNA tar-
gets require the presence of 7-nucleotides of perfect
complementarity to the seed region. Given the small size
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of these sites, many can occur just by chance, leading to
false positive predictions. To increase the specificity of
target prediction, computational methods have used
other criteria, such as considering the presence of
multiple binding sites or filtering by evolutionary con-
servation [5-7]. Additional sequence features have
also been used to successfully prioritize functional
sites, including their relative position within the
3'UTR, local structure or AU content and thermo-
dynamic binding stability [4, 8—10]. More recently, a
biophysical model was developed using the properties
of experimentally determined Argonaute-bound sites
[11]. An advantage of this model is that it can be
used, in combination with conservation features, to
accurately predict targets lacking the canonical perfect
seed match [12]. All of these approaches are designed
to predict targets across all known transcripts, with-
out considering where miRNAs or potential targets
are expressed.

There has recently been great interest in incorporating
biological context to miRNA function prediction. Novel
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methods have been developed to take advantage of
paired mRNA and miRNA expression data to infer the
most relevant targets, based on the notion that the
abundance of miRNAs should be inversely correlated
with the expression of their targets [13-16]. While
these methods can provide insights to the general func-
tion of many miRNAs across a range of biological con-
texts, they are only applicable when a relatively large
amount of consistent experimental data is available,
such as for the NCI-60 cancer cell line panel. Other
methods use large sets of mRNA expression data across
different conditions, without a corresponding miRNA
profile, to select predicted targets that are consistently
co-regulated [17, 18]. Although the above methods
have been shown to provide target lists with more co-
herent biological annotations, they will necessarily miss
targets that are only functional in a subset of the sam-
ples. More explicitly, none of these methods considers
that the same miRNA could have different functions
when acting within particular cell-types, where differ-
ent transcripts are expressed at different concentra-
tions, thus altering the potential target space.

Of particular relevance in this regard is TargetScore,
which was designed to predict targets using miRNA-
overexpression transcriptomic experiments [19]. These
experiments are quite popular for determining the func-
tion of miRNAs in an unbiased way, and consistent
methods for their analysis have not always been used
[20-26]. The main drawback is that a new experiment
needs to be performed every time a new combination of
miRNA:cell-type would like to be evaluated. What would
really be useful is a method that could take advantage of
the over one million mRNA samples already profiled
and available through the Gene Expression Omnibus
[27]. The method should be able to take the gene ex-
pression profile for any cell-type, and predict the effect
of overexpressing any miRNA, without having to per-
form the actual experiment.

Why would a miRNA have different functions in dif-
ferent cell-types? In the simplest case, a miRNA cannot
repress a transcript that is not present in the same cell.
Excluding predicted transcripts that are not expressed in
the cell-type of interest can in principle solve this prob-
lem, although in practice this can be complicated to
achieve. With microarrays, high background signal and
non-specific probe hybridization can confound the de-
tection of transcripts expressed at low levels. The digital
nature of RNA-Seq alleviates these problems, but the ab-
sence of sequence from a particular transcript does not
guarantee that the transcript is not present: sequencing
to higher depth in general allows more transcripts to be
detected [28, 29]. Let us assume that we can ignore this
issue, and correctly define which potential targets are
present in a particular type of cell. The abundance of
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these targets could still vary by 4 orders of magnitude
[29], so can a miRNA equally repress them?

To approach this question, we first analysed microarray
experiments where individual microRNAs had been per-
turbed. We observed that the magnitude with which po-
tential targets are affected is not independent of their
expression levels, with more abundant targets generally
being more significantly affected (Additional file 1: Figure
S1). This is consistent with a previous work showing that
PAR-CLIP detected targets that were only bound to Argo-
naute in one type of B-cells tended to have higher expres-
sion levels in that cell type. Interestingly, many of these
targets were expressed, but not bound to Argonaute, in
another type of B-cells [30]. To take advantage of this rela-
tionship between expression level and miRNA target func-
tionality, we decided to combine three “state of the art”
miRNA target prediction methods based exclusively on se-
quence information (TargetScan [9], microT-CDS [10] and
MIRZA [11]) with expression profiles from any cellular
condition, using an SVM framework. We evaluated our
method, TargetExpress, using independent microarray and
RNA-Seq experiments. We show that our method per-
forms better than individual target prediction methods at
predicting the outcome of miRNA-perturbation experi-
ments, and give examples of how our predictions can bet-
ter reflect the biological function of a miRNA.

