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In humans, alcoholism can be thought of as having two dis-
tinct stages. Physiological tolerance and dependence make up 
the first stage and the second stage encompasses an unknown 
number of psychological events that promote the transition to 
uncontrolled and compulsive alcohol consumption.17 While 
these phenomena have proven difficult to reproduce in animals, 
the physiological responses of functional alcohol tolerance and 
dependence have lent themselves to study in animal model sys-
tems. Understanding these processes is important because they 
arise from neural changes that occur during the early stages of 
alcohol addiction. These changes contribute to the psychologi-
cal dysregulation observed in alcoholics, producing continued 
drinking despite serious family, health, or legal problems.

Physiological alcohol dependence is a core endophenotype 
of alcoholism. According to Koob and LeMoal,11 dependence is 
defined by the manifestation of withdrawal symptoms that origi-
nate from the physiological adaptations that occur in response 
to the drug. This definition is rooted in the counter-adaptive 
theory of drug addiction,14 which postulates that dependence 
arises from the same neuroadaptive mechanisms that produce 
drug tolerance. These adaptations oppose the pharmacological 
effects of the drug, but once the drug is cleared, their persistence 
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Alcohol addiction is a disease that includes a diverse set of 
phenotypes. Functional alcohol tolerance is an adaptation 
to the effects of alcohol that restores neuronal homeostatic 
balance while the drug is present. when the drug is suddenly 
withheld, these adaptations unbalance the nervous system and 
are thought to be the origin of some withdrawal symptoms. 
withdrawal symptoms, which can be a motivating factor for 
alcoholics to relapse, are taken as evidence of physiological 
ethanol dependence. Both tolerance and withdrawal 
symptoms are diagnostic criteria for alcoholism. Recent 
studies have demonstrated that the larvae of Drosophila show 
conserved alcohol tolerance and withdrawal phenotypes 
indicating that Drosophila genetics can now be used in 
studying this endophenotype of alcohol addiction.
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is counter-adaptive and produces symptoms of withdrawal. Thus, 
withdrawal symptoms serve as an indicator of physiological 
drug dependence. The underlying counter-adaptive changes are 
believed to directly contribute to the motivational aspects of drug 
addiction. A framework for the psychological interrelationship 
between tolerance and dependence was outlined in the opponent 
process theory.22 Here, both tolerance to the positive affective 
state and the negative consequences of withdrawal lead to the 
motivational changes that escalate drug use.12

Alcohol tolerance, withdrawal-induced seizure, and the 
rewarding effects of alcohol have all been modeled in the fruit 
fly Drosophila melanogaster.4,6,9,21 These studies show not only a 
between-species conservation in the fly and mammalian behav-
ioral responses to alcohol but also a conservation of the role of 
genes in these responses. While the neural circuitry of the fly 
and the mammalian brain do not resemble one another, there 
is substantial conservation of genes and signaling pathways in 
neurons. This conservation is sufficiently high that fly genes that 
modulate neural excitability or that regulate animal behavior 
have been used to identify their mammalian counterparts where 
they perform similar functions.1,3,5,8,13,20,24 Thus, it is likely that 
alcohol responses that are mechanistically conserved from flies 
to mammals arise from the conserved cellular effects of alcohol. 
Behavioral outputs of flies can serve to magnify the effects of 
small changes in neural function.

One variant of alcohol dependence, which has been little stud-
ied in animal models, is the adaptation that allows high-function-
ing alcoholics to appear behaviorally normal and to be productive 
members of society for much of their lives.2,15 During alcohol 
abstinence, their addiction becomes more noticeable because of 
alcohol-withdrawal symptoms. In extreme cases, symptoms can 
include alcohol-withdrawal seizures, but abstinence can also pro-
duce an inability to concentrate, remember, or learn.16,23

We have recently shown that acute alcohol treatment impairs 
the performance of Drosophila larvae in a simple associative 
learning and memory assay.19 In our learning assay,10 we lever-
aged the capacity of larvae to associate a noxious heat stimulus 
with an otherwise attractive odor. Once the association is made, 
memory retention can be tested by observing how the larvae 
respond to the odorant. Avoidance of the previously attractive 
odor is indicative of memory. Larvae are ideal for this purpose 
because large numbers of animals can be simultaneously tested in 
a single Petri dish. Similar learning and memory paradigms are 
becoming popular in larvae due to the additional model system 
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humans, however in mice, alcohol withdrawal hyperexcitability 
has been seen following persistent low blood-alcohol levels over 
a period of days.7

Our findings indicate that the larvae of Drosophila can adapt 
to alcohol and display similar tolerance and withdrawal pheno-
types as mammals. This conservation advances Drosophila larvae 
as an additional instrument to study the adaptations that lead to 
physiological alcohol tolerance and dependence. Alcohol addic-
tion is a multifaceted disease that has yet to be comprehensively 
modeled in a non-human system. Thus, many models systems 
are needed because the experimental advantages and disadvan-
tages of each allow focus to fall on a specific set of questions. 
The distinct toolset of the Drosophila model system may provide 
insight into aspects of alcohol-related behaviors that are difficult 
to study in mammals.
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advantages of speed and economy of both behavioral assays and 
genetic manipulations.

In addition to acute alcohol effects, we have also seen strik-
ing effects of chronic alcohol exposure on larval behavior. 
Using the same learning and memory paradigm, we have shown 
that when larvae chronically feed on alcohol food, they adapt 
to it (acquire tolerance) and then can learn as well as animals 
that have never been exposed to alcohol. Concurrent with the 
development of this chronic tolerance, physiological alcohol 
dependence was apparent as evidenced by withdrawal symp-
toms. Specifically, larvae chronically treated with alcohol that 
underwent a subsequent abstention showed a learning deficit. 
Alcohol reinstatement restored normal learning in withdrawn 
larvae, further verifying the presence of dependence. Larvae 
in withdrawal also had an increased sensitivity to the convul-
sant drug picrotoxin indicating an underlying nervous system 
hyperexcitability.18

In our study, the larvae become dependent on alcohol after 
maintaining internal alcohol concentrations around 10 mM for 
6 d. In a human, this would correspond to a blood alcohol con-
centration below the legal limit for driving in the United States. 
It would be unusual to observe a similar consumption pattern in 
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