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Abstract
Through elucidating the genetic mechanisms of drug sensitivity, precision medicine aims to 
improve patient selection and response to therapy. Exceptional responders are patients that 
exhibit exquisite and durable responses to targeted therapy, providing a rare opportunity to 
identify the molecular basis of drug sensitivity. We identified an exceptional responder to 
everolimus, an oral inhibitor of the mammalian target of rapamycin (mTOR) pathway, in a pa-
tient with advanced renal cell carcinoma. Through whole-exome sequencing on pretreatment 
and metastatic tumor DNA, we identified alterations in several mTOR pathway genes, with 
several mutations implicated in mTOR activation. Importantly, these alterations are currently 
not included in commercially available next-generation sequencing panels, suggesting that 
precision medicine is still limited in its ability to predict responses to mTOR-targeted therapies. 
Further research to discover and validate predictive biomarkers of response to everolimus and 
other targeted therapies is urgently needed. Given the rarity of patients with exceptional re-
sponses to targeted agents, cooperative efforts to understand the molecular basis for these 
phenotypes are essential.
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Introduction

Advances in genomics and an expanded understanding of disease biology has trans-
formed the therapeutic landscape of advanced renal cell carcinoma (RCC). Identification of 
mTOR signaling as a central element of RCC disease biology has led to the development and 
application of mTOR inhibitors for treatment of advanced disease [1–3]. Temsirolimus and 
everolimus, both analogs of rapamycin (rapalogs), allosterically inhibit mTOR complex 1 
(mTORC1) and block mTOR activation. However, the clinical benefit of rapalogs is typically 
modest with reported progression-free survival <6 months. Despite limited benefit in 
unselected patients, there are multiple reports of outlier cases where patients demonstrate 
exceptional therapeutic response to these drugs.

Previous studies suggest that genomic alterations in mTOR pathway genes are potential 
determinants of mTOR inhibitor sensitivity in RCC [4–6]. Understanding the molecular basis 
of response is critical to establish predictive biomarkers for these therapies. In this study, we 
performed whole-exome sequencing (WES) of tumor DNA from a patient with advanced RCC 
who achieved durable disease control with everolimus.

Case Report

We identified a 60-year-old male patient with an exceptional response to everolimus. He 
presented initially with gross hematuria and flank pain. CT and MRI demonstrated a large 12-cm 
mass replacing the left kidney with invasion of the left psoas muscle. There was no evidence of 
metastatic disease. He underwent radical nephrectomy 4 weeks after presentation. On patho-
logic examination, he was confirmed to have RCC with clear cell and papillary features, Fuhrman 
grade 3, with gross involvement of the renal vein. Eight lymph nodes were examined with no 
evidence of nodal metastases. He was treated with adjuvant sunitinib on a clinical trial. The 
patient was unable to tolerate therapy, and sunitinib was discontinued after 1 month.

One year after nephrectomy, surveillance imaging demonstrated new pulmonary and 
hepatic lesions, as well as abnormal tissue in the left nephrectomy bed and left adrenal gland. 
Liver biopsy confirmed metastatic RCC. The patient was started on pazopanib as first-line 
therapy for metastatic disease. He had mild toxicity but did not require dose reduction or 
interruption. Ten weeks after starting pazopanib, a mixed response was seen on imaging. 
Although his pulmonary metastases were stable to slightly improved, his disease had clearly 
progressed in the liver (Fig. 1a, d). The patient was started on everolimus at this time.

Disease in the lung, liver, adrenal gland, and nephrectomy bed was significantly improved 
after 11 weeks of everolimus therapy. His lesions continued to regress at the 6- and 9-month time 
points and remained stable for 3 years (Fig. 1c–f). At that time, an MRI of the orbit was ordered to 
evaluate ptosis and proptosis of the right eye. A solitary site of metastatic progression was 
discovered in the right frontal sinus causing erosion of the calvarium with extension to the scalp, 
mass effect on the right frontal lobe, and extension to the right orbit and ethmoid sinus. The metas-
tasis was surgically resected with pathologic examination confirming metastatic clear cell 
carcinoma. The resection was considered clinically complete, and no adjuvant radiation was 
recommended. Despite this recurrence, his other metastatic disease remained stable with only a 
sub-centimeter nodule in the lung and no disease detectable in the abdomen and pelvis. Given 
good tolerance and lack of progression elsewhere, everolimus therapy was continued.

