
RESEARCH ARTICLE Open Access

Genome-wide effects of social status on
DNA methylation in the brain of a cichlid
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Abstract

Background: Successful social behavior requires real-time integration of information about the environment,
internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but
likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social
status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of
changes in gene transcription, the brain, and the reproductive system. These changes can be permanent but are
also reversible, implying the involvement of a robust but flexible mechanism that regulates plasticity based on
internal and external conditions. One candidate mechanism is DNA methylation, which has been linked to social
behavior in many species, including A. burtoni. But, the extent of its effects after A. burtoni social change were
previously unknown.

Results: We performed the first genome-wide search for DNA methylation patterns associated with social status in
the brains of male A. burtoni, identifying hundreds of Differentially Methylated genomic Regions (DMRs) in
dominant versus non-dominant fish. Most DMRs were inside genes supporting neural development, synapse
function, and other processes relevant to neural plasticity, and DMRs could affect gene expression in multiple ways.
DMR genes were more likely to be transcription factors, have a duplicate elsewhere in the genome, have an anti-
sense lncRNA, and have more splice variants than other genes. Dozens of genes had multiple DMRs that were
often seemingly positioned to regulate specific splice variants.

Conclusions: Our results revealed genome-wide effects of A. burtoni social status on DNA methylation in the brain
and strongly suggest a role for methylation in modulating plasticity across multiple biological levels. They also
suggest many novel hypotheses to address in mechanistic follow-up studies, and will be a rich resource for
identifying the relationships between behavioral, neural, and transcriptional plasticity in the context of social status.
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Background
Social interactions regulate individual access to re-
sources like food and potential mates that are critical for
survival and reproduction [1], and social relationships
are essential for well-being in many species, including
humans [2, 3]. Acting optimally in social contexts re-
quires integration of information about the external en-
vironment, internal physiology, and past experience in

real-time to modify behavior [4, 5]. The molecular sub-
strates underlying this integration are complex and not
well understood [6], but rapid responses to changing cir-
cumstances depend on flexible brain function, i.e. neural
plasticity, which in turn is supported by context-specific
patterns of gene transcription [7]. Therefore, knowing
when and where to act is contingent on plasticity at
multiple levels, from gene transcription through neurons
and neural circuits to behavior. This idea is supported
by evidence that different behaviors depend on specific
combinations of transcriptional states in key brain re-
gions that are dynamically regulated in response to
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changes both in the environment and body [8–13]. A
leading candidate mechanism for achieving these tran-
scriptional dynamics is DNA methylation [7, 14–16].
DNA methylation can mediate between the environ-

ment and the genome via the dynamic addition and re-
moval of epigenetic marks that alter gene expression
[17]. It has been implicated in multiple forms of neural
plasticity, and active (de) methylation is an important
regulator of gene expression in adult neurons involved
in learning and memory [18–20]. Methylation likely sup-
ports “metaplasticity” (plasticity of neural plasticity),
since it is a relatively stable epigenetic mark that also re-
tains the potential for change [21, 22]. For example,
methylation altered by learning could flag genes for
regulation only in certain conditions, priming the future
activation of specific transcriptional states without dis-
rupting baseline neural function by permanently altering
synapses or cell homeostasis [22]. The idea of metaplas-
ticity extends naturally to behavioral flexibility as well,
and changes in methylation have been associated with
social behavior and status in humans [23, 24], non-hu-
man primates [25], rodents [26–28], insects [14, 29], and
a well-studied cichlid fish, Astatotilapia burtoni (Add-
itional file 1: Figure S1) [30], which was the focus of this
study.
Male A. burtoni exist in a dynamic hierarchy where an

individual’s social standing can shift rapidly depending
on the social environment, causing fast behavioral modi-
fications that trigger a cascade of changes in gene tran-
scription, the hypothalamus, and the reproductive
system [31–33]. Here, we studied DNA methylation in
brains of male A. burtoni from the extreme ends of the
social spectrum: stable dominant (D) males that control
territory - and thus access to food and potential mates -
and socially suppressed non-dominant (ND) males. D
males are reproductively capable and employ a reper-
toire of behaviors to aggressively maintain territory and
court and spawn with females [34], while ND males are
reproductively incapable and their behavior is mostly
limited to fleeing from aggressors. D males have gonado-
tropin-releasing hormone (GnRH1) neurons in the pre-
optic area (POA) of the hypothalamus that are roughly
eightfold larger in volume [35, 36], a more active hypo-
thalamic-pituitary-gonadal (HPG) axis [37], and larger
testes compared to ND males [38, 39].
However, ND males will display dominance behaviors

almost immediately when given the social opportunity,
and this “social ascent” is accompanied within minutes
by increased GnRH1 neuron activity [40] and steroid
hormone production [41, 42], as well as transcriptional
activation across multiple brain regions and the HPG
axis [33, 37, 43]. Over the next few days after ascent,
sustained dominance leads to increased cell proliferation
and neural differentiation in the hypothalamus [44].

