
EBioMedicine 61 (2020) 103047

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.elsevier.com/locate/ebiom
Research paper
Genome-wide analysis of therapeutic response uncovers molecular
pathways governing tamoxifen resistance in ER+ breast cancer
Sarra M. Rahema, Nusrat J. Epsia, Frederick D. Coffmana,b,c, Antonina Mitrofanovaa,d,*,**
aDepartment of Biomedical and Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, USA
b Department of Physician Assistant Studies and Practice, USA
c Department of Pathology & Laboratory Medicine, New Jersey Medical School, Newark, New Jersey 07107, USA
d Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
A R T I C L E I N F O

Article History:
Received 6 March 2020
Revised 2 September 2020
Accepted 18 September 2020
Available online xxx
* Corresponding author at: Rutgers School of Health
Rm 923B, Newark, New Jersey 07107, USA.
** Corresponding author at: Rutgers Cancer Institute

State University of New Jersey
E-mail address: amitrofa@shp.rutgers.edu (A. Mitrofa

https://doi.org/10.1016/j.ebiom.2020.103047
2352-3964/© 2020 The Authors. Published by Elsevier B.
A B S T R A C T

Background: Prioritization of breast cancer patients based on the risk of resistance to tamoxifen plays a signif-
icant role in personalized therapeutic planning and improving disease course and outcomes.
Methods: In this work, we demonstrate that a genome-wide pathway-centric computational framework elu-
cidates molecular pathways as markers of tamoxifen resistance in ER+ breast cancer patients. In particular,
we associated activity levels of molecular pathways with a wide spectrum of response to tamoxifen, which
defined markers of tamoxifen resistance in patients with ER+ breast cancer.
Findings:We identified five biological pathways as markers of tamoxifen failure and demonstrated their abil-
ity to predict the risk of tamoxifen resistance in two independent patient cohorts (Test cohort1: log-rank p-
value = 0.02, adjusted HR = 3.11; Test cohort2: log-rank p-value = 0.01, adjusted HR = 4.24). We have shown
that these pathways are not markers of aggressiveness and outperform known markers of tamoxifen
response. Furthermore, for adoption into clinic, we derived a list of pathway read-out genes and their associ-
ated scoring system, which assigns a risk of tamoxifen resistance for new incoming patients.
Interpretation: We propose that the identified pathways and their read-out genes can be utilized to prioritize
patients who would benefit from tamoxifen treatment and patients at risk of tamoxifen resistance that
should be offered alternative regimens.
Funding: This work was supported by the Rutgers SHP Dean’s research grant, Rutgers start-up funds, Libyan
Ministry of Higher Education and Scientific Research, and Katrina Kehlet Graduate Award from The NJ Chap-
ter of the Healthcare Information Management Systems Society.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Despite recent advances in diagnosis, classification, and therapeutic
management, breast cancer (BC) remains one of the leading causes of
cancer-related death in women worldwide [1�3]. Nearly 70% of all diag-
nosed cases of breast tumors are estrogen receptor-positive (ER+) [4,5],
making treatments that have anti-estrogen effects in the breast cells,
such as tamoxifen, the standard-of-care for patients with ER+ breast can-
cers [4,6�9]. Despite the significant success of tamoxifen administration,
nearly 30% of treated patients develop therapeutic resistance, ultimately
leading to metastasis and lethality [1,10]. Therefore, prioritization of
patients based on the risk of resistance to tamoxifen before treatment
administration could play a significant role in personalize therapeutic
planning for patients with ER+ breast cancer and builds a foundation to
improve disease course and outcomes.

Tamoxifen is a selective estrogen receptor modulator (SERM) and
has agonist or antagonist activity depending on the tissue type [11].
In the breast cells, tamoxifen directly binds to the ER, blocking estro-
gen from attaching to the receptor and thus inhibiting the activity of
estrogen-regulated genes and causing the repression of estrogenic
effects [4,5,12,13]. However, the emergence of alternative mecha-
nisms of estrogenic stimulation has been shown to cause resistance
to tamoxifen. For example, some studies have demonstrated that ER+
breast cancers that overexpress HER2 and EGFR can activate the com-
ponents of downstream signaling pathways which then stimulate
both ER and estrogen receptor co-activator AIB1, and thus induce the
estrogen agonistic activity of tamoxifen in breast cancer cells [14,15].
Another study noticed that the increased expression of HER2 signal-
ing can also downregulate progesterone receptor (PR) levels in the
ER+ breast tumors, where losing the PR expression serves as a
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Research in context

Evidence before this study

Treatment resistance plays a central role in disease manage-
ment and outcomes, especially for patients with oncologic
malignancies. Several groups have studied response to tamoxi-
fen in ER+ breast cancer, yet the identification of markers that
accurately predict tamoxifen resistance remains limited.

Added value of this study

In this work, we derived a computational framework to predict
treatment resistance to tamoxifen in ER+ breast cancer patients
based on behavior of their molecular pathways, defined from
changes in mRNA expression profiles. Our analysis identified
five molecular pathways and their corresponding read-out
genes that successfully predict risk to fail tamoxifen, as vali-
dated in two independent patient cohorts. These pathways
have not been previously reported as associated with risk of
tamoxifen resistance and provide an accurate estimate of
response to tamoxifen, outperforming previously known resis-
tance signatures.

Implications of all the available evidence

Our study derived a marker panel to identify patients at risk of
primary tamoxifen failure. Together with other studies, our
work builds a foundation for personalized therapeutic planning
for patients with ER+ breast cancer patients.
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biomarker of hyperactive growth factor signaling, leading to another
possible mechanism of tamoxifen resistance [16]. Despite the emerg-
ing role of HER2 in tamoxifen resistance, it only accounts for 10% of
ER+ breast cancers [12,17], suggesting more complex resistance
mechanisms in these cases and presenting a central clinical problem
for patients with ER+ breast cancer [4,5,10,12].

In recent years, several groups have developed gene expression
signatures of tamoxifen response for ER+ patients, including 10 gene-
signature by Men et al. [18], 21 gene-signature by Paik et al. [19]
(known as Oncotype DX), and 2 gene-signature by Ma et al. [20]
While these signatures provide substantial advances to our under-
standing of individual genes involved in resistance, they do not yet
capture the complex interplay between biological mechanisms that
governs tamoxifen resistance. Here, we propose a pathway-centric
computational framework to elucidate tamoxifen resistance and
demonstrate that it outperforms known gene-based approaches.
Advantages of our pathway-based approach lies in (i) its ability to
identify a tightly connected cooperative group of genes unified by
the same function [21�23]; (ii) studying molecular pathways, rather
than individual genes, produces more reliable read-out outputs as
they are less susceptible to experimental noise [24]; (iii) pathway-
level view enhances our understanding of the biological mechanisms
related to disease and treatment response [25�28]; and finally (iv)
looking at alterations in biological pathways enhances the likelihood
of identifying potential therapeutic targets to preclude or overcome
resistance.

