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Abstract

Genetic mouse models of soft tissue sarcoma provide critical insights into disease patho-
physiology, which are oftentimes unable to be extracted from human tumor samples or
xenograft models. In this study we describe a mouse model of soft tissue sarcoma mediated
by adenoviral-Cre recombinase injection into Trp53™%/Pten" lox-stop-lox luciferase mice.
Injection of adenovirus expressing Cre recombinase, either subcutaneously or intramuscu-
larly in two experimental groups, results in viral infection and gene recombination with 100%
penetrance within the first 24 hours following injection. Luciferase expression measured by
real-time bioluminescence imaging increases over time, with an initial robust increase fol-
lowing viral injection, followed by a steady rise over the next several weeks as primary
tumors develop and grow. Intramuscular injections were more commonly associated with
evidence of systemic viral distribution than subcutaneous injections. All mice developed soft
tissue sarcomas at the primary injection site, with histological examination identifying 93%
of tumors as invasive pleomorphic sarcomas based on microscopic morphology and immu-
nohistochemical expression of sarcoma markers. A lymphocytic infilirate was present in
64% of the sarcomas in this immunocompetent model and 71% of tumors expressed PD-
L1. This is the first report of a viral-Cre mediated Trp53/Pten mouse model of undifferenti-
ated pleomorphic sarcoma. The bioluminescence imaging feature, along with high pene-
trance of the model and its immunological characteristics, makes it suited for pre-clinical
studies of soft tissue sarcoma.
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Introduction

Soft tissue sarcomas pose a significant clinical challenge, with approximately 12,000 new diag-
noses and an estimated 4,700 sarcoma-related deaths per year [1]. Soft tissue sarcoma is a
malignant mesenchymal neoplasm that is able to arise from many different tissue types and
may occur in nearly any location in the body. Sarcoma may develop from muscle, fat, cartilage,
connective tissue, nerves, blood vessels, and bone, and there is considerable heterogeneity
between tumor types. Over 60 clinicopathologic subtypes of sarcoma have been described in
the literature [2]. The most frequently diagnosed soft tissue sarcoma in adults is undifferenti-
ated pleomorphic sarcoma (UPS), with the most common locations being the extremities and
trunk. The tumor initiating cell of UPS is not currently known; it is considered by pathologists
and clinicians to be a diagnosis of exclusion [3]. Histologically, UPS demonstrates spindle cell
morphology, mitotic activity, nuclear pleomorphism, and areas of tumor necrosis; immunore-
activity for myogenic markers such as smooth muscle actin (SMA), and desmin may be pres-
ent in UPS, but they do not fully exhibit skeletal muscle or smooth muscle differentiation [4].

Soft tissue sarcomas are broadly classified as either tumors with simple karyotypes, which
are defined by characteristic chromosomal translocations or gene amplifications and few other
cytogenetic alterations, or those with complex karyotypes containing multiple cytogenetic
alterations [5]. Soft tissue sarcomas harboring complex karyotypes comprise approximately
two-thirds of all sarcomas, including UPS [6]. One of the most common genetic alterations in
sarcomas with complex karyotypes is tumor protein 53 (TP53) inactivation, either via somatic
mutation, deletion, or alterations in TP53 pathway genes such as CDKN2A and MDM2 [5,7].
Loss of p53 is known to cause global genetic instability and promote additional pro-tumori-
genic mutations due to its critical role in regulating DNA repair, cell cycle, programmed cell
death, and cellular senescence [8]. TP53 appears to play a particularly important role in sarco-
magenesis; 25-30% of tumors that develop in patients with germline TP53 mutations (patients
with Li-Fraumeni syndrome) are sarcomas, specifically soft tissue sarcomas and osteosarcomas
[9].

Phosphatase and tensin homolog (PTEN) is a well-characterized tumor suppressor protein
involved in regulating the phosphoinositide 3-kinase (PI3K) pro-growth pathway. PTEN lies
upstream of the phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin
(mTOR) axis, which has broad roles in directing cellular growth, metabolism, division, senes-
cence, and migration [10]. Loss of PTEN expression has been described in approximately 29%
of soft tissue sarcomas [11]. Notably, the PI3K pathway is thought to be activated in greater
than 80% of rhabdomyosarcomas, and both TP53 and PTEN function are lost in approxi-
mately 67% of leiomyosarcomas [12,13].

Mouse models of cancer provide critical insights into disease mechanisms, and there is a
need for translational sarcoma models that recapitulate human disease and provide realistic
opportunities for tumor characterization and pre-clinical testing. In this study, we sought to
characterize the role of concurrent Trp53 and Pten deletion in a mouse model of sarcoma. This
model is unique in promoting the combined homozygous loss of the Trp53 and Pten alleles
with the advantage of temporal and spatial control over recombination. We describe a viral-
mediated inducible mouse model of soft tissue sarcoma based on somatic induction and tis-
sue-specific homozygous loss of Trp53 and Pten. Importantly, this model is coupled with Cre-
dependent luciferase expression to facilitate in vivo longitudinal, noninvasive bioluminescence
imaging (BLI) of gene recombination and tumor formation [14]. This model closely recapitu-
lates early, stochastic inactivation of TP53 and PTEN in human sarcomas, and allows for the
neoplastic steps of driver mutation accumulation, tumor initiation, growth, and proliferation
to fully transpire.