GnRH1 neuron size and dendritic complexity also in-
crease [35, 36, 45, 46], altering the firing properties and
neuronal connections of these cells [47, 48] and leading
to rapid testes growth and sperm production [49].
Remarkably, all of these changes are reversible, and

male A. burtoni can move up and down the social hier-
archy multiple times throughout life. The stable-yet-re-
versible nature of A. burtoni social status resembles a
form of metaplasticity whereby changes in neural func-
tion and behavior are dynamically modified depending
on social context and internal state, suggesting that
DNA methylation may bridge plasticity at the transcrip-
tional, cellular, and behavioral levels. Indeed, systemic
manipulation of methylation can promote or inhibit A.
burtoni social ascent [30], but how it affects biological
function in brain areas like the hypothalamus that are
deeply intertwined with social status remains unknown.
Here, we hypothesized that genome-wide signatures of
methylation could reveal key biological processes driven
by social change. In particular, we predicted that methy-
lation would affect genes germane to both synaptic and
homeostatic neural plasticity since 1) past experience
guides behaviors of both D and ND males in key social
contexts [50–53], and 2) the profound growth of cells in
the POA after social ascent - including GnRH1 and
somatostatin neurons [54] - is likely accompanied by
changes in the distribution of neurotransmitter receptors
and ion channels.
We performed whole-genome bisulfite sequencing

(BS-seq) and RNA-seq on brain tissue from two males
of each social status. Since methylation levels are corre-
lated across the genome and functionally relevant differ-
ences are generally associated with entire regions as
opposed to single loci, we used the BSmooth method to
search for differentially methylated regions (DMRs) [55],
identifying hundreds across the genome. Because this
approach was novel in A. burtoni, we measured dis-
tances between DMRs and genes and devised a method
to determine the significance of the results (see
Methods). Roughly 75% of the DMRs were in a gene
body and most of the rest were within 5 kb of a gene.
These “DMR genes” were involved in processes support-
ing neural plasticity, development, and growth, and a
few were differentially expressed, although the overall re-
lationship between methylation and expression varied
depending on gene function and DMR location. This
was also true of the relationships between methylation,
transposable elements (TEs), and conserved non-coding
elements (CNEs), and a significant number of DMRs
overlapped long non-coding RNAs (lncRNAs) that were
antisense to a protein-coding gene, hinting at subtle in-
teractions between multiple layers of gene regulation.
Our results generated many novel hypotheses to address
in mechanistic follow-up studies, and will be a rich
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resource for identifying the relationships between behav-
ioral, neural, and transcriptional plasticity in the context
of social status.

Results
We identified 709 DMRs in A. burtoni hypothalamus as
a function of social status. Three of the most significant
are schematized in Fig. 1 (see Methods). The median
DMR was 330 base pairs (bp) long, with average baseline
methylation levels of 60% that differed by 26% between
D and ND males (Fig. 2, Additional file 1: Figure S2;
Additional file 2: Table S1A). D and ND methylation
was effectively identical across the > 99.9% of the gen-
ome outside of the DMRs (Additional file 1: Figure S3).

D males had higher methylation levels in 494 DMRs (D-
DMRs) and 12% higher methylation in the DMRs over-
all, even including the 215 where ND methylation was
higher (ND-DMRs, p < 7.8e-10, Mann-Whitney U test).
D- and ND-DMRs varied in a number of ways but the
biological significance of these differences was unclear
(see Methods, Additional file 1: Figure S4).

DMR locations and characteristics relative to genes and
other genomic features
Altogether, > 90% of the DMRs overlapped a gene, regu-
latory region (defined as 5 kb up- to 1 kb downstream of
the 5′ end, or 1 kb up- to 5 kb downstream of the 3′
end), TE, or CNE (Additional file 2: Table S1B-C).

aq

Fig. 1 Example DMRs with schematic illustration of regulatory region DMR types. a-c: Raw methylation ratios (colored dots) and smoothed
methylation values (colored lines, y-axis) for CpGs with more than 4x coverage (grey vertical lines) in every fish are colored by social state
(green = dominant, blue = nondominant), while the relevant parts of the genome are schematized below following (d), including non-coding and
protein-coding exons, introns, and 5′ or 3′ ends (x-axis). Pink shading shows the extent of each DMR. As illustrated, (a), UBX domain protein 4
(ubxn4) had a type-2 regulatory region DMR that overlapped its transcription start site; (b), ubiquitin specific peptidase 32 (usp32) had a type-2
regulatory region DMR within its 3′ untranslated region; and (c), hes-related family bHLH transcription factor with YRPW motif 2 (hey2) had a DMR
that extended from its last intron to cover its last protein-coding exon. d: We classified three different types of DMRs in regulatory regions
schematized as shown in a hypothetical genomic region with two genes in antisense orientation. Type-1: within 5 kb of a gene but outside the
body. Type-2: overlapping any of the first or last 1 kb of a gene. Type-3: a type-1 or type-2 DMR for one gene that was also within the body of
another gene on the opposite strand
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DMRs were closer to more genes than expected by
chance, especially within 15 kb (Additional file 1: Figure
S5, Figure S6A), and methylation differences were
greater in areas with more genes, independent of other
DMR characteristics (Additional file 1: Figure S6B-C). A
significant majority of DMRs were in a gene body or
regulatory region (n = 626, Table 1A, Additional file 1:
Figure S7A), and a significant number of DMRs in genes
and 5′ regulatory regions contained a CNE (Table 1B).
In contrast, there were significantly fewer overlaps be-
tween DMRs and TEs than expected by chance, particu-
larly in gene bodies (Table 1B). Some intergenic DMRs
contained a TE (n = 13) or CNE (n = 10; Additional file 1:
Figure S7B), and all others were within 5 kb of a TE (n =
60, median = 0.8 kb distance).
Almost half of the DMRs overlapped more than one