In this work, we have established a systematic pathway-centric
computational framework to elucidate molecular pathways as
markers of tamoxifen resistance in ER+ breast cancer patients, which
we call pathER. Through the analysis of pathway activity in each ER+
patient and their association with response to tamoxifen (Training
cohort, n = 53), we identified five biological pathways as markers of
tamoxifen resistance: Retrograde Neurotrophin Signalling, Loss of
NLP from Mitotic Centrosomes, RNA Polymerase III Transcription
Initiation from Type 2 Promoter, EIF2 pathway, and Valine, Leucine
and Isoleucine Biosynthesis. We have demonstrated the ability of the
identified five candidate pathways to predict the risk of tamoxifen
resistance in two independent patient cohorts [29] (Test cohort 1,
n = 66: log-rank p-value = 0.02, accuracy of leave one out cross-vali-
dation (LOOCV) = 85.8%; Test cohort 2, n = 77: log-rank p-value =
0.01, accuracy of LOOCV = 82.5%) and their independence from
known covariates, such as age, tumor grade, tumor size, lymph node
status, and PR status, as the absence of PR in ER+ tumor can be an
indicator of HER2 activation and an aggressive phenotype [16] (Test
cohort 1, adjusted hazard ratio = 3.11; Test cohort 2, adjusted hazard
ratio = 4.24). Furthermore, we performed stratified Kaplan-Meier sur-
vival analyses on the PR+ and PR- patients as well as patients with Ki-
67 low and Ki-67 high status and demonstrated the five candidate
pathways can predict risk of resistance to tamoxifen in each PR and
Ki-67 group with high accuracy. Importantly, as a negative control,
we have demonstrated that the identified five candidate pathways
did not classify patients simply based on the disease aggressiveness
(log-rank p-value = 0.7, hazard ratio = 1.246) and that in fact path-
ways associated with disease aggressiveness do not overlap with the
five candidate pathways. We have compared our method to other
computational techniques to tackle treatment response, including
Epsi et al. [28] (which utilized extreme-responder analysis, using tails
of the treatment response distribution to define a treatment response
signature), Zhong et al. [30] (which used Support Vector Machine
approach as a base), Yu et al. [31] (which uses random forest
approach as a base), and mRNA data alone (without considering
molecular pathways) and demonstrated that our method outper-
forms these techniques in predicting risk of resistance to tamoxifen.
Furthermore, we have compared our pathway signature to other
known signatures of tamoxifen response [18-20] and have shown
the superiority of our pathway-based approach (adjusted hazard
ratio = 3.11, hazard p-value = 0.0278). Finally, to enhance clinical
applicability of our finding, we derived five read-out genes (each of
which reflects activity changes in a corresponding pathway) and
defined their treatment failure scoring system, indicating risk of
developing tamoxifen resistance in two patient cohorts (Test cohort
1, adjusted hazard ratio = 3.1; Test cohort 2, adjusted hazard ratio =
6.95). Thus, we propose that the identified five candidate pathways
and their read-out genes can potentially be used to prioritize patients
who would benefit from tamoxifen treatment as their first-line ther-
apy, and to identify patients at risk of tamoxifen resistance who
should be offered an alternative regimen plan.

2. Materials and Methods

2.1. Patient cohorts utilized for study analysis

All gene expression datasets of patients with ER+ breast cancer
were obtained from publicly available GEO data repository [32] from
multi-institutional multi-PI comprehensive Loi et al. [29] study
GSE6532 (Supplementary Fig. 1, Supplementary Table 1): (i) KIT-
GSE6532 utilized as a Training cohort; (ii) GUYT-GSE6532, utilized as
Test cohort 1; (iii) OXFT-GSE6532, utilized as a Test cohort 2; and (iv)
KIU-GSE6532, utilized as a negative control cohort. Training cohort
contains patient profiles of primary ER+ breast tumors (n = 57),
archived at the Uppsala University Hospital (Uppsala, Sweden), pro-
filed on Affymetrix Human Genome U133A array and Affymetrix
Human Genome U133B array. Test cohort 1 contains patient profiles
of primary tumors from patients with ER+ breast cancer (n = 70),
archived at the Guy’s Hospital (London, United Kingdom), profiled on
Affymetrix Human Genome U133 Plus 2.0 Array. Test cohort 2 con-
tains patient profiles of primary ER+ breast tumors (n = 77), archived
at the John Radcliffe Hospital (Oxford, United Kingdom), profiled on
Affymetrix Human Genome U133A, B array. Negative control cohort
consists of not-treated patients with ER+ primary breast tumors
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(n = 51), profiled on Affymetrix Human Genome U133A, B array. All
primary tumors samples in Training and Test cohorts were collected
through surgery, diagnosed between 1980 and 1995 and received
tamoxifen-only treatment for 5 years post-diagnosis as their adjuvant
treatment.

2.2. Data normalization and filtering

For each gene expression microarray dataset, a matrix of RMA
(Robust Microarray Analysis) normalized signal intensity values was
used [29]. Using the most updated annotation file from GEO and the
latest Affymetrix annotation files from Thermo Fisher database [33],
each probe set ID was annotated to gene ID; thereafter, probe IDs
that annotated to different gene IDs or did not annotate to any gene
ID were excluded. When multiple probe set IDs were mapped to the
same gene, probes with the highest coefficient of variation (CV) were
selected [34, 35].

2.3. Breast cancer molecular subtypes

Gene expression classifier of the breast cancer subtypes (PAM50)
was applied to assign breast cancer patients to one of the intrinsic
molecular subtypes: luminal A, luminal B, HER2-enriched, triple-neg-
ative/basal-like, and normal-like [36,37]. The subtype classification of
each patient was determined based on the closeness between the
average expression profile of 50 genes in each subtype centroid and
the corresponding gene expression pattern of patient tumor, where
the distances were measured utilizing Spearman's rank correlation
[36]. We utilized genefu package in R, intrinsic.cluster.predict function
with pam50 [38] to assign subtype membership and eliminate sam-
ples with HER2-enriched, triple-negative/basal-like, and normal-like
subtypes (i.e., non ER+).

2.4. Single-sample gene set enrichment analysis (ssGSEA)

To estimate pathway enrichment in each ER+ patient, we per-
formed single-sample (i.e., single-patient) pathway enrichment anal-
ysis, where standardized gene expression profile for each patient was
used as reference and genes from each biological pathway were used
as a query in an unweighted (i.e., each gene had the same weight)
single-sample gene set enrichment analysis (ssGSEA) [39,40]. For
such analysis gene expression values for each gene were transformed
into standardized scores (i.e., z-scores) in order to bring the expres-
sion level into a common scale across all samples [41,42]. Z-score for
each gene in each sample was computed by subtracting the average
intensity of this gene across samples from the intensity of this gene
in each sample and dividing it by the gene’s standard deviation (SD),
where mean and standard deviation were estimated for each gene
across all samples [41]. In this way, after such z-scoring, each gene’s
mean is standardized to 0 and standard deviation to 1. Ranked list of
z-scores across all genes for a given sample then defines a single-
sample (i.e., single-patient) signature, utilized as a reference for path-
way enrichment analysis.

To acquire a comprehensive list of pathways, we utilized MSigDB
C2 pathway database [43] which includes curated selections of 833
pathways obtained from human gene sets using Reactome [44],
KEGG [45], and BioCarta databases. Reactome database is a curated
resource that describes fundamental biological processes including
cell signaling, metabolism, regulatory, and human diseases with par-
ticular focus on signaling and metabolic pathways derived from a
wide list of biomedical experiments and literature references
[44,46�50]. KEGG database is an integrated resource of genomic,
chemical, metabolic, regulatory, signaling, health, disease, drug, and
systematic functional data and contains carefully manually curated
human pathway maps, which are literature-based [45,47,50�53].
BioCarta collection is considered the major human pathway
resources of metabolic and signaling pathways and is based on litera-
ture reference annotations [50,54,55].

Each pathway from the C2 collection (i.e., genes from each path-
way) was used as a query set for unweighted ssGSEA. The ssGSEA
normalized enrichment scores (NESs), and p-values were assessed
utilizing 1,000 gene permutations. NES for each of the 833 pathways
(i.e., also referred to as pathway activity levels) indicated how much
each pathway was enriched/active in each single-sample signature.
In particular, the positive NES would indicate a pathways enrichment
in the top of the rank-ordered list (i.e., overexpressed part) of the sig-
nature (pathway was active) and the negative NES would indicate
pathway enrichment in the bottom of the rank ordered list (i.e.,
underexpressed part) of the signature (pathway was repressed).

