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Abstract

To improve the recognition accuracy of underwater acoustic targets by artificial neural net-

work, this study presents a new recognition method that integrates a one-dimensional con-

volutional neural network and a long short-term memory network. This new network

framework is constructed and applied to underwater acoustic target recognition for the first

time. Ship acoustic data are used as input to evaluate the network performance. A visual

analysis of the recognition results is performed. The results show that this method can real-

ize the recognition and classification of underwater acoustic targets. Compared with a single

neural network, the relevant indices, such as the recognition accuracy of the joint network

are considerably higher. This provides a new direction for the application of deep learning in

the field of underwater acoustic target recognition.

1. Introduction

In recent years, with the development of science and technology, underwater acoustic target

recognition technology has attracted increasing attention from scientific and technical person-

nel because it is a vital issue in the field of underwater acoustic signal processing.

The problem of underwater acoustic target recognition is extremely complex. The multifac-

eted underwater environment causes distortion in radiated noise [1], making underwater

acoustic target recognition more difficult than conventional speech recognition. As technolog-

ical development is slow, more accurate underwater acoustic target recognition methods must

be investigated.

The task of underwater acoustic target recognition is to analyze underwater acoustic signals

received by a sonar system and extract the features of targets. At present, deep learning is a

popular technology in various industries. Owing to its very strong feature extraction and opti-

mization capabilities, deep learning has opened up a new development direction for underwa-

ter acoustic target recognition technology [2–9]. Many researchers apply convolutional neural

network (CNNs) to underwater acoustic target recognition [10–13].

The long short-term memory (LSTM) architecture is suitable for processing and forecasting

events with long intervals in time series. The analysis of ship-radiated noise depends largely on
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local time-frequency information and time-series related information; therefore, LSTM can be

utilized for underwater acoustic target recognition [14–17].

Because the recognition framework of a single neural network makes the extraction of all

features of underwater acoustic signals challenging [18–20], the research is usually focused on

the development of deeper and more complex networks [21–29], which however are more dif-

ficult to train (in terms of training data size and labeling requirements). Therefore, building a

new network model by combining various network structures may be a good solution. Studies

on joint neural networks are mostly based on traditional two-dimensional (2D) CNN and

LSTM. However, owing to the characteristics of the network model, 2D CNN seems to per-

form better in the field of image recognition. Conversely, 1D CNN are usually employed in

speech-processing fields such as sequence modeling and natural language processing, where

the use of 1D CNN reduces the amount of computation required. Therefore, in this study, a

1D CNN and LSTM network model are combined to identify underwater acoustic targets,

with the aim to obtain a network with a higher training speed and recognition rate.

Based on the related research on the acoustic target recognition technology in this study, a

network recognition framework is built and a new type of neural network is established by

combining the advantages of the 1D CNN and the LSTM. The network is trained using the

extracted characteristics of ship acoustic signals as input.

2. Recognition principle

2.1 Convolutional neural network

CNNs usually include three types of network layers: convolutional, pooling, and fully con-

nected. The pooling layer is also called the down-sampling layer. The convolution and pooling

layers usually contain multiple feature matrices, which are generated by different convolution

cores. Dimension reduction of data can be achieved through multiple convolution and pooling

layers. Finally, the predicted category labels can be obtained through the fully connected out-

put layer.

As the task to be completed in this study is to recognize one-dimensional underwater

acoustic signals, a one-dimensional convolutional neural network (1D CNN) is used [11, 12].

1D CNN model is shown in Fig 1.

The difference between convolutional neural networks and other networks is convolution,

and it is the most critical operation for convolutional neural networks. Through the convolu-

tion kernel, the convolution layer can extract important features from inputs and form feature

vectors. Its operational expression is

Xl ¼ Xl� 1�Wl þ bl ð1Þ

where Xl and Xl−1 are the eigenvectors of the l and the l − 1 layers respectively, Wl is the convo-

lution kernel, bl is a biased vector, and � is the convolution operation.