Two years after resection, MRI was concerning for progression on the basis of several small 
areas of abnormal enhancement. He was treated with stereotactic radiosurgery to right nasal, 
right temporal, and right frontal dural lesions. There was no evidence of progression elsewhere, 
and he remained on everolimus. His disease remained stable for an additional 2 years. Imaging at 
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that time demonstrated multiple lesions in the liver and spleen, as well as osseous metastatic 
disease. Everolimus therapy was discontinued, and the patient was started on nivolumab and 
denosumab. In total, the patient remained on everolimus for >7 years.

To identify potential molecular mechanisms for the extended benefit in response to evero-
limus, we performed WES on DNA from the primary (pretreatment) and metastatic tumor obtained 
at the time of surgical resection. The coding regions from approximately 25,000 genes were 
sequenced, with 90% of exons achieving 20x coverage or greater. Analysis of mTOR pathway genes 
revealed variants in several genes associated with mTOR signaling (Table 1). The variants iden-
tified are present in the dbSNP (Single Nucleotide Polymorphism Database); however, only the 
PIK3C2G (P146L) mutation was found in the COSMIC (Catalogue of Somatic Mutations in Cancer) 
database. The alterations identified include 2 phosphoinositide 3-kinases (PI3Ks) that are involved 
in regulating Akt activation and missense mutations in PIK3R2 and PIK3C2G [7]. We also identified 
a missense mutation in diacylglycerol kinase zeta (DGKZ), encoding an enzyme that functions in 
mTORC1 activation [8]. In addition, we identified an alteration in protein kinase D (PRKD3) that 
activates Akt through diacylglycerol signaling [9]. A missense mutation was also detected in the 
insulin receptor (INSR) gene which encodes a receptor critical in activation of PI3K/Akt signaling 
and providing feedback regulation of mTORC1. Finally, we identified a missense mutation in 
eukaryotic translation initiation factor 3 (EIF3B) encoding an essential scaffolding component of 
the EIF3 complex activated by mTORC1 and functions in regulating protein translation [10].

To identify a potential genomic driver of disease recurrence in this patient, we compared 
alterations discovered in the primary tumor to those found in the metastatic lesion from the 
right frontal sinus obtained at the time of recurrence. Our analysis focused on alterations in 
mTOR pathway genes as a potential mechanism of everolimus resistance. Unique to the meta-
static tumor are mutations in INSR, PIK3R2, and DGKZ genes, all of which are involved in either 

Fig. 1. Radiographic response to everolimus therapy. CT of the liver (a) and lung prior to starting everolimus (d); 
liver and lung after 6 months of everolimus (b, e); liver and lung after 80 months of everolimus (c, f). The meta-
static lesions are indicated by white arrows.
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PI3K/Akt signaling or mTORC1 activation. Common between both the primary and metastatic 
tumor was the EIF3C missense mutation, suggesting a clonal mutation, occurring early in the 
evolution of the tumor.

In addition to mTOR pathway gene analysis, we also examined the sequencing data for 
genes commonly altered in RCC. In both the primary and metastatic tumors, we identified 
nonsynonymous alterations in VHL, PBRM1, KDM3A, KDM5C, and ARID4A (Table 1). The alter-
ations identified in VHL and PBRM1 have been previously characterized as inactivating, loss-
of-function mutations in RCC [11]. KDM3A, KDM5C, and ARID4A are involved in chromatin 
remodeling and are frequently altered in RCC [12].

Discussion

Emerging data on the role of mTOR signaling revealed that mTOR-activating genetic 
alterations occur frequently in cancer, suggesting that these tumors would be sensitive to mTOR 
inhibitors. Specifically, several studies have identified activating mutations in the MTOR gene, 
inactivating mutations in TSC1 or TSC2, and alterations in upstream effectors (i.e., PI3K and PTEN), 

Table 1. Gene variants identified in WES analysis

Gene Tumor 
location

Mutation type cDNA change Protein 
change

Molecular function

Genes in the mTOR pathway
 EIF3B P, M Missense c.190T>C S64P Protein biosynthesis; activated by 

mTORC1 to initiate translation
 PIK3C2G P Missense c.437C>T P146L PI3K catalytic subunit type II; promotes 

prolonged activation of Akt2
 PRKD3 P Missense c.1333G>T L445I Mediates DAG signaling; involved in Akt 

activation and angiogenesis
 DGKZ M Missense c.29C>A A10D Transferase, lipid kinase; activates 

mTORC1 through DAG metabolism
 INSR M Missense c.5 G>C A2G Metabolism; activates PI3K/Akt 

signaling; negatively regulates mTORC1
 PIK3R2 M Missense c.700A>C S234R PI3K regulatory subunit (p85ß); 

promotes constitutive activation of 
PI3K/Akt

Genes frequently altered in RCC
 VHL M Missense c.266T>A L89P Tumor suppressor; mutated form 

induces stabilization of HIF-1a
 PBRM1 M Missense c.2626G>A R876C Likely tumor suppressor; subunit of 