2.5. Associating the activity levels of molecular pathways with
therapeutic response

The activity levels of each pathway (i.e., NES) were then associ-
ated with tamoxifen response, across all patients in a Training cohort,
using Cox proportional hazards model [56], adjusted for common
covariates, such as age, tumor grade, tumor size, lymph node status,
and PR status. For this, we utilized R coxph function from survival
package [57]. To establish a robust threshold which should be utilized
to select most significantly associated pathways, we evaluated pre-
dictive ability of the pathways as a group. For this, we first sorted
pathways based on their significance (i.e., p-values) from the Cox
proportional hazards analysis, which measured association of path-
way activity levels with response to tamoxifen across all samples in
the Training cohort. We then started from the most significant path-
way (from the Cox analysis) and added the next most significant
pathway, one at a time, evaluating their predictive ability as a group.
Thus, the evaluated groups of pathways were (i) Pathway 1; (ii) Path-
ways 1 and 2; (iii) Pathways 1, 2, and 3; etc. until all pathways were
utilized. We finally firecorded predicted ability of each group and
the cutoff point was determined as the one, where the addition of the
next pathway would not benefit an overall predictive ability of the
group.

Furthermore, given that many of the 833 pathways exhibit par-
ent-child relationships or are heavily overlapping, to prevent model
overfitting we examined the final list of pathways for such relation-
ships and overlaps, and if such situation occurred, we prioritized
pathways with higher association with tamoxifen response. For
example, from two significantly overlapping pathways, we selected
one that has higher hazard ratio of being associated to tamoxifen
response, defining a list of final candidate pathways (i.e., five final
pathways were selected).

2.6. Clinical validation in independent patient cohorts

For validation studies, the activity levels of the final candidate
pathways were used to stratify patients based on the risk of relapse
due to treatment resistance in independent Test cohorts. Patient
cohorts were subjected to t-distributed Stochastic Neighbor Embed-
ding (t-SNE) clustering [58], using all pairs of high-dimensional (i.e.,
5-dimensions in this study) points [59,60] and successfully distin-
guishing groups of patients that have similar pathway activity levels.
Subsequently, k-means clustering [61] was utilized on t-SNE-derived
data, as suggested in [59, 60] to obtain two groups of patients with
distinct pathway activity patterns, using kmeans function in R [62].

The ability of the activity levels of the final candidate molecular
pathways to efficiently distinguish patient clusters was determined
through receiver operating characteristics (ROC) analysis [63] on
multiple (i.e., multivariable) logistic regression model, where normal-
ized enrichment scores (i.e., NESs) of the final candidate pathways
were used as input parameters (i.e., independent/predictor variables)
and patient clusters were utilized as a dependent/response variable.
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ROC curves were evaluated using the area under the curve (AUC)
[64], where AUC score of 0.5 indicates a random predictor. The
logistic regression analysis was conducted using glm [65] function,
and ROC analysis was performed using pROC [66] and ggplot2
packages in R.

Differences in therapeutic response between the patient groups
were evaluated through Kaplan-Meier treatment-related survival
analysis [67] and Cox proportional hazards model using survival and
survminer packages [56] in R. Log-rank p-value was utilized to assess
the statistical significance of the Kaplan-Meier survival analysis and
Wald p-value and hazard ratio were utilized for multivariable Cox
proportional hazards model through survdiff and coxph functions
from survival package.

To ensure that predictive ability of the final candidate pathways is
non-random, we performed random model (i.e., randomness) analy-
sis. For this, predictive ability of the final (five) candidate pathways
was compared to predictive ability of the five pathways selected at
random. Such random selection of five pathways was done
1,000 times and log-rank p-value (from Kaplan-Meier survival analy-
sis) was noted for each random run. The nominal p-value was then
calculated as the number of times five pathways selected at random
reached or outperformed the final five candidate pathways.

To estimate the predictive accuracy of our model and obtain a
more accurate indication of how well our finding behaves toward a
new incoming patient, we conducted Leave-One-Out Cross-Valida-
tion (LOOCV) [68]. In this method, one patient is “excluded/elimi-
nated” and the rest of the patients are utilized for training purposes
to the regression model. After that, a removed patient is assumed to
be a new incoming patient and is assigned a risk of developing
tamoxifen resistance. This process is repeated for each patient within
a given dataset. LOOCV was implemented using multiple logistic
regression model, where patient clusters membership was used as a
response variable and normalized enrichment scores of our candidate
pathways were utilized as input parameters. The logistic regression
analysis was performed using glm [65] function, and LOOCV analysis
was prepared using cv.glm function from boot package in R.

To ensure that the identified pathways were not Training cohort-
specific and would not be missed if Training and Test cohorts are
switched, we applied our method to the Test cohorts and compared
identified pathways using pathway-on-pathway GSEA. Pathways
from the Test cohorts ranked by their hazard ratios were used as a
reference pathway list and top 100 pathways from the Training
cohort ranked by their hazard ratios were used as a query pathway
set.

2.7. Comparative analysis to other commonly utilized approaches

To assess the advantages of our approach over other commonly
used techniques, we compared its performance to (i) extreme-
responder analysis, described in Epsi et al. [28]; (ii) SVM-based
method [30]; (iii) PRES random forest-based method [31]; and (iv)
expression data alone (without utilizing biological pathways). In each
case, we utilized Training cohort for model training and Test cohort 1
for model validation. For methods that require a signature of treat-
ment response, we compared groups of patients with poor and favor-
able response to tamoxifen in the Training cohort by selecting:
patients that experienced events within 1 year of tamoxifen adminis-
tration (i.e., non-responders, n = 4); and patients that did not experi-
ence any relapses for more than 9 years (i.e., responders, n = 4) to
define a differential expression signature of tamoxifen response (i.e.,
through two-sample two-tailed Welch t-test [69] using t.test function
in R). For Epsi et al. method, we then subjected the differential
expression signature to pathway enrichment analysis, where this sig-
nature was used as a reference and groups of genes from each path-
way were used as a query gene set, and treated most significant
pathways as candidate pathway markers. For SVM and PRES random
forest, we subjected the differential expression signature (i.e., based
on the proposed significance level) to the model training using Train-
ing cohort (here, information about biological pathways was not uti-
lized and pure gene expression was used, as suggested in such
methods). The SVM analysis was performed using svm function from
e1071 package, and PRES random forest analysis was prepared using
train function from caret package in R. For comparison with gene
expression alone, the algorithm was applied directly to expression
levels of each gene, which were associated with treatment response
outcome using adjusted Cox proportional hazards model, in the same
way it was applied to biological pathways. Ability of the identified
determinants to predict response to tamoxifen was evaluated using
Cox proportional hazards model through survival and survminer
packages in R.

2.8. Assigning a risk score of treatment failure for each patient

To enhance clinical utility and applicability of our findings, we
have defined read-out genes, which serve as representatives for each
biological pathway and make good candidates for affordable clinical
evaluation. Such read-out genes were defined as those (i) whose
expression levels significantly correlated with pathway activity
changes, for corresponding pathways; (ii) that were significantly
associated with response to tamoxifen.

We then utilized these read out genes (one per pathway) to define
a risk to develop resistance to tamoxifen. The risk score was calcu-
lated as a weighted sum of the read-out genes expression values,
multiplied by their ROC values (which defined their ability to differ-
entiate patients with good and poor response in a Training set) as

risk score ¼
Xof read out genes

k¼1

x kð Þ �w kð Þ

where k is a read-out gene, x(k) is expression value of k, and w(k) is a
weight (i.e., ROC value) for k. The risk scores were then separated
into low/intermediate risk (� mean+1SD) and high risk (> mean
+1SD) groups, which were further evaluated using Kaplan-Meier sur-
vival analysis and Cox proportional hazards model.

2.9. Cancer dependency map by DepMap

To evaluate the association of the read-out genes to tamoxifen
sensitivity in human cancer cell lines, we performed cancer depen-
dency map analysis, using DepMap web portal [70], which utilizes
PRISM Repurposing [71], CTD2 [72,73], and GDSC databases [74].
Dependency map screens for sensitivity to multiple anti-cancer drugs
(including tamoxifen) across various human cancer cell lines. Meas-
ures of dose response are obtained using the area under the dose-
response curve (AUCs) scores for each drug�cancer cell lines pair
where large AUC scores show decreased sensitivity to the drug and
small scores show increased sensitivity to the drug. We have utilized
mRNA expressions of our identified read-out genes to query this
resource, where large AUCs showed poor or no response to tamoxifen
and smaller AUCs values showed favorable response.