Methods

Microarray data

microRNA perturbation datasets

We downloaded raw data for miRNA over-expression
(OE) or knock-down (KD) experiments in different cel-
lular conditions from the Gene Expression Omnibus
(GEO). Human experiments: hsa-miR-29 KD in IMR-90
foetal lung fibroblast cell line (GSE18651), hsa-miR-145
OE in MDA-MB-231 cells (GSE19737), hsa-miR-7 OE in
A549 cells (GSE14507), hsa-miR-30 OE in 4L and 5B1
melanoma cell lines (GSE27718), hsa-miR-20a KD in non-
tumorigenic epithelial MCF10A cell line (GSE33538), hsa-
miR-122 KD in HES2 cell line (GSE13460), hsa-miR-34a
OE in HCT116 cell line (GSE7754), hsa-miR-221 OE
in PC-3 cell line (GSE45627), hsa-miR-483-5p OE in
MMH-ES-1 cell line (GSE50980). Mouse experiments:
mmu-miR-140 OE in C3H10T1/2 cell line (GSE13590),
mmu-miR-122 KD in vivo liver cells (GSE13948), mmu-
miR-290 cluster KD in ES cells (GSE8503), mmu-let-7
and mmu-miR-294 KD in ES cells (GSE18840), mmu-
miR-29 OE in Astrocytes (GSE27035). Zebrafish experi-
ments: dre-miR-1 and dre-miR-124 KD in GFP muscle
and CNS cells (GSE12991), dre-miR-430 KD in embryo
cells (GSE4201). We also obtained wild-type and mmu-
miR-22 knockout (KO) mouse tissues from EBI ArrayEx-
press (E-MTAB-2038). Human and mouse experiments
were used for training and during cross-validation.
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Zebrafish experiments were used to independently evalu-
ate the prediction model.

We performed all data processing in R [31]. We nor-
malized CEL files with RMA [32] using the justRMA
function from the affy package [33]. To analyse differ-
ential expression we used limma [34]. For each micro-
array experiment, we defined the required contrast as
“treatment” versus control. To facilitate comparisons
we always considered the “treatment” sample to be the
one with higher miRNA concentration, thus any OE
was always the treatment but a KD became the control
and the baseline (before KD) became the treatment.
Additional file 1: Table S1 includes the exact contrasts
that we used, and the number of differentially
expressed genes detected with a 10 % False-Discovery
Rate (FDR).

For each dataset we then verified that it captures a dir-
ect effect due to miRNA regulation. For this purpose we
used Sylamer [21], that quantifies the over or under rep-
resentation of miRNA seed matches in the 3" UTRs of
genes ordered by differential expression. The results for
the evaluation datasets are included in Additional file 1:
Table S1. Sylamer plots are shown in Additional file 1:
Figure S2. We excluded the experiments that did not
have a good Sylamer signal for the expected miRNA
from all further analyses (Additional file 1: Table S1 and
Figure S2). We believe this is an important filter that is
not always undertaken, which allows us to focus on ex-
perimental results that truly reflect the direct targets of
a miRNA.

Independent control expression profiles

We also downloaded independent expression profiles
(when available) from experiments that were not in
the miRNA-perturbation datasets (see above) but
represent the same cellular conditions. If there are
no available independent expression profiles, we use
control expression profiles from the experiment
(Additional file 1: Table S2). We normalized these
with RMA as above.

MicroRNA target prediction data

We downloaded TargetScan v6.2 [9] predictions for hu-
man, mouse and zebrafish, selecting Total Context+ Score
and Probability of Conserved Targeting (PCT) as predic-
tion scores. Similarly, we downloaded microT-CDS [10]
predictions for human and mouse, using miTG as the pre-
diction score but only keeping predictions with positive
UTR3 score (those with at least one target in the 3UTR).
For MIRZA predictions, we first downloaded human
and mouse 3'UTR sequences from http://www.targets
can.org/vert_70/vert_70_data_download/UTR_Sequences.t
xtzip and http://www.targetscan.org/mmu_61/mmu_
61_data_download/UTR_Sequences.txt.zip respectively.
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Following recommendations from the MIRZA publica-
tion, we split each 3'UTR into 50 nt windows, shifting
25 nt at each step [11]. We obtained alternative MIRZA
scores (canonical sites - MIRZA, target frequency -
MIRZA-F and non canonical sites - MIRZA-N) for
each transcript by summing the logarithms of the target
scores of all sites in the transcript [11].