PLOS ONE | https://doi.org/10.1371/journal.pone.0183469  August 25, 2017 2/19


https://doi.org/10.1371/journal.pone.0183469

@° PLOS | ONE

Viral-mediated mouse model of sarcoma associated with in vivo bioluminescence imaging

Development of this model supplies a new tool for following sarcomagenesis driven by
inactivation of Trp53 and Pten, providing opportunities to better understand tumor initiation
and progression. The majority of mouse models of soft tissue sarcoma described in the litera-
ture focus on xenograft or orthotopic models, which bypass the critical steps of tumor forma-
tion and initial growth and do not allow for the study of sarcomagenesis with an intact
immune response. Researchers have also developed genetic models of sarcoma focusing on
either global or tissue-specific gene loss to promote tumor growth [15]. Trp53 germline global
knockout models of sarcoma have been described, with tumors including undifferentiated sar-
comas, hemangiosarcomas, and osteosarcomas, in addition to other primary tumors, however
these models are limited by longevity of the animals and substantial tumor burden [16]. A
recent study of conditional heterozygous loss of Trp53 and Pten in smooth muscle via the
transgelin promoter demonstrated growth of high-grade UPS, leiomyosarcomas, and carcino-
sarcomas via inappropriate activation of the NOTCH differentiation pathway [13]. Homozy-
gous loss of Trp53 and Pten in mouse adipose tissue has also been demonstrated to result in
multiple subtypes of liposarcoma, including well-differentiated, de-differentiated, myxoid/
round cell, and pleomorphic liposarcoma [17].

Viral-mediated models are a more recent advancement in transgenic mouse model technol-
ogy. Advantages to this approach include the ability to more readily control temporal and spa-
tial induction of allelic recombination. A model of high-grade sarcoma with myofibroblastic
differentiation based on intramuscular adenoviral-Cre injection into Trp53/Kras conditional
mutant transgenic mice was described by Kirsch et al. [18]. In this study, adenovirus (Ad) con-
taining a Cre recombinase expression vector was injected into the extremity muscles of trans-
genic mice, resulting in knock-out of Trp53 and activation of oncogenic mutant Kras
(LSL-KRas %P Trp53™1°/1°%) garcomas developed in 90% of the extremities injected, and
microscopic lung metastases were detected in 20% of mice with large primary tumors (>2cm)
[18]. This model demonstrated the ability of Ad-Cre to promote intramuscular allelic recombi-
nation and soft tissue sarcoma formation in an oncogenic Trp53/Kras genetic background,
and highlighted the utility and convenience of viral-mediated mouse models. Mito et al. went
on to further characterize the LSL-KRas®**” Trp53"°/1°* extremity tumors, confirming via
cross species genome analysis that mouse tumors shared statistically-significant gene enrich-
ment as well as histology with human UPS [19]. This model also has a 40% metastatic rate to
the lung after primary tumor resection to allow for additional time for metastases to develop
[18-20]. The metastatic potential of UPS to the lung in the LSL-KRas%'?P Trp537°/1°* model
appears to be at least in part driven by mir-182 expression [20]. In a similar background model
(LSL-KRas%'?P Trp537°/1°%) DyPage et al. induced sarcomagenesis via intramuscular lenti-
viral injection, with viral expression vectors containing Cre recombinase alone or with T-cell
antigens fused to the carboxy terminus of firefly luciferase in a study of cancer immunoediting
[21].

The aim of the current study was to develop a viral-mediated mouse model of soft tissue
sarcoma that also includes in vivo BLI capabilities. BLI allows for real-time, longitudinal imag-
ing of allelic recombination and transgene expression, and when tracked over time serves as a
marker for tumor formation and growth. This provides the opportunity for quantitative surro-
gate measurements of tumor growth without requiring interval sacrifice of valuable animals
from the study cohort. Our mouse model harbored Trp53”" and Pten™" alleles, as well as a
lox-stop-lox ROSA26 luciferase allele. Expression of Cre recombinase resulted in loss of
expression of Trp53 and Pten while promoting luciferase expression. Ad-Cre recombinase was
injected either subcutaneously or intramuscularly to compare results between the two groups.
The mice were then followed longitudinally with in vivo BLI as primary tumors developed and
grew. This model has an advantage over non-BLI viral transgenic models in that viral infection
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and gene recombination are readily identified and evaluated over time, allowing for more
accurate and less invasive assessment of the neoplastic process.

Materials and methods
Mouse strains and genotyping

All animal procedures were performed with approval from the University of Iowa Institutional
Animal Care and Use Committee, protocol number 1302027. We crossed homozygous
C57BL/6]-Tyr"?/] ROSA26 LSL-Luc Pten™™ mice with heterozygous B6.129P2-Trp53"™5™/]
(Jackson Laboratory) [22]. The C57BL/ 6]—Tyr°’2l/] ROSA26 LSL-Luc Pten are on an albino
C57BL/6] background. The B6.129P2-Trp53"'*™/] mice are on a mixed C57BL6/129 back-
ground. The resultant intercross was extensively backcrossed (n = 6) onto C57BL/6]-Tyr?.
Both the Pten and Trp53 floxed alleles and Ter'ZI (for albino coat color to facilitate BLI) were
bred to homozygosity. Offspring were genotyped by PCR for the presence of the ROSA26
LSL-Luc, Trp53"™, and Pten™" alleles using gene-specific primers [22]. Two to three-month
old mice were used for the study, with 38% female and 62% male mice. Three control mice
and ten experimental mice were included in each injection group for a total of 26 mice
examined.