2.10. Statistical analysis

Statistical analysis was performed using R studio version 3.5.1 for
statistical computing. For single-sample (i.e., single-patient) analysis,
data were z-scored on individual gene level. For this, the mean and
standard deviation were first estimated for each gene across all sam-
ples in the dataset. Subsequently, z-score for each gene was defined
as the difference between its intensity value and the mean of that
gene across the samples and divided by the standard deviation for
that gene. The ranked list of z-scores for each gene in a sample
then defined single-sample (i.e., single-patient) signature. Pathway
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activity levels were estimated as Normalized Enrichment Scores
(NESs) from the single-sample Gene Set Enrichment Analysis
(ssGSEA), where NESs and p-values were estimated using 1,000 gene
permutations. Cox proportional hazards model was utilized to associ-
ate pathway activity levels with treatment-related relapse-free sur-
vival (tRFS). When adjusting for common covariates, multivariable
Cox proportional hazards model was utilized and its significance was
reported using hazard ratio, hazard p-value, and Wald test. Kaplan-
Meier survival analysis was utilized to estimate difference in treat-
ment-related survival between two groups of patients, with log-rank
p-value used to indicate significance. All survival analyses were sub-
jected to adjustment for common covariates (e.g., tumor grade, tumor
size, lymph node positivity, age, and PR negativity). Patients’ cohorts
were obtained from public repositories and all the code was assem-
bles using freely available R packages, as described above, with no
restrictions.

2.11. Funding sources

Antonina Mitrofanova has been supported by the Rutgers SHP
Dean’s research grant and Rutgers start-up funds. Sarra M. Rahem
has been supported by the Libyan Ministry of Higher Education and
Scientific Research. Nusrat Epsi has been supported by the Katrina
Kehlet Graduate Award from The NJ Chapter of the Healthcare Infor-
mation Management Systems Society (NJHIMSS). The funders had no
role in study design, data collection, data analyses, interpretation, or
writing of report. The authors have not been paid to write this article
by any agency.

3. Results

3.1. Overview

We present a genome-wide pathway-centric computational anal-
ysis to identify molecular pathways predictive of risk of resistance to
tamoxifen in ER+ breast cancer patients. Our approach has the fol-
lowing steps:

Training phase (Fig. 1a): (i) activity levels of biological pathways
are estimated in each ER+ breast cancer patient (across a wide spec-
trum of responses, present in a clinical setting) that received adjuvant
tamoxifen (Supplementary Fig. 1, Supplementary Table 1); (ii) these
pathway activity levels are then associated with tamoxifen response
across all patients, adjusted for common covariates;

Testing phase (Fig. 1b): (iii) pathways that are significantly associ-
ated with the risk of tamoxifen failure are then subjected to clinical
validation analysis in independent patient cohorts (Supplementary
Fig. 1, Supplementary Table 1), for their ability to predict tamoxifen
resistance for new incoming patients; (iv) finally, ability of the candi-
date pathways to predict the risk of tamoxifen resistance is compared
to known gene signatures of resistance and overall disease aggres-
siveness, alongside comparison to other methods.

3.2. Training phase: identifying molecular pathways that govern
primary tamoxifen resistance

To accurately define therapeutic response to tamoxifen in ER+
breast cancer patients, we carefully selected gene expression profiles
for the Training cohort (Loi et al. [29], KIT-GSE6532) of primary ER+
breast tumors collected through surgery, not subjected to any neoad-
juvant (i.e., prior to sample collection) treatment, and administered
adjuvant (i.e., post-operative) 5-year long tamoxifen administration,
with available clinical follow-up data (n = 57) (Supplementary Fig. 1,
Supplementary Table 1).

To avoid inconsistencies in BC classification, we subjected patient
profiles of the Training cohort to a 50-gene Prediction Analysis of
Microarrays panel [36] (PAM50) classification. PAM50 classification
categorized BC patients from the Training cohort into the five intrin-
sic molecular subtypes: luminal A, luminal B, human epidermal
growth factor receptor 2 (HER2)-enriched, triple-negative/basal-like,
and normal-like, known to differ in their clinical outcomes [75,76]
and therapy choice [77]. ER+ BC, which is the phenotype of interest
in our study, is contained within the luminal A and luminal B sub-
types and is excluded from HER2-enriched, triple-negative/basal-
like, and normal-like subtypes (Supplementary Table 1). Out of 57
post-operative tamoxifen-treated patients, 4 patients were classified
as HER2-enriched, basal-like, or normal-like, and thus were excluded
from further analysis.

Our objective was to evaluate tamoxifen response across all 53
patient samples (on the individual-patient level) and associate them
with changes in biological pathway activities (Fig. 2a). In order to be
able to evaluate each patient sample individually, we scaled (i.e., z-
scored, see Materials and Methods) gene expression profiles on indi-
vidual gene levels so that each gene had mean 0 and standard devia-
tion 1 over all samples in the Training cohort [41]. The list of genes
ranked by their z-scores in each sample then defined an individual-
patient signature. We then utilized each individual-patient signature
to evaluate activity levels of biological pathways using unweighted
single-sample Gene Set Enrichment Analysis (ssGSEA) [39,40], where
pathways were obtained from widely utilized MSigDB C2 pathway
collection (which includes 833 pathways from Reactome [44], KEGG
[45], and BioCarta databases) (Supplementary Dataset 1a-1c). For this
analysis, each patient signature was used as a reference and each
pathway as a query gene set. Activity levels of biological pathways
were defined by their enrichment in each patient signature, mathe-
matically represented by the Normalized Enrichment Scores (NES)
from the GSEA analysis, where positive NES corresponds to enrich-
ment in the over-expressed part of the signature and negative NES
corresponds to enrichment in the under-expressed part of the signa-
ture (Fig. 1a, Fig. 2a).

Next essential step in our analysis was to associate changes in
pathway activity levels to tamoxifen treatment response. In general,
we defined treatment-related relapse free survival (tRFS) as the inter-
val between tamoxifen administration (which occurred immediately
after surgery) and the earliest relapse (defined as local, regional, or
distant metastasis) or the latest follow-up (these patients did not
develop an event until their latest follow-up). When a patient had a
relapse during or after the therapy administration, time to therapy
related relapse was defined from therapy start to the earliest relapse
(Fig. 2b, top schematics, green line). When a patient never experi-
enced a relapse, therapy-related relapse-free survival was measured
from therapy start to the latest follow-up (Fig. 2b, bottom schematics,
brown line). In this dataset, 41.5% of patients experienced tamoxifen-
related events (i.e., relapse), making it ideally suited for Training pur-
poses.

To estimate association between the activity levels of the biologi-
cal pathways and tRFS across a wide spectrum of tamoxifen response
(taking into account a heterogeneity of response to tamoxifen, pres-
ent in a clinical setting), we utilized Cox proportional hazards model
[56], ideally suited when time to event or follow-up is available. The
Cox proportional hazards model was estimated between each path-
way activity level (i.e., NESs, independent/predictor variable) and
tamoxifen tRFS (i.e., dependent/response variable) across all 53
patients in the Training cohort (Supplementary Dataset 1c). Further-
more, to account for the effect of other factors, this analysis was
adjusted for commonly utilized covariates, as suggested in [78], such
as age, tumor grade, tumor size (> 2 cm vs � 2 cm), lymph node sta-
tus, and PR status (note that decreased PR levels are associated with
increased HER2 signaling [16]) (Fig. 2a). Such analysis identified five
molecular pathways (Fig. 2c, Supplementary Table 2), most signifi-
cantly associated with response to tamoxifen (hazard p-value
� 0.00075, Supplementary Fig. 2a-b, see Materials and Methods),
including Retrograde Neurotrophin Signalling, Loss of NLP from



Fig. 1. Schematic representation of the pathway-centric approach. (a) Training phase: identification of molecular pathways of tamoxifen resistance. (b) Testing phase: clinical val-
idation of identified candidate pathways and multi-modal prediction evaluation.
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Mitotic Centrosomes, RNA Polymerase III Transcription Initiation
from Type 2 Promoter, EIF2 pathway, and Valine Leucine and Isoleu-
cine Biosynthesis, adjusting for parent-child relationships inherent in
pathway databases (see Materials and Methods, Fig. 3).