SWI/SNF chromatin remodeling 
complex

 KDM5C M Splice site n/a n/a Histone demethylase; associated with 
genomic rearrangement in tumors

 KDM3A P,M Missense c.634A>G I212V Histone demethylase; involved in 
HIF-1a activation

 ARID4A P Missense c.2335A>G T799A DNA binding protein; regulates several 
transcription factors (i.e., RB, AR, E2F)

P, primary tumor; M, metastatic tumor; WES, whole-exome sequencing; RCC, renal cell carcinoma.
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all support high-level mTOR activation [4–6]. In RCC, alterations in MTOR, TSC1, or TSC2 have 
been reported in up to 10% of tumors, suggesting a potential link to mTOR inhibitor sensi-
tivity. However, there is conflicting evidence in recent studies showing minimal association 
between mTOR pathway variants and response to mTOR inhibitor therapy [13, 14]. Evaluating 
cases where patients demonstrate an extraordinary response to everolimus has the potential 
to identify the molecular mechanisms of sensitivity and advance the development of a 
predictive biomarker for advanced RCC.

In this case study, WES analysis was performed on tumor DNA from an RCC patient with 
extraordinary response to everolimus. This analysis included focused evaluation of mTOR 
pathway genes frequently altered in cancer and previously reported to be associated with 
response to mTOR inhibition (Table 2). The variants identified in our analysis have not been 
reported to be associated with sensitivity to mTOR inhibitors; however, several of them have 
been shown to activate oncogenic mTOR signaling. Specifically, PIK3R2 and PIK3C2G are 
frequently mutated in several malignancies where they have been shown to promote PTEN 
instability and constitutive PI3K/Akt activation [15, 16]. We also identified mutations in INSR 
and PRKD3, both regulating mTORC1 activity through PI3K/Akt signaling, and it is suggested 
that PRKD3 genetic alterations can promote proliferation and survival signaling through 
prolonged Akt activation [17]. Finally, EIF3B expression has been linked to increased mTORC1 
activation and was recently identified as a prognostic marker for adverse outcomes in ccRCC 
[10]. Importantly, the EIF3B variant was found in both the primary and metastatic tumors, 
suggesting a truncal alteration that occurred early in tumorigenesis.

Study of exceptional responders provides the opportunity to discover the molecular 
basis for sensitivity to anticancer therapies. Advances in DNA sequencing technology with 
ultrahigh-throughput next-generation sequencing (NGS) enables insight into the tumor-wide 
mutational landscape and has rapidly advanced the field of precision oncology. Employing the 
WES approach in super-responders facilitates the discovery of novel molecular mechanisms 
that can be used in developing a predictive marker for prospectively identifying patients who 
may similarly respond to the specific therapy. Commercially available NGS panels are often 
limited to known pathologic variants and those that predict response to targeted therapies. 
Importantly, most diagnostic and research NGS panels have a limited number of genes 
involved in mTOR signaling, therefore limiting applicability for discovery of a predictive 
marker for everolimus therapy. Through a WES approach, we identified several novel variants 
in mTOR pathway genes as potential molecular markers of everolimus sensitivity. Additional 
investigation is needed to characterize the functional significance of these alterations in 
everolimus sensitivity and apply these findings to future biomarker studies.

Conclusion

This case highlights the importance of molecular characterization in patients with excep-
tional response to targeted agents. WES has the capability to detect potential therapeutic 
targets not included in precision medicine panels that can be employed as a clinical tool in 

Table 2. mTOR pathway-associated genes included in analysis

PI3K/Akt 
signaling 
“upstream”

PIK3CA, PIK3CB, 
PIK3CD, PIK3CG, 
PIK3C2, PIK3R1, 
PIK3R2, AKT1/2/3, 
PTEN, NF1, NF2

mTOR signaling 
“upstream”

MTOR, RPTOR, 
RICTOR, mLST8, 
FKBP12, DEPDC5, 
RHEB, TSC1, TSC2

mTOR signaling 
“downstream”

RPS6K1, EIF3 
complex, EIF4 
complex, SREBP, 
4EBP, HIF1, 
AMPK, STK11
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guiding therapy selection. The discovery of novel variants in a patient with an exceptional 
response to everolimus provides the evidence to warrant further investigation as potential 
predictive markers.
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