Adenovirus injection

C57BL6 ROSA26 LSL-Luc Trp53™" Pten™ mice were first anesthetized in a chamber using
3% isoflurane in order to facilitate accurate injections. Ad5 CMV-eGFP (control animals) or
Ad5 CMV-Cre recombinase eGFP (experimental animals) obtained from The University of
Iowa Viral Vector Core was injected either subcutaneously overlying the right posterior flank
or intramuscularly into the posterior right quadriceps. Injections were performed using 1x10°
pfu in a total of 20pL injection volume (viral stocks were diluted to final concentration using
1x phosphate-buffered saline). Successful injections were confirmed either by observing a
wheal in the subcutaneous group or by manual stabilization of the quadriceps muscle and pal-
pation of the femur with the needle tip prior to injection in the intramuscular group.

Bioluminescence imaging

All BLI was performed using an Ami X imager from Spectral Instruments Imaging (Tucson,
AZ). For in vivo mouse imaging, the animals were first anesthetized in a chamber with 3% iso-
flurane. They were then injected intraperitoneally with 150mg/kg D-luciferin (VivoGlo™, Pro-
mega, Madison, WI) and placed on the imaging platform while maintaining inhalational
anesthetic. Mice were imaged 5 minutes after D-luciferin injection for a total of 5 minutes
exposure time, first prone and then repositioned to left lateral decubitus, with a field of view of
25cm and an object height of 1.5cm. AMIView Imaging Software was used to define the region
of interest on the image in order to measure BLI values. For whole body BLI measurements a
region of interest was drawn to encompass the entire mouse. For leg-only BLI values a region
of interest was centered on the right posterior leg and flank, and for abdomen-only values a
region of interest was centered between the upper and lower extremities. Comparative BLI fig-
ures are presented on a log scale with a threshold of 2.0x10° and maximum value of 1.1x10’.
Ex vivo BLI was performed by imaging the mice and dissected tissues for an additional 5 min-
utes immediately post-necropsy. For ex vivo images, euthanasia was performed and the pri-
mary tumor was quickly removed to allow for imaging of the remainder of the animal and to
evaluate for lesions with low BLI signal. BLI values as measured by photon flux (photons/sec/
cm?/sr) were obtained using AMIView Imaging Software, version 1.5.0.
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Mouse examinations

All mice were examined and weighed weekly. Examination included palpation of the leg/flank
and abdomen and caliper measurements of primary tumors. In vivo BLI was performed on the
complete cohort biweekly and on individual animals as needed for survival surgeries and nec-
ropsies. Survival surgeries were performed by anesthetizing the mice with 3% isoflurane
throughout the duration of the procedure. Microsurgical scissors and forceps were used to dis-
sect the tumor from the surrounding tissue, and pressure was applied for hemostasis. Surgical
clips were used to reapproximate the skin and were removed one week postoperatively. Mice
were monitored daily for one week postoperatively. Euthanasia, ex vivo imaging, and dissec-
tions were performed when mice reached pre-determined end points, including 20% loss of
starting body weight, primary tumor size >2cm, decreased mobility, lethargy/lack of groom-
ing, or other gross morbidity. Control mice were also euthanized at the completion of the
study. Primary tumors and other appropriate tissues were collected and incubated in 10% neu-
tral buffered formalin (Research Products International Corp., Mount Prospect, IL) at 4°C for
24-48 hours, transferred to 70% ethanol, and embedded in paraffin.

Histopathology

The following antibodies were utilized for immunohistochemistry on formalin fixed paraffin
embedded tissue. Anti-pancytokeratin (mouse monoclonal AE1/AE3; catalog # NB600-1322)
was obtained from Novus Biologicals (Littleton, CO, USA). Anti-S100 protein (rabbit poly-
clonal; catalog # Z0311) was obtained from Dako (Carpinteria, CA, USA). Anti-SMA (mouse
monoclonal 1A4; catalog # A2547) was obtained from Sigma-Aldrich (St. Louis, MO, USA).
Anti-desmin (mouse monoclonal D33; catalog # M0760) was obtained from Dako. Anti-myo-
genin (mouse monoclonal F5D; catalog# M3559) was obtained from Dako. Anti phospho-
AKT Ser473 (rabbit monoclonal D9E; Cell Signaling Technology catalog #4060 (Danvers, MA,
USA). Anti-PTEN (rabbit monoclonal D4.3 XP; catalog# 9188) was obtained from Cell Signal-
ing Technology. Anti-CD45 (rabbit polyclonal; catalog# 10558) was obtained from Abcam
(Cambridge, MA, USA). Anti-PD-L1 (rabbit polyclonal; catalog# 17952-1-AP) was obtained
from Proteintech (Rosemont, IL, USA). Dilutions utilized for immunohistochemistry are as
follows pan-cytokeratin (1:1600), S100 protein (1:4000), SMA (1:2000), desmin (1:50), myo-
genin (1:50), phospho-AKT (1:50), PTEN (1:50), CD45 (1:100), and PD-L1 (1:50). Horseradish
peroxidase-conjugated secondary antibodies were obtained from Dako.