3.3. Testing phase: Clinical validation in independent patient cohorts

The next essential step in our analysis was to evaluate the abil-
ity of five candidate pathways to predict treatment response to
tamoxifen in independent non-overlapping clinical cohorts. For
this, we utilized two patient cohorts for testing/validation pur-
poses: (i) Test cohort 1 [29] (GUYT-GSE6532, n = 70) of primary
breast tumors obtained at surgery, from patients that did not
receive any neoadjuvant treatment and received only adjuvant
tamoxifen, with 28.78% of patients having tamoxifen-related
events; and (ii) Test cohort 2 [29] (OXFT-GSE6532, n = 77) of pri-
mary breast tumors obtained at surgery, from patients that did not
receive any neoadjuvant treatment and received only adjuvant
tamoxifen, with 25.97% of patients with tamoxifen-related events
(Supplementary Table 1). Both Test cohorts had clinical character-
istics, neoadjuvant, and adjuvant conditions comparable to the
Training cohort (Supplementary Table 1). Similar to the analysis
done on the Training cohort, we performed PAM50 classification
on the two Test cohorts, eliminating 4 patients from Test cohort 1
and keeping all patients for Test cohort 2.

Our main objective was to investigate if activity levels of the five
candidate pathways could predict risk of resistance to tamoxifen in
two independent Test cohorts. For this, we estimated activity levels
for five candidate pathways in each patient in the Test cohorts (simi-
larly to Training cohorts, see Materials and Methods) and subjected



Fig. 2. Training phase: pathway-centric approach identifies five biological pathways that govern tamoxifen response. (a) Schematic representation of the Testing phase of our
approach: (left) patient molecular profiles are collected and analyzed; (middle) pathway activities are estimated in each patient using single-patient pathway enrichment analysis;
(right) pathway activities are associated with response to tamoxifen using Cox proportional hazards modeling and are adjusted to common covariates, including age, tumor grade,
tumor size (> 2 cm vs � 2 cm), lymph node status, and PR status. (b) Graphical illustration of tamoxifen-related treatment response or follow-up. Time to event (top): time interval
between tamoxifen administration and earliest relapse is indicated by green line. Time to follow-up (bottom): time interval between tamoxifen administration and latest follow-up
date is indicated by brown line (no tamoxifen-related events observed). (c) Heatmap representation of the pathway activity levels (i.e., NES) and their association with time to
tamoxifen-related relapse or follow-up, in the Training cohort. Green line marks the group of patients with tamoxifen-related relapse, sorted from the shortest to the longest time
to relapse. Brown line marks the group of patients with follow-up and without disease relapse until the latest follow-up, sorted from the shortest to longest time to follow-up.
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patients to t-distributed Stochastic Neighbor Embedding (t-SNE)
clustering [58] as suggested in [59] for investigation of samples rela-
tionships. T-SNE analysis, which displays five-dimensional dataset in
a two-dimensional space, stratified patients into two groups based
on their pathway activity levels. The low-dimensional output (i.e.,
2-dimensional) of t-SNE were then subjected to the k-means cluster-
ing [61] to correctly assign group membership (Fig. 4a for Test cohort
1 and Fig. 4d for Test cohort 2) one group with increased pathways’
activities (orange) and one group with decreased pathways’ activities
(turquoise), mimicking the relationship that was observed in the
Training cohort (Fig. 2c). We confirmed the strength of group separa-
tion through Receiver Operating Characteristic (ROC) analysis [63]
using multiple logistic regression model (Supplementary Fig. 3a-b),
where normalized enrichment scores of 5 pathways were used
as input parameters (i.e., independent/predictor variables) and
selected patient groups were utilized as a dependent/response
variable. The efficiency of ROC analysis was estimated using area
under the curve (AUC) [64], where AUC of 0.5 denotes a random
predictor and AUC score of 1 denotes a perfect predictor (i.e., full
separation of the patient groups). This analysis confirmed that
the activity levels of the five candidate pathways can be effec-
tively used for classifying patients into distinct groups (Test
cohort 1, AUC = 0.929; Test cohort 2, AUC = 0.867; Supplementary
Fig. 3a-b).
To assess if these patient groups significantly differ in their
tamoxifen response, we analyzed therapy-related relapse-free sur-
vivals between the groups using Kaplan-Meier survival analysis [67]
and adjusted Cox proportional hazards model [56], which demon-
strated that the identified patient groups had a significant difference
in their response to tamoxifen (Test cohort 1, log-rank p-value = 0.02,
Fig. 4b; Test cohort 2, log-rank p-value = 0.01, Fig. 4e). We have also
adjusted these analyses for common covariates [78] (i.e., age, tumor
grade, tumor size, lymph node status, and PR status), demonstrating
that these covariates did not significantly impact the predictive abil-
ity of our findings (Test cohort 1, adjusted hazard ratio = 3.11,
adjusted hazard p-value = 0.044, 95% confidence interval CI: = 1.03-
9.396, Fig. 4b; Test cohort 2, adjusted hazard ratio = 4.24, adjusted
hazard p-value = 0.012, CI: 1.3708- 13.120, Fig. 4e).

To ensure that these results are non-random, we compared the
ability of the five candidate pathways to predict treatment response
to the five pathways selected at random (see Materials and Methods),
which confirmed highly non-random ability of the five candidate
pathways to predict response to tamoxifen in ER+ breast cancer
patients (Test cohort 1, random model p-value = 0.031; Test cohort 2,
randommodel p-value = 0.025, Supplementary Fig. 3c-d).

Furthermore, we evaluated predictive accuracy of our model in
the two test cohorts using Leave-One-Out Cross-Validation (LOOCV),
which simulates a situation when a new incoming patient needs to



Fig. 3. Graphical representation of the five candidate pathways and their significantly contributing genes. Network-based representation of the five candidate pathways.
Selected genes shown (brown nodes) correspond to genes that contribute to significant enrichment of each pathway in the patient single-sample signatures. Node sizes represent
number of times each gene appears in the leading edge in the single-sample pathway enrichment analysis (i.e., indicating significant changes in activity of this pathway across
Training cohort).
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be evaluated for her risks of developing resistance to tamoxifen. In
particular, in LOOCV, one patient is “removed”, and the model is
trained on the remaining patients, followed by the prediction of risk
of resistance for the removed patient. The process is repeated for
each patient. Using this analysis, we demonstrated the accurate per-
formance of our model in predicting poor and favorable tamoxifen
response for new incoming patients (Test cohort 1, accuracy for
LOOCV = 85.8%, Fig. 4c; Test cohort 2, accuracy for LOOCV = 82.5%,
Fig. 4f). Taken together, these findings indicate that the five candidate
pathway signature could successfully predict patients at risk of
tamoxifen resistance in independent patient cohorts.

Finally, to ensure that the identified pathways were not only spe-
cific for one patient cohort (e.g., Training cohort), we applied our
method to both Test cohort 1 and Test cohort 2, and compared identi-
fied pathways to those from the Training cohort, which demon-
strated their striking similarity (comparison of Test cohort 1 and
Training cohort, GSEA positive tail NES = 5.46, p-value <0.001,
negative tail NES = -6.45, p-value < 0.001; comparison of Test cohort
2 and Training cohort, GSEA positive tail NES = 5.35, p-value <0.001,
negative tail NES = -5.16, p-value < 0.001; Supplementary Fig. 3e-f),
indicating that pathways of resistance to tamoxifen in ER+ breast
cancer patients are significantly conserved among different cohorts.