Discriminative features are extracted from input data through the linear transformation of

the convolution operation, and then the characteristics more suitable for classification are

obtained through the nonlinear transformation of the activation operation. The activation

operation must be completed by setting the activation function. In this study, a common recti-

fied linear unit (ReLU) activation function was used, and its expression is

f xð Þ ¼ max 0; xlj
� �

ð2Þ

where x = input value. Owing to the extraction of characteristics of input data with high

dimensions, it is easy to cause overfitting of the neural network to the training dataset.
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Therefore, usually pooling layers are joined to improve the operation speed, reduce the train-

ing time, and effectively prevent training data overfitting [7]. The pooling layers are calculated

by sliding the kernel on the input matrix. However, the operation of the pooling kernel does

not contain any parameters. Therefore, the pooling layers are usually divided into maximum

pooling and average pooling. The maximum or average values of the matrix elements in the

specified range of the previous layer are taken as the output of this layer. The output of the

pooling layer is

Xl ¼ S Xl� 1
� �

ð3Þ

where S is the down-sampling rule, Maximum pooling is used in this study, and the maximum

pooling expression is

S Xl� 1
� �

¼ max
0<n�w

xl� 1

n ð4Þ

where xl� 1
n represents the nth neuron in the eigenvector output by convolutional layer l − 1,

and w is the pool size. After multiple convolution and pooling layers, the classification layer

can be used to complete the classification and recognition tasks.

2.2 Long short-term memory

Because the LSTM network can analyze and extract data from each sequence, it is often widely

used to process sequence data and model short-term or long-term dependencies between data

[8]; therefore, the LSTM model is used in this study.

It is a network structure with cyclic links connected to each other. As a whole, the LSTM

network is still a recurrent neural network, but there are small loops of LSTM blocks in the

network. The difference between the network and ordinary recurrent neural network is that

neurons are replaced with LSTM blocks. Its biggest advantage is that it can link multiple

nodes, connect the nodes of the same hidden layer in series, and realize parameter sharing

among all nodes, making it completely different from other networks in technology [9]. The

LSTM block is shown in Fig 2.

Fig 1. 1D-Convolutional neural network model.

https://doi.org/10.1371/journal.pone.0266425.g001
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The update calculation of forget gate implementation is as follows:

fgate ¼ s Wf � a t� 1ð Þ; x tð Þ
� �

þ bf
� �

ð5Þ

where Wf is the weight, a(t−1) is the input of the previous cell, x(t) is the input of the current

cell, σ is the sigmoid function, and bf is the bias. The forget gate reads a(t−1) and x(t) and then

outputs a value between 0 and 1 to the cell state c(t−1), where 1 indicates that information is

completely retained and 0 indicates that information is completely dropped.

The in gate is used to decide how much new information is added to the current cell state,

and the specific process of the in gate is expressed as

igate ¼ s Wi � a t� 1ð Þ; x tð Þ
� �

þ bi
� �

ð6Þ

Ctanh ¼ tanh WC � a t� 1ð Þ; x tð Þ
� �

þ bC
� �

ð7Þ

C tð Þ ¼ fgate �C
t� 1ð Þ þ igate �Ctanh ð8Þ

where Wi and Wc are the weight, bi and bc are the bias, the update gate first uses the sigmoid

function to calculate the information to be updated, and then uses the tanh function to extract

the updated content.

The output gate was used to determine the final output information of the cells. First, the

sigmoid function calculates which information needs to be output, and then the tanh layer is

Fig 2. LSTM block model diagram.

https://doi.org/10.1371/journal.pone.0266425.g002
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used to output this information. The specific calculation process is as follows:

Ogate ¼ s WO � a t� 1ð Þ; x tð Þ
� �

þ bO
� �

ð9Þ

a tð Þ ¼ Ogate � tanh C tð Þ
� �

ð10Þ

where Wo is the weight, and bo is the bias. The computation of the LSTM network is more

complicated than that of an ordinary recurrent neural network, but its performance in learn-

ing long-term dependence is better than that of any known cyclic network, and it performs

well in sequential processing tasks.

3. Experimental data

3.1 Dataset

The ship-radiated noise data used in this study came from the ShipsEar [30] dataset recorded

in different areas of the Spanish coast between 2012 and 2013. This dataset consists of 90

acoustic records of 11 types of ships and environmental noise within 15 seconds– 10 minutes.