SVM features and training: TargetExpress

To train the model we first defined which predicted tar-
gets are True Targets (TT) and which are False Targets
(FT), based on the differential expression results of the
miRNA-perturbation datasets. Only human and mouse
datasets were used for this purpose, since both species
have TargetScan, microT-CDS and MIRZA predictions.
For each experiment we defined TT as those predicted
targets that were repressed (log, Fold-change < 0) signifi-
cantly (FDR < 0.1) by the miRNA. We defined the FT as
all the predicted targets with an FDR > 0.2 irrespective of
the direction of change.

The features we used for each target consisted of
target prediction scores — from TargetScan: Total
Context+ Score and Probability of Conserved Target-
ing (PCT), from microT-CDS: miTG, from MIRZA:
MIRZA canonical sites (MIRZA), MIRZA target fre-
quency (MIRZA-F) and MIRZA non canonical sites
(MIRZA-N) — and an expression value for a particular
cellular condition. For each experiment we only ana-
lyse transcripts that have either a TargetScan, microT-
CDS or MIRZA score. Individual transcripts may not
have one of the Total Context+, miTG, PCT, MIRZA,
MIRZA-F or MIRZA-N scores. Instead of discarding
these transcripts, we assign a neutral value to the
missing scores (see below), enabling them to be used
during training.

We only consider transcripts with a label (TT or FT),
ignoring predicted targets that were not measured in the
experiment. This yields a processed matrix for each
miRNA-perturbation experiment, with the following
training features: Total Context+ Score, PCT, miTG,
MIRZA, MIRZA-F, MIRZA-N and expression value. We
rank each feature of this training matrix and scale them
using the min-max normalization. Since we scale using a
min-max normalization between -1 and +1 we substi-
tute missing scores with the normalization min-max
centre, in this case 0.

We use these feature-ranked matrices to train n SVM
classification models [35] using the el071 R package
[36]. In the current implementation # corresponds to
the 13 experiments with good Sylamer signal and at least
20 True Targets (Additional file 1: Table S1). We call the
combination of these n SVM classification models “Tar-
getExpress”. Feature ranking allows us to use different
types of expression values (that can have different range
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and distributions) such as those coming from micro-
array, RNA-Seq or qPCR. We decided to use a radial
kernel to create the n SVMs. In particular we use the
function svm with gamma = 1/7, cost = 1, with the radial
kernel and scale set to FALSE since our data is already
scaled (min-max normalized). In the prediction stage,
we sum the predictions of each n SVM models given an
evaluation dataset. This prediction sum (consensus) be-
comes the final TargetExpress prediction score.

Each training data set suffers from class imbalance,
with many more FT than TT, so we performed a so-
called “class weighting scheme” as implemented in the
el071 R package [36]. Penalization parameters for each

class are defined as C; :n—i*m and C, = %
*% Where n; is the number of TT and n, the

sum (1/ny
number of FT.

Evaluating predictions

We used the Area Under the Curve (AUC) of Receiver
Operating Characteristic (ROC) curves to evaluate our
predictions [37, 38]. Each AUC evaluation is performed
by the roc function from the pROC R package [39]. AUC
can be interpreted as the “probability that the classifier
will rank a randomly chosen positive instance higher
than a randomly chosen negative instance” [40]. Sensi-
tivity and specificity for each ROC were calculated by
first finding the minimum distance from the curve to
the top left corner (sensitivity = 1, specificity = 1).

TargetExpress validation and performance

To evaluate the robustness of our SVM classification
model (TargetExpress) we varied the True Target defin-
ition “t <0 and FDR < fdr” by selecting fdr =0.01, 0.05,
0.1 and 0.2 to observe how the FDR choice can affect
the SVM prediction performance. We decided to evalu-
ate the performance of our model using both cross and
independent validation. Cross-validation consists of leav-
ing out data from one experiment, re-training with the
other n-1 experiments then testing against the left-out
experiment. These results are presented in Additional
file 1: Figure S3.