3.4. Comprehensive comparison of tamoxifen response and overall
disease aggressiveness

A fundamental question in studying therapeutic response lies in
its comparison to and differentiation from overall disease aggres-
siveness. Our comprehensive investigation of this question was four-
fold: (i) we identified pathways implicated in disease aggressiveness
and compared their overlap with the candidate five pathways of
tamoxifen response; (ii) we evaluated if the five candidate pathways
can predict breast cancer aggressiveness in an independent (negative
control) cohort; (iii) we evaluated the ability of the five candidate



Fig. 4. The five candidate pathways predict patients at risk of tamoxifen resistance in independent patient cohorts. (a, d) T-SNE and subsequent k-means clustering of Test
cohort 1 (a) and Test cohort 2 (d) based on activity levels of the five candidate pathways demonstrates patient separation into two groups: orange group (with overall increased
activity levels of the five candidate pathways) and turquoise group (with overall decreased activity levels of the five candidate pathways). (b, e) Kaplan-Meier treatment-related sur-
vival analysis comparing two patient groups in Test cohort 1 (b) and in Test cohort 2 (e). Log-rank p-values and adjusted hazard ratios are indicated. (c, f) Leave-one-out cross-vali-
dation (LOOCV) correctly identified patients with poor response to tamoxifen (orange) and patients with favorable response to tamoxifen (turquoise) in Test cohort 1 (c) and Test
cohort 2 (f). Accuracy values (%) are indicated.
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pathways to predict tamoxifen response, given different status of PR
receptor and Ki-67 proliferation index, which are known indicator of
breast cancer aggressiveness; and (iv) we evaluated if known pub-
lished signatures of disease aggressiveness could predict response to
tamoxifen.

First, to examine if our 5 candidate pathways overlap with path-
ways implicated in disease aggressiveness, we developed treatment-
free prognostic pathway signature using a patient cohort that
received surgery only (KIU-GSE6532, n = 51, negative control cohort)
[29]. Out of 51 surgery-treated patients, 4 patients were removed,
based on the PAM50 classification. We further applied our single-
sample pathway-based discovery approach (as in the Training phase)
and associated them to the RFS, which identified 3 pathways of
aggressiveness (see Materials and Methods) that showed no overlap
with the five candidate pathways, signifying that none of our candi-
dates are involved in cancer severity and are indeed specific to
tamoxifen response.

Second, we evaluated if the five candidate pathways could sepa-
rate patients based on overall disease aggressiveness. For this, we
evaluated predictive ability of the five candidate pathways on the BC
patient cohort that did not receive any treatment after surgery (nega-
tive control cohort, as above). We subjected the dataset to the single-
sample pathway enrichment analysis (for the five candidate path-
ways, similarly to Test cohorts analysis). T-SNE clustering based on
activity levels of five candidate pathways (Fig. 5a) with subsequent
Kaplan-Meier survival analysis (Fig. 5b) on this cohort demonstrated
that the five pathways do not separate patients base on their disease
aggressiveness (hazard ratio = 1.2, log-rank p-value = 0.7, RFS was
considered as a clinical endpoint), but rather specific for tamoxifen
response. We have also examined the effect of covariates (i.e., age,
tumor grade, tumor size, and PR status), on disease progression in
this setting and demonstrated that as expected our candidate path-
ways remain insignificant, with tumor size significantly contributing
to the disease progression (adjusted hazard p-value = 0.0307).

Third, given that the PR receptor status (which also reflects HER2
signaling) is a known indicator of breast cancer aggressiveness, we
performed a stratified Kaplan-Meier analysis on Test cohort 1 (for
which this information was available). For this, we divided Test
cohort 1 into two groups: one with PR-positive status and one with
PR-negative status. We then subjected both groups separately to
t-SNE clustering, which have demonstrated that the five candidate
pathways separated each group into patient sub-groups with high
and low levels of pathway activities. Subsequent Kaplan-Meier sur-
vival analysis (Supplementary Fig. 4a and Supplementary Fig. 4b,
respectively) showed that these patient-subgroups significantly differ
in their response to treatment (group with PR-positive tumors,
c-index = 0.698, Supplementary Fig. 4a; group with PR-negative
tumors, c-index = 0.769, Supplementary Fig. 4b), demonstrating that
our five candidate pathways are able to predict patients at risk of
tamoxifen resistance regardless of the PR-status. Similar analysis was
performed on patients with different Ki-67 proliferation index (i.e.,
low levels of Ki-67 corresponding to Luminal A subtype and high lev-
els of Ki-67 corresponding to Luminal B subtype) and demonstrated
that our five candidate pathways predict patients at risk of tamoxifen



Fig. 5. Five candidate pathways do not predict and are not affected by overall disease aggressiveness. (a) T-SNE and subsequent k-means clustering based on the activity levels
of the five candidate pathways in the negative control cohort. (b) Kaplan-Meier survival analysis on negative control cohort confirms that the five candidate pathways do not predict
disease aggressiveness. Log-rank p-value and hazard ratio are indicated. (c) Multivariable Cox proportional hazards model representing analysis for five candidate pathways
adjusted for various prognostic signatures in breast cancer, including Wang et al. (76 prognostic markers, with 57 present on U133 Plus 2.0) and van‘t Veer et al. (70 prognostic
markers, with 53 present on U133 Plus 2.0). Adjusted hazard p-values are reported.
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resistance independently of Ki-67 status (group with Luminal A/ Ki-
67 low, c-index = 0.657, Supplementary Fig. 4c; group with Luminal
B/ Ki-67 high, c-index = 0.658, Supplementary Fig. 4d). Moreover,
given that age is an important factor in female hormonal status, we
also performed stratified analysis for different age groups (i.e., patient
age < 50 years and patient age � 50 years, where 50 was chosen for a
threshold as the average menopausal age) and confirmed the predic-
tive ability of our five candidate pathways regardless of the age
groups (age < 50 years, c-index = 0.756, Supplementary Fig. 4e; age
� 50 years, c-index = 0.616, Supplementary Fig. 4f).

Finally, to demonstrate that the predictive ability of the five candi-
date pathways is not affected by other known markers of disease
aggressiveness, we investigated if commonly known gene-based
prognostic signatures can predict tamoxifen response or affect pre-
dictive ability of the candidate five pathways. For this, we gathered
several known signatures of overall BC aggressiveness (i.e., prognos-
tic signatures), including Wang et al. signature [79] (76 prognostic
markers, with 57 present on U133 Plus 2.0) and van‘t Veer et al. sig-
nature [80] (70 prognostic markers, with 53 present on U133 Plus
2.0) and subjected them to adjusted multivariable Cox proportional
hazards model, alongside the five candidate pathway signature, in
the Test cohort 1. This analysis confirmed that the prognostic signa-
tures were not predictive of tamoxifen response and did not impact
predictive ability of the five candidate pathways (adjusted hazard p-
value = 0.03, Fig. 5c). Taken together, these findings indicate that our
five-pathway signature of tamoxifen response is not indicative of
overall breast cancer aggressiveness and is indeed specific to
response to tamoxifen.

3.5. Comparative analysis to commonly utilized methods and known
signatures of tamoxifen response

To evaluate predictive advantages of the five candidate pathways,
we took a comprehensive approach and first (i) compared the predic-
tive ability of the five candidate pathways to predictions from other
commonly used methods, including approaches based on extreme-
responder analysis (i.e., tails of the distribution), support vector
machine (SVM), random forest, and mRNA gene expression alone;
and second (ii) assessed if the predictive ability of the five candidate
pathways outperforms other known signatures of tamoxifen
response.