According to the annotation in the original dataset, they can be grouped into four categories

based on the types of ships, namely A, B, C, and D, and E for environmental noise. The types

of ships included in each category are listed in Table 1.

3.2 Data processing

As the original data sets are all real data collected from the ocean, there are some problems

such as excessive noise and blank segments in some datasets; therefore, the dataset of 90 acous-

tic signals needs to be preprocessed.

First, a part of the acoustic signals with poor collection effect was removed. In the remain-

ing acoustic signals, the blank segment left during the collection was removed manually, and

the acoustic signals was de-noised. Some acoustic signals with low sounds were enhanced. To

enlarge the dataset, we split the original 90 acoustic signals into 3seconds fragments.

To characterize the features of the acoustic signals more comprehensively, we extracted as

many features as possible for feature fusion as the network input, to achieve a better recogni-

tion effect. In addition to the traditional features like Mel-spectrogram and Mel-Frequency

Cepstral Coefficients, we also used three features that are often used in music theory, namely

chromatogram, spectral contrast and tonnetz, the following will be introduced separately:

The first is to extract the Mel-spectrogram [31], obtain the Mel Bank Features based on

Mel-scale, and the length of Mel spectrum is set as 128. Then the columns of the resulting

matrix are compressed, the average value of each row is calculated, and an eigenvector of

(128,1) is returned.

The second is to extract the mel-frequency cepstral coefficients [32]. It is a kind of coeffi-

cient obtained by utilizing the human nonlinear auditory system, performing nonlinear

Table 1. Dataset classification.

Category Ship types

A Fishing boats; Trawlers; Mussel boats; Tugboats; Dredgers

B Motorboats; Pilot boats; Sailboats

C Passenger ferries

D Ocean liner; Ro-Ro vessels

E Background noise recordings

https://doi.org/10.1371/journal.pone.0266425.t001
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conversion to the acoustic signal frequency spectrum corresponding to the Mel-spectrum, and

then transforming to cepstrum. Here, the row dimension of its output is set to 40, and then

column compression is performed on the obtained coefficient matrix to obtain the eigenvector

with the final dimension of (40,1).

The third is to calculate the chromatogram from the results of the short-time Fourier trans-

form of the acoustic signal [33]. Because the feature it reflects is related to twelve different

pitch levels, the resulting vector size is (12,1).

Fourth, spectral contrast is extracted, and spectral contrast based on the octave scale can be

used to extract the relative spectral characteristics of acoustic signal [34]. Through this step,

the eigenvector size obtained is (6, 1).

Fifth, tonnetz is extracted, which is mainly used to analyze the chord relationship of sound

[35]. In this step, the pure fifth, third, and minor third are used as two-dimensional coordi-

nates to obtain the feature vectors of (6,1).

After the five features are extracted, the feature vectors obtained are fused, and for each

acoustic signal, a feature vector with a dimension of (192,1) is provided as the input of the net-

work. The processing flow chart is shown in Fig 3.

To make the five fusion extraction features of the input acoustic signals express more com-

prehensively, we conducted t-SNE visualization of single extracted Mel spectrum, MFCCs fea-

ture and fusion feature, and the results are shown in Fig 4.

Fig 3. Data processing flow chart.

https://doi.org/10.1371/journal.pone.0266425.g003

Fig 4. t-SNE visualization result of the Mel spectrum, MFCCs feature and fusion feature. (a) Mel spectrum; (b)

MFCCs; (c) fusion feature.

https://doi.org/10.1371/journal.pone.0266425.g004
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It can be seen from the above figures that the fusion feature is more separable than the sin-

gle feature, mainly because the spectral contrast and other musical theory features used can

capture the tonal features of the acoustic signals more sensitively. Therefore, the subsequent

research in this paper will take fusion features as input.

We manually screened the acoustic signals in accordance with the original annotation,

removed some unprocessed acoustic signals with poor recording effect, and processed the

remaining acoustic signals to obtain the actual data set.

To make it easier for other researchers to use the ShipsEar dataset, each acoustic signal

piece in the dataset is assigned a number, and the serial number used is indicated in Table 2.