We selected various combinations of methods to test
the performance of our model. The “intersect” ap-
proach, for any particular target prediction method,
consists of only considering targets with higher expres-
sion than the median of the whole microarray. This is a
quick way of removing genes that are not expressed in
the particular experimental context. We also generated
versions of TargetExpress that only consider one of the
sequence-based target prediction methods, by setting
the other scaled scores to the neutral value 0. In total,
we calculated AUCs for each left-out experiment using
the following methods or combinations: TargetScan,
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TargetScan-intersect and TargetExpress using only Tar-
getScan scores; microT-CDS, microT-CDS-intersect
and TargetExpress using only microT-CDS scores; a
sum of TargetScan and microT-CDS scores, sum of
TargetScan and microT-CDS scores-intersect and
TargetExpress using both TargetScan and microT-CDS
scores. Here we selected only TargetScan and microT-
CDS scores given they have the top two AUC scores
(Additional file 1: Figure S3).

Since we used the human and mouse data to train
TargetExpress, we also wanted to evaluate its perform-
ance against a truly independent dataset. We selected
zebrafish experiments performed under three different
cellular conditions: developing embryo, and cell-sorted
central nervous system or muscle cells. These experi-
ments were designed to discover targets regulated by
dre-miR-430, dre-miR124 and dre-miR-1/133, respect-
ively. We defined TT and FT as before.

Target predictions for present genes

A simplistic approach to obtain cell-type specific tar-
gets, mentioned in the Introduction, is working only
with genes that are detected as being expressed (or
“present”) in the condition of interest. To test this idea
in a more sophisticated manner than the “intersect”
approach mentioned above, we restricted target predic-
tions for zebrafish to those called “present” in each
condition using the masScalls function from the affy R
package [33].

Validation with RNA-Seq data

To test our method with a different kind of expression
data, we downloaded the raw sequences from a Zebra-
fish RNA-Seq and ribosome profiling experiment de-
signed to discover dre-miR-430 targets (Short Read
Archive SRP010040/GEO accession GSE34743) [2]. We
converted the Short Read Archive files (SRA) to fastq
format using fastq-dump from the SRA toolkit [41]. All
samples were 3’-adapter trimmed using reaper [42],
then mapped to the zebrafish genome (Zv9) down-
loaded from Ensembl [43] using Bowtie 2 [44]. We
quantified gene expression in all samples by overlap-
ping the mapped reads to gene locations, using the
GenomicFeatures R package [45]. We analysed both
types of experiment: mRNA-Seq and ribosome pro-
tected fragments (ribosome profiling). For both kinds
of profiles we performed differential expression analysis
using the edgeR R package [46]. The results for the dif-
ferential expression analysis are included in Additional
file 1: Table S1. We then defined True Targets and False
Targets, and calculated AUCs, as for the microarray
experiments.
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Comparing predictions with microarray or RNA-Seq
expression data

To compare which technology is better for our method,
we would ideally want RNA from the same experiment
analysed by both microarray and RNA-Seq. Since this is
not available, we used two different experiments that
studied mouse B-cells in wild-type and miR-155 knock-
out conditions. The microarray experiment is available
through ArrayExpress (E-MEXP-1325) and consists of
purified mouse B cells (wild-type and miR-155-KO)
stimulated with LPS and IL4 for 24 h (to induce miR-
155 expression) [47]. We processed the CEL files as de-
scribed above for all other microarray experiments. The
RNA-Seq experiment is available through GEO
(GSE61425) and consists of purified mouse B cells (wild-
type and miR-155-KO) stimulated with LPS and IL4 for
4 days [48]. To facilitate the comparison of this RNA-
Seq experiment to the microarray one, we processed the
SRA files as described above, with the following modifi-
cations. We used Kallisto to perform mapping and quan-
tification of the fastq files simultaneously [49]. We then
used voom to transform the estimated counts to values
that are amenable to processing with standard micro-
array linear models [50]. After this, we performed differ-
ential expression analysis with limma in the same
manner as for the other microarray experiments. To
make comparisons more even during ROC analysis, we
defined the True Targets for both experiments as the top
250 down-regulated genes (t-statistic <0) and the top
250 non-changing genes (abs(t) < 1) as False Targets.

Gene Set functional enrichment tests for TargetExpress
predictions

We downloaded normal tissue mRNA-Seq data from the
Human Body Map 2.0 [51] consisting of single and
paired-end reads. Single-end sets consist of 65-84 mil-
lion 75 nt reads per sample. Paired-end sets consist of
64—84 million 50 nt read pairs per sample. All samples
were mapped to the human genome (Ensembl hgl9)
[43] using Bowtie 2 [44]. Once mapped to hgl9, we ob-
tained counts for each gene per sample by overlapping
the mapped reads to gene locations in the genome using
the GenomicFeatures R package [45]. The raw counts in
each tissue and gene lengths are used to calculate Reads
Per-Kilobase of gene per Million mapped (RPKM)
values. The RPKMs are used as the expression values of
each gene in each tissue.