First, we compared predictive ability of the five candidate path-
ways to predictions from other commonly utilized methods, such as
(i) Epsi et al. [28] method, which utilized extreme-responder analysis,
using tails of the treatment response distribution to define a treat-
ment response signature; (ii) Zhong et al. [30] method, which used
Support Vector Machine approach as a base; (iii) Yu et al. [31]
method, also referred to as Personalized REgimen Selection (PRES),
which used random forest approach as a base; and (iv)mRNA expres-
sion alone (without taking into account information about molecular
pathways) (see Materials and Methods). To assure that all methods
are comparable to our pathway-centric method, we trained Epsi
et al., Zhong et al., Yu et al., and expression-only methods on the
Training cohort, with each producing a list of predictions, either path-
ways or gene lists, depending on the method (112 predictions for
Epsi et al.; 5 predictions for Zhong et al.; 3 predictions for Yu et al.,
and 13 (p-value < 0.001) predictors for mRNA expression alone). We
then followed by validating these predictions on the Test cohort 1,
similarly to our pathway-centric method. Such analysis demon-
strated that the five candidate pathways outperform predictions
(either pathways or gene lists, depending on the method) identified
by other four methods in their ability to predict the risk of tamoxifen
treatment resistance (Fig. 6a: five candidate pathways, hazard
ratio = 2.91, hazard p-value = 0.031; Epsi et al., hazard ratio = 2.79,
hazard p-value = 0.038; Zhong et al., hazard ratio = 2.53, hazard p-
value = 0.063; Yu et al., hazard ratio = 2.48, hazard p-value = 0.058;
mRNA expression alone, hazard ratio = 2.93, hazard p-value = 0.039).
Furthermore, we adjusted these analyses for the effect of common
covariates (similarly to our original training phase), including age,
tumor grade, tumor size, lymph node status and PR status and re-
confirmed that the five candidate pathways retain their significant
predictive ability and outperform the other methods (Fig. 6b: five
candidate pathways, adjusted hazard ratio = 3.11, adjusted hazard p-
value = 0.044; Epsi et al., adjusted hazard ratio = 2.48, adjusted haz-
ard p-value = 0.076; Zhong et al., adjusted hazard ratio = 2.96,
adjusted hazard p-value = 0.05; Yu et al., adjusted hazard ratio = 2.81,
adjusted hazard p-value = 0.054; mRNA expression alone, hazard
ratio = 2.78, hazard p-value = 0.063).

Second, to confirm that the predictive ability of the five candidate
pathways outperforms other known signatures in their ability to pre-
dict tamoxifen treatment response, we selected known signature of
tamoxifen response (i.e., predictive signatures), such as (i) Men et al.
[18] (10 predictive markers, with 9 present on U133 Plus 2.0); (ii)
Paik et al. [19] (also now as Oncotype DX, 21 predictive markers);
and (iii) Ma et al. [20] (2 predictive markers) (Fig. 6c) and used them
in adjusted multivariable Cox proportional hazards model, alongside
the five candidate pathway signature, utilizing Test cohort 1, as
above. This analysis demonstrated that the additional predictive



Fig. 6. Predictive ability of the five candidate pathways outperforms markers from other methods and known signatures of tamoxifen response. (a, b) Comparison of the
predictive ability of the five candidate pathways (blue) to the candidate identified by other approaches, including Epsi et al. extreme-responder analysis (green), Zhong et al. SVM-
based method (brown) and Yu et al. PRES random forest-based method (pink), and mRNA expression alone (purple) through unadjusted (a) and adjusted for common covariates (b)
Cox proportional hazards model. P-values for unadjusted and adjusted hazard ratios are indicated. (c) Multivariable Cox proportional hazards model representing analysis for the
five candidate pathways adjusted for different predictive signatures of tamoxifen response, including Men et al. (10 predictive markers, with 9 present on U133 Plus 2.0), Paik et al.
(Oncotype DX, 21 predictive markers), and Ma et al. (2 predictive markers). Adjusted hazard p-values are indicated.
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signatures do not significantly affect the ability of the five candidate
pathways to predict the risk of tamoxifen resistance (Fig. 6c, adjusted
hazards p-value = 0.03). Taken together, these results demonstrate
that the five candidate pathway signature can be utilized to predict
patients at risk of developing resistance to tamoxifen in a clinical set-
ting and build a foundation for personalized therapeutic advice for
patients with ER+ breast cancer.

3.6. Defining risk of tamoxifen resistance using pathway read-out genes

Utilization of pathway activity levels in clinical setting might be
hampered by the number of genes in each pathway and need for a
full transcriptomic profiling of patients, which might be both
time- and cost- sensitive. To address these issues and bring our
predictions closer to clinical utilization, we have aimed to identify
a so-called “read-out” genes for each pathway. Expression of these
genes would (i) accurately reflect pathway activity levels (i.e., esti-
mated through Spearman correlation between gene expression
levels and pathway activity levels) and (ii) be significantly associ-
ated with treatment response (i.e., through adjusted Cox propor-
tional hazards); thus making them suitable as marker read-outs
for tamoxifen resistance. Using such analyses, we identified five
read-out genes (one for each pathway, Supplementary Fig. 5) in
Training cohort., such as (i) AP2S1 (Retrograde Neurotrophin Sig-
nalling pathway), (ii) CDC2 (Loss of NLP from Mitotic Centrosomes
pathway), (iii) GTF3C3 (RNA Polymerase III Transcription Initiation
from Type 2 Promoter pathway), (iv) EIF2AK3 (EIF2 pathway),
and (v) LARS (Valine Leucine and Isoleucine Biosynthesis pathway)

We first evaluated the association of the read-out genes to
tamoxifen sensitivity in human cancer cell lines by performing cancer
dependency map analysis using DepMap web portal [70], which uti-
lizes PRISM Repurposing [71], CTD2 [72,73], and GDSC databases [74]
(see Materials and Methods). We have utilized mRNA expressions
levels of the identified read-out genes to query this resource, where
large AUCs values showed poor or no response to tamoxifen and
smaller AUCs values showed favorable response to tamoxifen. Over-
all, this analysis showed decreased sensitivity to tamoxifen treatment
in different human cancer cell lines (high AUCs), based on the expres-
sion levels of the read-out genes in these cell lines, which is consis-
tent with conclusions made in our paper.
To further the utilization of such read-out genes into the clinical
setting, we used their expression levels to define a patient risk score
to develop tamoxifen resistance. For this, we first performed ROC
analysis for each read-out gene in the Training cohort, which
reflected each gene’s ability to separate patients into good and poor
response groups. Ranks of these ROC scores from the Training cohort
were then utilized as weights for each read-out gene, so that the risk
score of tamoxifen resistance was defined as the weighted sum of
expression values for read-out genes (where expression values were
multiplied by the weights corresponding to the ranks of ROC values)
(Fig. 7a). The risk scores were defined for both Test cohort 1 and Test
cohort 2 and risk score distribution defined high risk (>mean+1SD,
where mean+1SD for both cohorts were equal to 4.5 score) and low/
intermediate risk (�mean+1SD) patients (Fig 7b, d). We then sub-
jected patient groups with high and low/intermediate risk scores to
Kaplan-Meier survival analysis (Fig. 7c, e), which demonstrated that
risk scores based on read-out genes are equally effective (compared
to activity levels of five candidate pathways) in predicting tamoxifen
response in both Test cohort 1 and Test cohort 2, making them suit-
able candidates for potential clinical integration.

4. Discussion

In this study, we have demonstrated that a pathway-centric
genome-side computational approach is able to uncover biological
pathways, highly associated with risk of tamoxifen resistance in
ER+ breast cancer patients. The important advantage of our
approach is that it identifies a tightly connected group of genes -
biological pathways - as opposed to individual (possibly distantly
connected genes), thus (i) decreasing the chances of experimental
noise present in biological experiments; (ii) improving our under-
standing of the mechanisms implicated in therapeutic resistance;
and (iii) increasing the likelihood of identifying a functionally rele-
vant signature, which could be utilized to study mechanisms of pri-
mary resistance and their potential therapeutic targeting.
Furthermore, these biological pathways have been shown to be
highly associated with a wide spectrum of treatment responses
across patient cohorts (as opposed to selecting a limited category
of patients for analysis), effectively reflecting heterogeneity of
response to tamoxifen present in a clinical setting. Even though



Fig. 7. Risk scores of tamoxifen resistance identity patients with significant difference in treatment-related survival. (a) Schematic representation of the risk score to fail
tamoxifen (i.e., treatment failure score). Top: read-out genes for candidate molecular pathways are assigned;Middle: expression values for the read-out genes are multiplied by their
corresponding weights (i.e., ROC values); Bottom: the weighted expression values are then summed and utilized to assign low/intermediate or high risk of failing tamoxifen. (b-e)
Validation studies using risk scores in Test cohort 1 (b, c) and Test cohort 2 (d, e). (b) Distribution of risk scores in Test cohort 1, with low/intermediate and high risk patients indi-
cated. (c) Kaplan-Meier survival analysis, comparing low-intermediate and high risk patient groups in Test cohort 1. (d) Distribution of risk scores in Test cohort 2, with low/inter-
mediate and high risk patients indicated. (e) Kaplan-Meier survival analysis, comparing low-intermediate and high risk patient groups in Test cohort 2.
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this work is focused on identifying cases of resistance to tamoxifen,
our method can be broadly applicable to other therapeutic inter-
ventions and cancer types.