To better verify the network, 4900 samples were randomly selected and divided into a train-

ing set and a test set in a ratio of four to one. The number of samples was 3920 for the training

set and 980 for the test set.

3.3 Network construction

The1D-CNN network uses one-dimensional convolution to process a one-dimensional

sequence model, which is widely used in acoustic signal recognition. Because the ship’s voyage

is a continuous process, its acoustic signal characteristics must have continuity in time, so we

can consider the method of processing time series signals to identify the ship target.

The characteristics of the ship’s underwater acoustic signal is time-varying, and we can use

the LSTM network to capture the characteristics of the current moment and the historical

information of the previous moment. Combined with a one-dimensional CNN and LSTM net-

work, the system can quickly adapt to signal changes and improve the recognition accuracy.

Therefore, we build a joint model of the1D-CNN and LSTM network. The 1D CNN part of

the network consists of two convolution layers and two pooling layers alternately. The pooling

layer adopts maximum pooling, followed by a dropout layer, and the LSTM part consists of

one LSTM layer and one dropout layer. Finally, it is sent into the dense layer for the classified

output, and the network model is shown in Fig 5.

Specific parameters of the network are shown in Table 3:

4. Experimental results

4.1 Training network

Based on the aforementioned dataset, we randomly divided all 4900 acoustic signal clips into

training and test sets, and the test set accounted for 20% of the total data. After setting up the

joint network model, we set the network training parameters as shown in Table 4:

4.2 Training results

After 100 epochs, we obtained the loss and accuracy curves, as shown in Figs 6 and 7. The

curve composed of blue points is the change curve of the training set, and the red curve is the

test set.

Table 2. Actual size of the dataset used.

Category Acoustic signal serial number The number of data Total

A 13,15,28, 46–49,66,73–76,80, 93–96 1040 4900

B 26,27,29,30,33,50–52,56,57,68, 70,72,77,79 790

C 6,10,40,42,43,52–54,59–65,67 1340

D 18–20,22,24,25,58,69,71,78 1135

E 81–92 595

https://doi.org/10.1371/journal.pone.0266425.t002
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The classification accuracy of the joint network for the data set reached 96.73% in the train-

ing set and 92.14% in the test set.

In order to verify the performance of the joint network proposed in this study, we com-

pared its recognition accuracy with 1D-CNN and LSTM networks, and the results are shown

in Table 5.

By comparison, we found that the recognition accuracy of the joint network was 14.46%

higher than that of the LSTM network in the training set, 10.75% higher than that of the

1D-CNN, and 16.04% higher than that of the LSTM network in the test set, 7.96% higher than

that of the 1D-CNN network.

To intuitively see the recognition performance of the three networks on the ShipsEar data-

set, we visualized the recognition results on the test set by drawing the confusion matrix, and

the results are shown in Fig 8.

In the figure, 0 to 4 of the horizontal and vertical coordinates represent labels A to E. By

using the confusion matrix, we can calculate the recognition accuracy of the three networks

for the five types of ship targets, as shown in Table 6.

The recognition accuracy of the joint network for the five types of targets is the highest

among the three types of networks. Therefore, we can deduce that the joint network is of con-

siderable help in improving the accuracy of underwater acoustic target recognition.

Fig 5. Joint network model.

https://doi.org/10.1371/journal.pone.0266425.g005
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Using the confusion matrix, we can obtain four commonly used indicators of evaluation

models, TP, FN, FP, and TN, where TP means that positive class is predicted to be positive

class, FN means that positive class is predicted to be negative class, FP means that negative

class is predicted to be positive class, and TN means that negative class is predicted to be

Table 3. Network parameter table.

Layer Output Shape Param

Conv_1D 191×64 256

Maxpooling1D 63×64 0

Conv_1D 62×128 24704

Maxpooling1D 20×128 0

Dropout 20×128 0

LSTM 32×1 20608

Dropout 32×1 0

Dense 5×1 165

https://doi.org/10.1371/journal.pone.0266425.t003

Table 4. Network training parameter.