PCR analysis

Genomic DNA was isolated from formalin-fixed paraffin embedded tumors using the
QIAamp“}) DNA FFPE Tissue Kit (Qiagen, Germantown, MD) or tail snips using the
DNeasy™ Blood & Tissue Kit (Qiagen, Germantown, MD). The samples were lysed overnight
at 56°C and subsequent steps were performed according to the manufacturer’s instructions.
To assay for recombination of the floxed Pten allele, DNA isolated from the tumor was ampli-
fied using primers described previously [23]. Trp53 recombination was evaluated using prim-
ers flanking the 2@ and 11" exon, as previously reported [24].

Statistical analysis

All statistical analysis was performed with GraphPad Prism software 7.0. For BLI analyses,

data were transformed using the natural log and then a two-way ANOVA was performed with
multiple comparisons and a Bonferroni correction. Data for tumor latency was analyzed using
anon-paired Welch’s t-test, and the Spearman test was used to correlate BLI with tumor mass
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and volume. Clinical and genomic data for all TCGA soft tissue sarcomas were obtained from
the cBioPortal (http://www.cbioportal.org). Only samples with clinical as well as summarized
copy number and somatic mutation data were analyzed. Four tumor classes were considered
for each type of tumor: TP53 mutant only, PTEN mutant only, TP53 and PTEN mutated, or
TP53 and PTEN wild type. The frequency for each class was compared for UPS versus all other
forms of soft tissue sarcoma using a Chi-squared statistic (degrees of freedom = 3).

Results

Trp53/Pten-floxed mice injected with Ad CMV-Cre demonstrate a
longitudinal increase in BLI signal

In this study we examined the consequence of temporally and spatially controlled Trp53 and
Pten deletion by somatic Cre recombinase expression on sarcoma formation. Review of the
TCGA database indicates that co-mutation of TP53 and PTEN occurs more frequently
(66.7%; n = 21) in UPS as compared to all other soft tissue sarcomas (43.4%; n = 221) (Chi-
squared = 28.108, df = 3, p<0.0001), indicating that this combination of mutations is fre-
quently observed in human UPS. The experimental mice were created by crossing ROSA26
lox-stop-lox luciferase, Pten”" and Trp53™™ mice together, to create offspring with three
homozygous floxed alleles (Fig 1A). Ad CMV-Cre recombinase or Ad CMV-eGFP were
injected either subcutaneously (SQ) over the right flank or intramuscularly (IM) into the right
quadriceps. The SQ compartment is composed of adipocytes, fibroblasts, and their precursors.
The IM compartment is composed of skeletal muscle cells and their precursors (e.g. satellite
cells). Since it is unclear what the tumor initiating cell is for many sarcomas, we injected both
the SQ and IM compartments. Adenoviral infection and Cre recombinase expression pro-
moted allelic recombination, including expression of luciferase to accommodate longitudinal
BLI as well as homozygous loss of Trp53 and Pten tumor suppressors (Fig 1B). We noted that
the floxed alleles for both Pten and Trp53 are still detectable by PCR in the tumor tissue. This
could reflect that both alleles are not deleted in all of the cancer cells and/or that there is stro-
mal and immunologic contamination in the tumor contributing to this signal. To partially
address this, we performed immunohistochemistry for PTEN which revealed loss of expres-
sion in all of the sarcomas evaluated (Table 1 and S1 Fig), thus, at least PTEN appears to be
deleted in all of the tumor cells.

To evaluate for luciferase expression as a marker of recombination, mice were injected with
D-luciferin and in vivo BLI was performed one day post-viral exposure, 1 week post-exposure,
and biweekly thereafter. Ad CMV-eGFP control mice, as expected, did not demonstrate BLI
signal (Panels A and B in S2 Fig). Mice injected with Ad CMV-Cre via SQ or IM administra-
tion showed a robust and reproducible increase in whole-body BLI signal, with a substantial
increase in BLI signal within the first week, likely representing viral infection and initial
recombination events; this was followed by a steady increase in luciferase expression at the site
of injection over subsequent weeks as depicted by BLI signal at weeks 1, 9, and 17 across five
representative mice from each cohort (Fig 2A). Whole-body BLI is also demonstrated quanti-
tatively for individual mice in each injection group in Fig 2B, with comparable expression lev-
els and growth kinetics across animals (n = 9 for each group). BLI signal is compared between
the two injection groups in Fig 2C, highlighting similar luciferase expression at the primary
injection site for the SQ and IM injected cohorts. Importantly, 100% of Trp53/Pten mice
injected with Ad CMV-Cre demonstrated luciferase expression by BLI at the site of injection,
whereas all mice injected with the control virus Ad CMV-eGFP exhibited only background
levels of bioluminescence signal for the duration of the study (Fig 2C). Thus, injection of Ad
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knockout of Ptenand Trp53. B) PCR from DNA isolated from either a tumor of Cre injected mice (Cre+) or
from the tail of a non-injected mouse (Cre-) (Ctrl is a primer only control) to assay for the presence of
recombination and floxed Pten or Trp53.

https://doi.org/10.1371/journal.pone.0183469.9001

CMV-Cre either subcutaneously or intramuscularly is able to promote reliable viral infection
and allele recombination.