Our computational analysis has identified five molecular path-
ways implicated in tamoxifen resistance, including (i) Retrograde
Neurotrophin Signalling, (ii) Loss of NLP from Mitotic Centrosomes,
(iii) RNA Polymerase III Transcription Initiation from Type 2 Pro-
moter, (iv) EIF2 pathway, and (v) Valine Leucine and Isoleucine Bio-
synthesis. Interestingly, many of these pathways have been shown to
be closely related to carcinogenic mechanisms and therapeutic
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response in various cancers. In particular, the Retrograde Neurotro-
phin Signalling pathway is implicated in metabolic detoxification,
mitosis, clathrin-mediated vesicles development, and enriched with
bladder cancer predisposition loci [81]. One of the genes from this
pathway, Neurotrophic tyrosine kinase receptor type 1 (NTRK1), is a
recognized oncogene frequently altered in various tumor types [82]
and its gene fusions have previously been identified in glioblastoma
[82], colon cancer [83], papillary thyroid carcinoma [84], and non-
small cell lung cancers [85]. Clinical studies of tumor response to
NTRK1 fusion-targeted therapy have indicated that this oncogene
represents a treatment target in human cancer [86].

Ninein-like protein (NLP) (i.e., also known as NINL) is a part of the
Loss of NLP from the Mitotic Centrosomes pathway. The role of
human centrosomal NLP expression in breast, lung, ovarian, head
and neck cancers has been widely demonstrated [87]. The NLP gene
amplification accounts for NLP overexpression in human breast and
lung cancer cells [87]. The deregulated expression of NLP in cell mod-
els leads to mitotic spindle aberrations, spindle checkpoint defects,
chromosomal missegregation, cytokinesis failure, stimulation of
chromosomal instability, anchorage-independent growth, and cell
malignant transformation [87]. Recently, it has been discovered that
NLP co-localizes and interacts with BRCA1 at inter-phasic centrosome
and thus the disruptions of BRCA1 function could affect NLP co-locali-
zation to centrosomes and induce the genomic instability [88]. Inter-
estingly, it has been reported that the NLP overexpression may also
cause breast cancer resistance to paclitaxel chemotherapy [89]. Fur-
thermore, a positive correlation between expression of NLP and PLK1
(i.e., another gene implicated in the Loss of NLP from the Mitotic Cen-
trosomes pathway) has recently been discovered, implicated in che-
moresistance, particularly to taxane agents [89] and tumor growth in
general, in breast cancer and other cancer types [89,90].

In the Eukaryotic Initiation Factor 2 (eIF2) pathway, phosphoryla-
tion of eIF2a has been shown to play a significant role in maintaining
normal cellular homeostasis and regulating cell growth [91], with
dysregulation of eIF2 signaling pathway stimulating the cancerous
tumors transformation [92]. The overexpression of eIF2a has been
observed in several cancers, such as gastrointestinal cancer [93] and
non-Hodgkin's lymphomas [94] and has been proposed as a potential
therapeutic target [95].

Finally, in the Valine Leucine and Isoleucine Biosynthesis path-
way, valine, leucine, and isoleucine are important branched-chain
amino acids (BCAAs) for normal growth and development [96]. In the
BCAA catabolism pathway, the first step is transamination, catalyzed
by the branched chain amino acid transferase isozymes BCATs: a
mitochondrial (BCATm) and a cytosolic (BCATc) isozyme [97-99].
Mitochondrial BCATm (BCAT2) expression can drive the development
of pancreatic ductal adenocarcinoma under the regulation of the
mitochondrial malic enzyme 2 [100,101]. Cytosolic BCATc (BCAT1) is
overexpressed in glioblastoma [102], nasopharyngeal carcinoma
[103], and cancers with elevated c-MYC [103]. It has been recom-
mended to consider BCAT1 as a promising target for glioblastoma
and nasopharyngeal carcinoma treatments [102,103].

Furthermore, to enhance clinical applicability of our findings, we
defined five read-out genes, one per pathway: (i) AP2S1 (Retrograde
Neurotrophin Signalling pathway), (ii) CDC2 (Loss of NLP from
Mitotic Centrosomes pathway), (iii) GTF3C3 (RNA Polymerase III
Transcription Initiation from Type 2 Promoter pathway), (iv) EIF2AK3
(EIF2 pathway), and (v) LARS (Valine Leucine and Isoleucine Biosyn-
thesis pathway). One of these genes, LARS, has been reported as a
potential metabolic onco-target [104-107], where its direct inhibition
suppresses cell proliferation via the p21 signaling, leading to apopto-
sis [107]. Furthermore, CDC2 has been shown to be implicated in
tamoxifen response and serves as a positive control in this study. In
particular, CDC2 mRNA expression has been shown to be significantly
correlated with the poor response to tamoxifen therapy by several
groups [108-110] and its inhibition is suggested as a potential
therapeutic strategy for tamoxifen-resistant breast tumors [110]. We
propose that the identified candidate pathways and their read-out
genes should be further investigated for their potential use as targets
for solo treatments or in combination with ER-targeting agents for ER
+ breast cancer patients at risk of developing resistance to tamoxifen.

One of the limitations of our study is in the limited availability of
the epigenomic profiles for our patient cohorts. In fact, DNA and his-
tone methylation has been suggested to be responsible for inactiva-
tion of ER [111]. Thus, further examination of the role of epigenomic
modulations and their interplay with transcriptomic changes is an
invaluable next step for in-depth understanding of molecular mecha-
nisms implicated in hormone therapy resistance.

Furthermore, miRNAs (micro-RNAs) have received substantial
attention for their role in regulating pathway functionality [112]. For
example, miR-15a/miR-16’s deletion or down-regulation contributes
to dysregulated of cell cycle in chronic lymphocytic leukemia [113]
and non-small cell lung cancer [114]. Even though miRNA data are
not available in our cohorts, we foresee the importance of miRNA
analysis for further understanding mechanisms of pathway dysregu-
lation, especially when applies to therapeutic resistance [115�117].
The presence of miRNAs in tumor-derived exosomes has recently
been postulated to play important roles in facilitating metastasis, and
this work suggests that exosomes containing tumor-derived miRNAs
which regulate one of these five pathways may also play a role in the
spread of tamoxifen resistance [118].

In addition, availability of single-cell profiles for investigation of
therapeutic response has proven to be invaluable [119] in under-
standing of therapeutic targets for complex diseases, including can-
cer. Thus, as such profiles become available, we foresee their
immediate utilization for elucidation of mechanisms of primary and
secondary therapy resistance.

In conclusion, we have demonstrated that a systematic computa-
tional pathway-centric method could identify molecular pathways and
their read-out genes to predict tamoxifen resistance. We propose that
our finding can be ultimately utilized to prioritize and determine (i) cases
at higher risk of developing resistance to tamoxifen that should be con-
sidered for alternative treatment manipulations (for instance, alternative
endocrine therapy, radiation therapy, or chemotherapy etc.) and (ii) cases
whowould benefit maximally from tamoxifen therapy.
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