We applied our model to predict targets for hsa-miR-
29 in two different tissues: heart and brain. We selected
this miRNA because it is highly expressed in several
adult tissues; we focus on these two particular tissues,
since they have very different gene expression profiles.
As a negative control we randomized the original Targe-
tExpress heart and brain prediction scores.
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To perform Gene Set enrichments tests on our pre-
dicted targets in different cellular conditions, we used
the wilcoxGST test from the limma R package (described
in [52]). We defined the universe for the Gene Set Test
as the union of targets predicted by Target Scan,
microT-CDS (miTG 3UTR score > 0), MIRZA, MIRZA-
F and MIRZA-N. To simplify interpretation, we only
used Biological Process GO Terms with more than 5
and less than 100 genes.

TargetExpress web interface

In addition to the standalone version of our model, we
provide a simple web interface so that users can explore
TargetExpress predictions. The user needs to provide
three things: i) the miRNA of interest, ii) the target
prediction method (TargetScan, microT-CDS and/or
MIRZA predictions), and iii) an expression profile with
RefSeq transcript ids. We provide a link so that users
can use DAVID [53, 54] to transform different kinds of
gene identifiers into the required RefSeq ids. Currently,
the web interface includes TargetScan, microT-CDS and
MIRZA predictions for human and mouse.

Results

Training a Support Vector Machine

We developed a Machine Learning classification model
(TargetExpress) to improve available miRNA target pre-
dictions by including expression profiles (see Methods).
TargetExpress gives positive and negative scores. Positive
scores indicate predicted True miRNA targets and nega-
tive scores indicate False targets (Fig. 1a).

After training our n SVM models (see Methods), we
can interpret how each feature contributes to the final
prediction (TargetExpress score), by observing the Area
Under the Curve (AUC) for each feature within each
SVM model (Additional file 1: Figure S3). The expres-
sion feature has the highest weight (Fig. 1b and
Additional file 1: Figure S3), telling us that expression
substantially helps to predict True targets. This is ex-
pected since non-expressed targets (not present) cannot
be repressed. Since there is no perfect way to define
expressed and non-expressed genes in a microarray
experiment (due to background noise and cross-
hybridization), our SVM approach is a useful alternative.
In addition, mRNAs with low expression levels are less
likely to be experimentally detected as True miRNA tar-
gets. This is visible in Fig. 1b, where targets with nor-
malized expression values between 0.5-1 have higher
TargetExpress scores than those between 0-0.5, even
though both likely consist of expressed genes. This could
be a statistical artefact, due to the fact that low expres-
sion is inherently noisier and thus there is less power to
detect a significant change. In any case, TargetExpress
was designed to predict the outcome of the experiment,
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and thus takes advantage of the full range of expression
values to provide improved target predictions.

In Fig. 1 we can also observe that features do not con-
tribute equally to predict True miRNA targets. From
Fig. 1c-h we can see that TargetScan, microT and
MIRZA predictions in the high-score range (0.5-1) con-
tribute to the functional TargetExpress predictions (posi-
tive scores), yet still include many targets with negative
scores (Additional file 1: Table S3). In comparison, very
few lowly expressed targets are predicted to be func-
tional. This suggests that imposing any fixed score
threshold for TargetScan, microT or MIRZA will not
drastically improve predictions, but imposing a fixed
threshold using expression data should.

Cross-validation of TargetExpress

SVM models can easily be over-fit to the training data,
so we first evaluated our model using a “leave one out”
cross-validation. This consists of removing one experi-
ment before training with the rest, and evaluating the
performance of the new #n-I SVM models against the

left-out experiment. For this evaluation we built #-1
SVM models for the individual TargetScan (TS) and
microT (MT) predictions, as well as their “Sum” (see
Methods), on their own or in combination with mRNA
expression values (TargetExpress predictions). Here we
decided to focus on TS and MT predictions since they
showed the best performance. For each of the three ini-
tial methods (TS, MT and Sum) we also applied a simple
“intersect” approach (considering only targets with ex-
pression greater than the median, see Methods). This led
to a total of 9 different models that we compared in
groups of three (Fig. 2, Additional file 1: Figure S4).