IM and SQ injection of Ad CMV-Cre results in abdominal BLI signal

Although whole-body BLI did not significantly differ between the SQ- and IM-injected Trp53/
Pten cohorts, we noticed obvious differences in the BLI signal in the region of the abdomen
when the two injection methods were compared. Rather than measuring whole-body BLI, a
region of interest for luciferase signal was drawn either over the right leg and flank or isolated
over the abdomen. Results are shown in Fig 3A for individual mice from each group and in
Fig 3B between SQ and IM groups. These data demonstrate a near identical BLI signal at the
primary viral injection site when measuring the leg in isolation. However, when examining
BLI signal in the abdomen, the IM-injected mice had significantly greater abdominal luciferase
expression compared to the SQ-injected mice (Fig 3A and 3B). The difference in abdominal
BLI signal between SQ and IM animals was evident as early as 24 hours post-injection,
increased by the first week, and then remained fairly stable over time. Abdominal signal was
seen in 100% of IM-injected mice, and appreciable abdominal signal was seen in only 20% of
SQ-injected mice (Fig 3A and further shown in Fig 2A, mice 6-10 compared to mice 1-5,
including the two SQ injected mice with abdominal signal). These data suggest that IM injec-
tion of Ad likely results in increased systemic absorption and viral infection in regions of the
body distinct from the initial injection site. Ex vivo BLI of livers during necropsy revealed that
the source of BLI signal in the abdomen is likely secondary to multiple areas of low-level
recombination within the liver (Fig 3C, left panels). This result was independently confirmed
with another set of Trp53/Pten mice IM-injected with both Ad CMV-Cre and control Ad
CMV-eGFP virus, demonstrating both BLI in vivo as well as ex vivo BLI in the liver in IM Cre-
injected mice and no appreciable luciferase signal in IM eGFP-injected mice (S2 Fig).

Table 1. Pathological features of Trp53/Pten sarcomas.
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Fig 2. Trp53/Pten mice injected with Ad CMV-Cre demonstrate a longitudinal increase in BLI signal. A) BLI of
Trp53/Pten mice injected either SQ or IM with Ad CMV-Cre. Mice were injected with intraperitoneal D-luciferin and
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17 weeks post-viral injection, demonstrating a steady increase in luciferase signal over time. B) Quantified whole-body in
vivo BLI values as measured in photons/sec/cm?/sr are shown for individual mice for each injection group (n = 9), and
compared between the two injection groups C), highlighting similar luciferase expression kinetics and values between
SQ- and IM-injected animals. The difference between SQ and IM injection was statistically significant for day 1 post-
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injection (p = 0.045), but not thereafter. From the 2way ANOVA, overall variance due to injection method was statistically
significant (p = 0.0019). In comparison to the first day post-injection, all values for both injection methods were significant
(p<0.0001).

https://doi.org/10.1371/journal.pone.0183469.9002

Histologic analysis of livers with BLI signal demonstrated extramedullary hematopoiesis but
no neoplasm (Fig 3C, right panel). These results are significant because increased systemic
recombination and unanticipated BLI signal from the primary viral injection site results in an
increased overall luciferase signal and background in the IM model, suggesting that the SQ
Trp53/Pten model might provide improved localization of somatic recombination and
decreased systemic BLI background.

Trp53"Pten™ mice injected with Ad CMV-Cre form soft tissue tumors

Both SQ and IM injection of Ad CMV-Cre virus into Trp53""Pten™" mice resulted in primary
soft tissue sarcomas arising at the site of injection with 100% penetrance. No tumors developed
in control Ad CMV-eGFP mice. SQ viral injection over the right leg/flank resulted in develop-
ment of relatively superficial, mobile, rubbery tumors, whereas IM viral injection resulted in
deep, firm tumors within the muscle with apparent enlargement of the quadriceps muscle on
physical exam (Fig 4A and 4B). The average tumor latency, as defined by the time of earliest
manual palpation of tumor, was approximately 10 weeks for the SQ mice and 11 weeks for the
IM mice, despite near-identical leg BLI measurements (Fig 4C). This suggests a minor discrep-
ancy between the ability to manually detect the superficial subcutaneous tumors versus the
more deeply-seated intramuscular tumors, however, differences in the kinetics of tumor devel-
opment and growth cannot be excluded. Notably, tumor growth is detectable by BLI well in
advance of detection by palpation (compare Figs 3A and 4C). Mice were euthanized when clin-
ical end points were reached as described in the Materials and Methods section. Representative
primary tumor dissections at the time of necropsy are shown in Fig 4B, highlighting the super-
ficial, noninvasive nature of the SQ tumors compared to the deeply invasive IM tumors, which
were embedded within native muscle and required aggressive dissection from the underlying
skeleton and normal tissue. Fig 4D shows both primary tumor mass and volume as a function
of BLI indicating that BLI signal is correlated with tumor size, although one very large tumor
was an outlier in this analysis. The reason for this outlier is unclear, but limitations on BLI
analysis are discussed below. Survival surgeries were attempted for three mice from the SQ
group and two mice from the IM group to determine feasibility of primary tumor removal in
an effort to allow for increased time for metastatic growth, however, not surprisingly the IM
tumors were challenging to resect without significant morbidity to the animal. Interestingly,
all mice that underwent primary resection did experience a recurrence at the primary tumor
site, with an average recurrence time of 12.5 weeks for the SQ mice and only 3.9 weeks for the
IM mice. Despite attempts at survival surgeries (n = 5) to extend observation time, no obvious
metastases were detected by BLI in any of the experimental animals. These data highlight some
major clinical differences between primary tumors in the SQ- and IM-injected Ad CMV-Cre
Trp53/Pten mice, including more fixed and invasive tumors, longer latency to a palpable
tumor, and greater morbidity in the IM group compared to SQ.