Parameters Parameter Settings

Loss Categorical_crossentropy

Optimizer Adam

Metrics Accuracy

Batch_size 64

Epochs 100

Activation function(CNN) ReLU

Activation function(LSTM) Sigmoid

https://doi.org/10.1371/journal.pone.0266425.t004

Fig 6. Variation of accuracy.

https://doi.org/10.1371/journal.pone.0266425.g006
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negative class. Therefore, we can calculate the precision and recall of the model. The calcula-

tion formula is as follows.

precision ¼
TP

TP þ FP
ð11Þ

recall ¼
TP

TP þ FN
ð12Þ

Fig 7. Variation of loss.

https://doi.org/10.1371/journal.pone.0266425.g007

Fig 8. Confusion matrices for three networks. (a) LTSM; (b) 1D-CNN; (c) Joint Network.

https://doi.org/10.1371/journal.pone.0266425.g008

Table 5. Comparison of three kinds of network recognition results.

Network Accuracy of training set Accuracy of test set

LSTM 82.27% 76.10%

1D-CNN 85.98% 84.18%

Joint Network 96.73% 92.14%

https://doi.org/10.1371/journal.pone.0266425.t005
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F1 ¼
2 � precision � recall
precisionþ recall

ð13Þ

For each category, the precision, recall and F1 score were calculated. The results are shown

in Figs 9–11 respectively.

The figure reveals that the joint network proposed in this study performs better than the

traditional single network in all aspects, especially in the F1 Score. As the F1 score considers

the precision and recall rate, it is more comprehensive to evaluate the network with the F1

score. We can see that the target recognition score of the joint network is higher than that of

the traditional single network.

To ensure repeatability, we conducted 30 training sessions for the three network models,

and compared the network recognition accuracy after 30 training sessions. The 30 training

results for the three networks are shown in Fig 12.

By conducting 30 experiments, we can see that the joint network proposed in this paper has

absolute advantages in all types of recognition results, and the overall recognition effect of 30

times is better than that of a single LSTM network and 1D-CNN.

Table 6. Various types of recognition.

Network Accuracy of test set

A B C D E

LSTM 79.00% 72.66% 69.34% 88.09% 71.43%

1D-CNN 77.00% 70.50% 91.63% 91.48% 98.32%

Joint Network 94.50% 76.26% 91.99% 96.60% 98.32%

https://doi.org/10.1371/journal.pone.0266425.t006

Fig 9. Precision about different categories.

https://doi.org/10.1371/journal.pone.0266425.g009
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However, we can also see that the network does not have a very good recognition effect for

Type B, and this is presumed to be caused by the insufficient training of the network owing to

the small number of type B samples. Class E, with the same small number of samples is envi-

ronmental noise, which is clearly differentiated from other categories; thus, the recognition

effect is good.

Fig 10. Recall about different categories.

https://doi.org/10.1371/journal.pone.0266425.g010

Fig 11. F1 Score about different categories.

https://doi.org/10.1371/journal.pone.0266425.g011
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By conducting 30 experiments, we found that the performance of the joint network was

robust, which inspired us to use the joint network for underwater acoustic target recognition

in the future.

5. Conclusion

In this study, a new network structure combining a 1D CNN and LSTM network is proposed

and applied to underwater acoustic target recognition. The joint network can combine the

advantages of the two neural networks to extract features from input data more

comprehensively.

The experimental results using the ShipsEar underwater vessel dataset show that the pro-

posed joint network has a higher recognition rate than traditional neural networks. Compared

with 1D CNN and LSTM networks, the joint neural network has higher accuracy, precision,

recall and F1 score. The network also has a simple structure, fewer parameters and shorter

Fig 12. Comparison results of the recognition accuracy of the three networks. (a) Class A; (b) Class B; (c) Class C;

(d) Class D; (e) Class E; (f) Overall recognition accuracy.

https://doi.org/10.1371/journal.pone.0266425.g012
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training time. This provides a new development direction for underwater acoustic target rec-

ognition methods.

The limitation of this study is that only one dataset is used in experimentation. Both the

training and test sets originate from the ShipsEar dataset, thus the performance of this network

has not been verified in an actual marine environment. Our research direction is to expand the

data set, collect more measured ship noise acoustic signals, optimize network parameters by

increasing the number of data sets and continuous training, so as to enhance the universality

of the network.
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