We found that TargetExpress-TS significantly out-
performed both TS and TS-intersect, p-value = 0.0006,
and 0.0012 (one-sided Wilcoxon Rank Sum paired
test). TargetExpress-MT outperforms MT and MT-
intersect as well, p-value =0.0004 and 0.0006). The
combined TargetExpress-Sum also performed signifi-
cantly better than Sum and Sum-intersect (p-value =
0.0012 and 0.0023). Importantly, TargetExpress per-
forms slightly better than TargetExpress-TS or
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Fig. 2 Leave one out cross-validation. The area under the curve (AUC) for each “left out” experiment (indicated in the top legend) given different
prediction models: TargetScan, TargetScan-intersect and TargetExpress-TS (green boxplots); microT, microT-intersect and TargetExpress-MT (orange);

TargetExpress-MT, (p-value = 0.0955 and 0.0549). This
result suggests that combining different target predic-
tion methods can improve microRNA target predic-
tions. However simply adding expression information
leads to a large improvement over any individual tar-
get predictor.

In Additional file 1: Figure S5 we show that TargetEx-
press models have higher AUCs than individual TargetScan
or microT-CDS predictions, and also a better balance be-
tween sensitivity and specificity.

Independent validation and specificity for different
cellular conditions

The best way to evaluate an SVM is with fully independ-
ent data. For this, we decided to use zebrafish micro-
array experiments: a rigorous performance test, since we
only used human and mouse data to train TargetExpress.
There are no microT-CDS predictions available for zeb-
rafish, so we tested if our model improves TargetScan

predictions, and makes them more specific to particular
cellular conditions.

We selected the following zebrafish experiments with a
strong Sylamer signal (see Methods and Additional file 1:
Table S1) to evaluate the specificity of our SVM model:
knock-down of miR-1 and miR-124 in muscle and central
nervous system cells respectively (GSE12991), and knock-
down of miR-430 in embryo cells (GSE4201). With the
control condition expression profiles from the same exper-
iments (muscle, CNS, embryo) we generated predictions
for each miRNA (miR-1, miR-124, miR-430), for a total of
9 sets of targets. We generated all possible combinations
of miRNAs and tissues to use the “incorrect” tissues as
negative controls. Then, we evaluated these predictions
given the True Targets (T'T) and False Targets (FT) defined
from the differential expression analysis of the knock-
down experiments (see Methods).

Our predictions with the correct cellular condition im-
prove on the original TargetScan scores and also per-
form better than when any of the incorrect expression
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profiles are used (Additional file 1: Figure S6). From this,
we conclude that our model generally improves TargetS-
can predictions making them more specific to a selected
cellular condition.

A common practice to improve predictions is to re-
strict them to the expressed transcripts, since if a tran-
script is not present it clearly cannot be targeted.
Although defining expressed or “present” transcripts
using microarray results is error prone, for this example
we used an approach defined by Affymetrix: probesets
that have significantly higher signal than their matched
negative controls [55] (see Methods and previous sec-
tion). We thus compare our predictions against TargetS-
can, but restricting the whole analysis to transcripts that
are deemed to be “present” in each experiment, using
the same zebrafish dataset. TargetExpress still outper-
forms the original TargetScan scores in all three cellular
conditions, suggesting that it's improvement is not sim-
ply due to ignoring non-expressed targets (Fig. 3).

Applying TargetExpress to RNA-Seq data

During training TargetExpress used only microarray
data, so we wanted to demonstrate that it works well on
other types of expression profiles. We selected another
zebrafish experiment, this time using high-throughput
sequencing to measure expression [2]. The experiment
consists of comparing wild-type zebrafish embryos to
maternal zygotic Dicer mutants at several development
time points. During this period a single microRNA,
miR-430, dramatically increases expression under

miR-1 Experiment in:

2 Muscle

3 miR-430 Experiment in:
Embryo

1 miR-124 Experiment in:

Brain

N

05 06
AUC

TargetExpress
Brain—Sample
TargetExpress
Embryo—Sample
TargetExpress
Muscle-Sample
Total Context+
Brain—Sample
Total Context+
Embryo-Sample
Total Context+
Muscle-Sample

Fig. 3 Tissue specificity performance of predictions in zebrafish,
restricted to significantly expressed genes. For each miRNA (rows),
we compared six prediction sets (columns): TargetExpress predictions
for three different tissues, and TargetScan predictions for transcripts
present in each tissue. Each result is evaluated using the AUC metric
and given a rank according to it's relative position amongst the six

methods that we compared (1 = best, 6 = worst)
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normal conditions. It is also an interesting experiment
since it used RNA-Seq and Ribosome-profiling (a proxy
to measure translation), to detect miRNA repression af-
fecting either transcript levels or translation.