Characterization of soft tissue tumors reveals they are predominantly
undifferentiated pleomorphic sarcomas

Primary tumors were collected from the SQ- and IM-injected Trp53""Pten™ mice at the time

of necropsy, and tissue sections were analyzed for histology as well as by immunohistochemistry.
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Fig 3. IM-injected Ad CMV-Cre results in increased systemic viral spread. A) Quantified leg-only or abdomen-only BLI values are shown for
individual Trp53""Pten™" mice injected either SQ or IM with Ad CMV-Cre. B) Comparisons between injection cohorts demonstrate lower non-
specific signal in the abdomen with SQ injection. There was no significant difference in luciferase signal between the SQ- or IM-injected legs;
however, there is a significant difference between SQ and IM abdomen injections for week 1 and beyond (p<0.05). The difference in comparison to
the first day post-injection was statistically significant for both SQ (p<0.002) and IM (p<0.0001) leg injections as well as IM abdominal BLI (p<0.02).
No significant difference was found for SQ abdominal BLI in comparison to day 1. C) Ex vivo BLI images of livers from one SQ- and one IM-injected
mouse, depicting multifocal low-level recombination and luciferase expression in the livers of mice with abdominal BLI signal, suggesting systemic
viral spread and infection (left panels). Histological sections of liver demonstrated extramedullary hematopoiesis, noted with arrows, but no
neoplasm was identified (right panel).

https://doi.org/10.1371/journal.pone.0183469.9003
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Fig 4. Trp53""Pten™" mice injected with Ad CMV-Cre form soft tissue tumors with 100% penetrance. A) Photographs of representative
intact SQ and IM soft tissue tumors (*). B) Primary tumor dissections highlighting the superficial nature of tumors in the SQ-injected group
compared to the deep, invasive tumors in the IM group, which develop within the native quadriceps muscle and adhere firmly to the surrounding
femur and musculature. C) Palpable tumor latency as defined by time to earliest manual palpation of soft tissue tumor (p = 0.3201) D) Primary
tumor mass and tumor volume with corresponding BLI measurements. Tumor mass (blue squares, right y-axis) measured after surgical excision
and volume (red circles, left y-axis) measured by calipers are correlated with photon flux (X-axis); Spearman r=0.857 and r = 0.733, respectively.
Asterisk indicates one outlying tumor that was removed from the analysis.

https://doi.org/10.1371/journal.pone.0183469.g004

Examination of histology from both SQ- as well as IM-arising tumors revealed findings consis-
tent with UPS, demonstrating atypical spindle cells with no identifiable line of differentiation
(Fig 5A and 5B). The tumors were described as having numerous mitotic figures (arrows), as
well as areas of tumor necrosis (*). Tumors were further characterized by variable staining for
smooth muscle actin (SMA), absent staining for keratin, S100, and myogenin, and very rare to
variable immunoreactivity for desmin, further supporting the diagnosis of UPS. Fourteen pri-
mary tumors were analyzed histologically, and while 13 of these (93%) were UPS, one tumor
(7%) was pleomorphic rhabdomyosarcoma (PRMS). Morphologically, the UPS evaluated were
very similar to one another in that they demonstrated poorly differentiated cells with marked
anaplasia and no line of differentiation by light microscopic appearance. The spectrum of myo-
genic markers (SMA and desmin) expressed by the UPS is reflected in the pattern of expression
in human tumors (i.e. some tumors express one or both of the markers, and some do not). The
PRMS arose in an IM-injected animal and was characterized by the presence of myogenin
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A) Subcutaneous - UPS B) Intramuscular - UPS

Fig 5. Trp53""Pten™" mice injected with Ad CMV-Cre form undifferentiated pleomorphic sarcoma. A) Histology and immunophenotype of UPS
arising after SQ injection of Ad CMV-Cre. H&E section reveals a proliferation of markedly atypical spindle cells with numerous mitotic figures (arrows)
as well as tumor necrosis (*). No line of differentiation was identified by the neoplasm’s light microscopic appearance or immunohistochemical profile,
supporting classification as UPS. B) Histology and immunophenotype of typical UPS arising in skeletal muscle. The histological appearance and
immunophenotype is similar to the subcutaneous UPS present in (A). SMA is variably positive in different examples, similar to human UPS. The
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asterisk highlights skeletal muscle fibers in the H&E section as well as the desmin stain, where they serve as an internal control. C) Histology and
immunophenotype of PRMS. H&E section reveals a proliferation of markedly atypical spindle cells admixed with rounded rhabdomyoblasts (arrow).
Skeletal muscle differentiation is confirmed by the identification of various foci expressing myogenin and desmin. D) Phospho-AKT was variably
present. In some sarcomas, such as the PRMS tumor and some of the UPS tumors, phospho-AKT could be identified more diffusely (left panel). In
other UPS tumors, it was more focal (right panel).