We can see that TargetExpress again substantially im-
proves the original TargetScan scores, when including
mRNA or Ribosome profiling expression measurements
(Fig. 4). This improvement can be partially explained
since True targets in the control samples (MZDicer mu-
tants, lacking miR-430 expression) tend to be highly
expressed (Additional file 1: Figure S7). Nevertheless,
even when analysing transcripts with increasing expres-
sion level (above percentiles 25, 50 or 75) TargetScan
only slightly improved its performance (Fig. 4,
Additional file 1: Figures 8 and 9). In all these cases,
TargetExpress consistently improves on the single target
prediction method.

Comparing predictions using microarray or RNA-Seq
expression profiles

We next wanted to test the effect of using microarray or
RNA-Seq expression profiles with TargetExpress. Unfor-
tunately, we do not have a single experiment where the
same RNA samples were profiled using both technolo-
gies. The closest we found were two experiments com-
paring mouse wild-type and miR-155 knockout B cells
performed under similar conditions (see Methods). Both
experiments had a good number of biological replicates,
and the direct effect of miR-155 was clearly detected
using Sylamer analysis (Additional file 1: Figure S10).
The Sylamer profile for the microarray experiment
shows a very steep enrichment peak (Additional file 1:
Figure S10A), suggesting that direct targets are more
easily detected than in the RNA-Seq experiment where a
broader peak implicates a combination of direct targets
with secondary effects (Additional file 1: Figure S10B).
This is consistent with the RNA-Seq experiment being
performed 4 days after miR-155 activation, as opposed
to 1 day for the microarray experiment. Due to these dif-
ferences, we decided against trying to compare the ac-
tual genes detected as targets in each experiment.
Nevertheless, what is clear is that TargetExpress can suc-
cessfully use either kind of expression profile, achieving
better predictions than stand-alone target prediction
methods (Fig. 5). Also, the performance is better when
using the control profile from the actual experiment
(microarray or RNA-Seq).

Different miRNA functions in different tissues

In the previous sections, we showed that TargetExpress
improves prediction of microRNA targets, achieving its
best performance when using the appropriate expression
profile. We were curious to see if TargetExpress allows
us to describe different biological functions for the same



Ovando-Vézquez et al. BMC Genomics (2016) 17:364

Page 9 of 13

AUC

0.7

0.5

A) TargetExpress
All Targets
B) Target Context+

Expression > percentil 0

lines indicate TargetExpress AUCs

mRNA expression profile
I Ribosome expression profile

Fig. 4 Performance comparison using high-throughput sequencing data of zebrafish embryos. Experimental profiles compared wild type and

dicer mutant embryos at 6 h postfertilization, when a clear difference of miR-430 targets is observed [2]. We compared a) TargetExpress predictions to
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Fig. 5 Performance comparison using microarray or RNA-Seq expression
from similar experiments. Two different experiments used microarray or
RNA-Seq to detect expression changes in mouse miR-155 knockout B
cells [47, 48]. We compared TargetScan and microT predictions to
TargetExpress using either microarray or RNA-Seq expression profiles.
The Y-axis shows the Area Under the Curve metric (AUC)

microRNA, when expressed in different tissues. We fo-
cused on miR-29, a highly conserved microRNA that is
expressed in many tissues (http://mellfire.ugent.be/pub
lic/body_map/). We obtained expression profiles for 16
different tissues from the Human Body Map 2.0 [51]
(see Methods). As an example, we chose two tissues that
express miR-29 but with very different mRNA expres-
sion profiles: brain and heart. The idea is to highlight
what makes our model unique: predicting different func-
tions, within different tissues, for a single miRNA.