https://doi.org/10.1371/journal.pone.0183469.9005

immunoreactivity (Fig 5C). A variable pattern of AKT activation was noted in the tumors ana-
lyzed, with phospho-AKT staining diffusely in some tumors, including the PRMS tumor and
some of the UPS tumors (Fig 5D, left panel), and more focally in others (Fig 5D, right panel).
The sarcoma type and immunohistochemistry profiles for the Trp53/Pten knockout tumors are
summarized in Table 1.

UPS demonstrated variable immunoreactivity for SMA and desmin, but did not express
myogenin. PRMS was defined by immunoreactivity for myogenin. Over 90% of the sarcomas
generated by this mouse model were UPS. Additionally, 64% of tumors contained a lympho-
cytic infiltrate, and 71% of tumors expressed PD-L1. Tum-tumor; Ker-keratin; Des-desmin;
Myo-myogenin; Lymph-lymphocytic infiltrate; SQ-subcutaneous; IM-intramuscular; D-dif-
fuse (>66%); V-variable (33-66%); F-focal (5-33%); R-rare (<5%).

Evidence of immune tolerance in the tumorigenesis of undifferentiated
pleomorphic sarcoma

Pathological evaluation revealed an infiltrate of small mature lymphocytes (Fig 6A and

Table 1) in 64% of the sarcomas, confirmed by immunoreactivity for CD45 (Fig 6B). The pres-
ence of small mature lymphocytes suggested the presence of immune surveillance in the
immunocompetent mouse model of UPS. To test the hypothesis that sarcomas in this mouse
model demonstrated immune tolerance, we performed immunohistochemistry for PD-L1
(B7-H1) and demonstrated 71% of the tumors to upregulate PD-L1. The pattern of expression
ranged from focal to variable (Fig 6C) to diffusely and strongly positive (Fig 6D). No correla-
tion between the presence of a lymphocytic infiltrate and PD-L1 expression was identified.
Taken together, the above findings suggest the UPS formed in this mouse model are immuno-
genic, and that a substantial proportion might evade immunosurveillance by upregulation of
PD-L1 and inhibition of T lymphocyte activity [25].

Discussion

Herein we describe a new mouse model for UPS that incorporates viral Cre-mediated deletion
of Pten/Trp53 and BLI capability. This has the advantage of allowing for the formation of
tumors in the extremities where they can be closely monitored. This model is also unique in
that Cre recombinase expression and allelic recombination results not only in homozygous
loss of Trp53 and Pten, but also in expression of luciferase. Analysis of the TCGA database
indicates that combined loss of PTEN and TP53 are more common in human UPS than other
soft tissue sarcomas, highlighting the relevance of this model to human disease. BLI allows
quantitative measurement of tumor growth earlier, beginning around 1 week post virus injec-
tion, than is possible for manual estimation of tumors, which are not palpable until 10-11
weeks. This makes BLI well suited to measure early tumor growth, before it is possible to mea-
sure tumor volume via calipers. It is important to note, however, that BLI may not proportion-
ally scale with tumor volume, particularly in larger tumors, due to the presence of non-viable
necrotic regions, attenuation of light signal from the interior of the tumor by overlying tissue,
and/or variability in intratumoral exposure to luciferin [25-27]. This BLI capability was also
instrumental in uncovering inherent differences between SQ and IM injection of Ad-Cre with
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Fig 6. Trp53/Pten undifferentiated pleomorphic sarcomas demonstrate immune tolerance. A)
Histology of UPS reveals an infiltrate of small mature lymphocytes (arrow), which is further confirmed by
immunohistochemistry for CD45 (B, arrow). Immunohistochemistry was performed for PD-L1 (B7-H1),
showing expression patterns ranging from focal/variable staining (C), to diffusely and strongly positive (D),
suggesting that UPS in the Trp53/PTEN model are immunogenic and might evade immunosurveillance by
PD-L1 upregulation.

https://doi.org/10.1371/journal.pone.0183469.9006

regards to systemic spread, which likely would not have been realized in the absence of serial
BLI. Although tumors arising in SQ and IM locations were histologically and immunohisto-
chemically similar, IM adenoviral injection resulted in greater systemic dissemination and
unanticipated infection of Ad-Cre, a phenomenon which may need to be taken into account
during experimental design. Abdominal BLI signal was found to be consistent with multifocal
liver lesions on ex vivo imaging and hepatic extramedullary hematopoiesis on histologic
examination.