For a systematic test, we performed GO term enrich-
ment analysis (Additional file 1: Table S4), and then se-
lected terms that were differentially enriched between
heart and brain target predictions. As expected, several of
the most significant GO terms are related to the under-
lying tissue. The TargetExpress miR-29 brain predictions
were enriched for terms such as “neurotransmitter trans-
port/secretion”, “oligodendrocyte differentiation/develop-
ment”, “oligodendrocyte development”, “cognition” and
“learning or memory. These terms were not as enriched
for the other prediction methods (Total Context+, miTG
or a random brain TargetExpress control). On the other
hand, the TargetExpress miR-29 heart predictions included
terms like “cardiac ventricle morphogenesis/develop-
ment”, “cardiac chamber development” and “cardiac
muscle tissue development” that were also not so enriched
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for the other methods (Fig. 6). We also searched the litera-
ture for articles studying miR-29 function. Previous evi-
dence suggests that miR-29 down-regulates heart
functions related to fibril and collagen [56, 57], and brain
functions related to cellular death and apoptosis [58, 59].
These also appear in our enriched GO terms, where we
find functions related to collagen and myofibril assembly
in TargetExpress heart predictions, and functions related
to neuron apoptosis in TargetExpress brain predictions
(Additional file 1: Figure S11).

Discussion

There is great interest to incorporate more biological
context to microRNA target predictions. Unfortunately,
many methods that do so require a large number of ex-
pression profiles [17, 18] or series of matched mRNA
and miRNA profiles [13-16]. We developed TargetEx-
press to improve available predicted targets by adding a
single mRNA expression profile, making the targets
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more specific to particular cellular conditions. Our
method consists of ranking and scaling target predic-
tions and expression values, then combining (adding up)
the predictions of n SVM classification models
(Additional file 1: Table S1). The new predictions can be
seen as a non-linear filter for each original prediction
and expression value. Results of this “filtering” are those
mRNAs that are predicted to be more down regulated
by a miRNA in a specific cellular condition.

Regular target predictions only use sequence features,
making them very sensitive but unable to differentiate
targets that are repressed mainly in specific cellular con-
ditions. In order to obtain miRNA targets relevant to a
particular cell-type, a simple and commonly used strat-
egy is to select only the transcripts that are robustly
expressed (typically transcripts with expression greater
than the median). We compare TargetExpress against
three of the most popular target prediction methods.
Even when only analysing expressed transcripts,
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@ brain TargetExpress random
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ventricular cardiac muscle tissue development E !
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Fig. 6 GO term enrichment comparing predictions for miR-29 in heart and brain tissues. GO enrichment for TargetExpress predictions are shown in
yellow (heart) and red (brain) bars. Random TargetExpress predictions are shown in orange (heart) and blue (brain). GO enrichment values for microT-
(DS and TargetScan predictions are shown in purple and green bars, respectively. Full GO enrichment results are in Additional file 2: Table S4
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TargetExpress performs better than the original target
predictions. However, during cross-validation we ob-
served that two experiments did not benefit from adding
expression data: the overexpression of miR-30a and
miR-145 in human cancer cell lines (Fig. 2). Interest-
ingly, the raw methods already have extremely high per-
formance for these cases, suggesting a limit above which
adding expression context will no longer improve pre-
dictions. Nevertheless, when we tested TargetExpress
using completely independent datasets (zebrafish micro-
arrays and RNA-seq/ribosome profiling) we observed
better performance than TargetScan.

TargetExpress helps us refine available target predic-
tions, selecting those transcripts that are more likely to
be repressed in specific cellular conditions, by including
gene expression measurements. One of the most inter-
esting applications of our method is to generate different
lists of targets for the same miRNA, using expression
profiles from different tissues or cells. As an example of
this, we present results for miR-29 predictions for heart
and brain tissues, showing that enriched GO terms are
more consistent with these tissues and with published
results.

Conclusions

Our method is intended for anyone interested in the
function of miRNAs in specific cell-types. The ideal ex-
periment in these cases is to overexpress or knockdown
the miRNA of interest in the cell-type of interest, followed
by genome-wide expression profiling [22, 24, 26]. Lists of
targets can then be derived as we described (see Methods)
or by using TargetScore, a method that combines fold-
change measurements and sequenced-based scores [19].
When such experiments are not available, or cannot be
performed for cost or time reasons, TargetExpress is a
useful alternative, since it only needs predicted target
scores for a miRNA and expression measurements for
these potential targets in the condition of interest. It can
thus be used to systematically predict the outcome of
overexpression or knockdown experiments across a large
number of tissues or cell lines.

In addition to a stand-alone program, we provide a
web site that includes TargetScan, microT-CDS and
MIRZA predictions for human and mouse miRNAs. The
user only needs to select their favourite miRNA and up-
load an expression profile. Additional links allow anno-
tation and functional enrichment analyses, using the
DAVID website [53]. TargetExpress is available at:
http://targetexpress.ceiabreulab.org/.
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