An additional point to consider with systemic viral dissemination is whether this might be
avoided or curtailed with modified viral preparation or use of a different expression promoter.
The current study uses the same viral vector (Ad-Cre driven by the CMV promoter) as the
Kirsch study, although the method of viral preparation prior to injection differs. In the current
study, virus is prepared in phosphate-buffered saline. In the Trp53/Kras model, virus is pre-
pared in MEM and CaCl, buffer [18, 28]. This preparation is thought to facilitate the forma-
tion of precipitates, which are then taken up into cells via endocytosis [28]. It is possible that
viral preparation as a precipitate might decrease absorption into the circulation and increase
uptake specifically into the muscle and SQ tissue [28]. The CMV promoter is used to drive Cre
recombinase in the present study as well as in the Kirsch study, and although this promoter
has the advantages of strong, constitutive expression, it also lacks cell-type specificity. Similar
to strategies used to target Cre recombinase expression in other transgenic sarcoma models, it
may be possible to engineer Ad expression vectors where Cre is driven under the expression of
tissue-specific promoters, therefore targeting allelic recombination to specific cell types. This
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type of vector engineering, though limited by constraints such as vector size, has the possibility
of tailoring this Ad-Cre model for additional applications.

Both the SQ- and IM-injected cohorts developed primary soft tissue sarcomas with 100%
incidence and comparable latencies. However, the nature of the tumors on physical exam and
the associated animal morbidity and survival were very different between the injection groups.
The sarcomas that arose following SQ viral injection were easily identified by physical exam
due to their superficial nature and location, which was amenable to palpation. The tumors
were rubbery and mobile, and were able to readily grow for long periods of time with limited
animal morbidity. The sarcomas that developed following IM injection into the quadriceps
were difficult to palpate until they had reached a large size, and accurate caliper measurements
were challenging due to the deeply invasive nature of the tumors within the native muscula-
ture. The tumors were firm, fixed, and caused significant animal morbidity with decreased
ability to bend the hind leg and ambulate, resulting in increased morbidity. Depending on the
tumor characteristics desired by the researcher, the injection technique could be tailored for
SQ or IM injection to induce either superficial, indolent tumors versus invasive, aggressive
tumors, respectively.

Our Trp53""Pten™™ model demonstrates that homozygous inactivation of both Trp53 and
Pten in either SQ tissue or in skeletal muscle promotes sarcomagenesis. It is unclear whether
this occurred because the tumor initiating cell in both anatomic sites is the same, or whether
UPS represents a common final pathway for sarcomas with multiple lines of differentiation.
One exception in the current study is the development of PRMS in a single intramuscular-
injected mouse. Given the small number of mice injected, it would be interesting to expand
the power of the study to determine if additional defined sarcoma subtypes might develop in
greater frequency if provided the opportunity, such as liposarcomas and rhabdomyosarcomas.

The presence of a lymphocytic infiltrate in the majority of the sarcomas in this immuno-
competent mouse model strongly suggests these sarcomas are immunogenic. Expression of
PD-L1 in sarcomas generated in this mouse model indicates these tumors grow despite
immune surveillance by expression of a check-point protein that inactivates T lymphocytes
[29]. These findings suggest that this mouse model can be used as a pre-clinical model to test
the efficacy of anti PD-1/PD-L1 therapy (e.g. pembrolizumab) in UPS.

In conclusion, we have developed a novel mouse model of UPS, which is driven by Ad-Cre
recombinase mediated inactivation of Trp53 and Pten in either SQ tissue or skeletal muscle.
Injection into the extremities offers the ability to closely monitor growth of the tumors. Fur-
ther facilitating the observation of the tumor is concurrent expression of luciferase following
inactivation of Trp53 and Pten, providing the ability to use BLI to track allelic recombination,
tumor formation, and tumor growth. This Trp53/Pten model has the potential to be further tai-
lored to the researcher’s needs by modifying the viral titer injected, the method of viral prepa-
ration, or the anatomic site and timing of injection. The technique of SQ or IM Ad-Cre
injection could also be applied to other transgenic/knock-out mice. Additionally, serial in vivo
BLI of UPS is a useful tool for tracking tumor response to novel therapeutic treatments in pre-
clinical models, further providing translational insight into this aggressive neoplasm.

Supporting information

S1 File. Raw BLI and mouse data.
(XLSX)

S1 Fig. Loss of PTEN expression by UPS tumors. Immunohistochemistry reveals the neo-
plastic cells to lack expression of PTEN, confirming recombination of both floxed Pten alleles.
The inset demonstrates the presence of infiltrating inflammatory cells expressing PTEN
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(internal positive control).
(TIFF)

S2 Fig. Trp53/Pten mice injected with Ad CMV-eGFP demonstrate no appreciable BLI sig-
nal. A) BLI of Trp53/Pten mice injected with either IM Ad CMV-eGFP or Ad CMV-Cre were
compared over the course of one week. Shown in (B) is quantified whole-body in vivo BLI val-
ues for mice from each injection group (n = 3). These data demonstrate that while Ad
CMV-Cre mice have significant BLI signal, Ad CMV-eGFP mice have no appreciable lucifer-
ase expression. Panel (C) shows ex vivo BLI of dissected livers from each group, highlighting
the source of abdominal BLI in the IM-injected Cre cohort compared to the absence of
abdominal liver signal in the control eGFP cohort.

(TIFF)
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