genomic feature (n = 307, Fig. 3a top), but roughly 80%

of the variability in DMR location could be attributed to
whether they were located in a gene body, and if so,
whether they overlapped an intron or exon (Fig. 3a bot-
tom, PC1–2). Other criteria were whether DMRs over-
lapped a TE or CNE, and for those within 5 kb of a
gene, whether they were up- or downstream of it (Fig. 3a
bottom, PC3–5).
Many DMRs in regulatory regions had the potential to

affect multiple genes. Some were in both the body of
one gene and regulatory region of another, so we divided
regulatory region DMRs into 3 types for further analysis
(Fig. 1d, Additional file 1: Figure S7B-D). Type-1: within
5 kb of a gene but outside the body (n = 104). Type-2:
overlapping any of the first or last 1 kb of a gene (n =
71). Type-3: a type-1 or type-2 DMR for one gene that
was also within the body of another gene on the oppos-
ite strand (n = 110). Many type-1 DMRs in the 5′ region

A B

C D

Fig. 2 Mean methylation levels and differences across all DMRs. Histograms of average methylation levels within all 709 DMRs, and how they
were different across social status. Means and medians of each distribution are reported in the plot and represented by vertical solid and dashed
red lines, respectively. All values for individual DMRs are reported in Additional file 2: Table S1. a-b: Averages of smoothed methylation levels
across all cytosines within each DMR for ND (a) and D (b) fish. c: Differences between average smoothed methylation levels for ND - D fish, such
that negative values reflect higher methylation in D fish. DMRs where the absolute value of this difference was less than 0.1 were filtered out
during quality control (Methods). d: Log2 ratio (fold-difference) of average smoothed methylation values for D / ND fish, such that positive values
reflect higher methylation in D fish
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of one gene were also 3′ to another gene (Table 2,
Additional file 1: Figure S7B-C). There was also significant
overlap between type-2 and type-3 DMRs (Table 2A,
Additional file 1: Figure S7D), i.e. DMRs that overlapped
the first or last 1 kb of a gene were likely also within the
body of another gene on the antisense strand. Finally, it
was more common for 5′ versus 3′ type-2 DMRs to
overlap an intron (OR = 2.34, p < 0.02, Fisher’s exact test;
Additional file 1: Figure S7C), and many intronic DMRs
overlapped protein-coding (OR = 2.74, p < 4.85e-4), but
not non-coding exons (OR = 0.131, p < 1.43e-8), thus in-
tronic DMRs tended to be well within gene bodies and
away from the 3′ end.
DMRs had different relationships with TEs depending

on their location relative to genes. The number of regula-
tory region DMRs with a TE was unremarkable overall
(Table 1B), but a disproportionate amount of type-1
DMRs overlapped a TE (5′ and 3′: OR = 3.5, p < 6e-5). In
contrast, gene body DMRs with a TE were rare overall
(Table 1B), and they were also underrepresented within
this small number of DMR-TE-gene overlaps (OR = 0.44,
p < 2e-4). Notably, a TE anywhere within 5 kb of a gene
was informative about differential methylation in the gene

body, regardless of whether it overlapped a DMR; genes
were more likely to have a DMR in their body if there
was also a TE there, but less likely if they only had a
TE in either regulatory region (Table 2B).
Some DMR characteristics varied by the type of fea-

ture(s) they overlapped. For example, DMRs that over-
lapped a TE had relatively low GC content (p < 0.003,
Mann-Whitney), as well as greater methylation levels
(Fig. 3c) and differences across social status (Fig. 3e), es-
pecially compared to DMRs with a CNE. There was little
correlation overall between DMR methylation levels and
how different they were across status (r = − 0.062, p < 0.1).
We compared DMRs that fell within a single intron,
exon, or regulatory region (n = 458, Additional file 1:
Figure S7C) and found that type-1 5′ DMRs and ex-
onic DMRs had larger differences than those in 3′ re-
gions or introns (Fig. 3d), even though baseline
methylation was significantly higher in exons (Fig. 3b).
DMRs in coding and non-coding exons had similar
methylation levels and differences across status, even
though coding exons had higher GC content (methy-
lation difference p > 0.28, level p > 0.78, GC p < 2e-4).
Some DMR-gene relationships were not one-to-one;

42 genes had > 1 DMR in their body and 15 DMRs
overlapped > 1 gene body (Table 1A, Additional file 2:
Table S2). Genes with > 1 DMR had more splice variants
than single-DMR genes (p < 0.001, Mann-Whitney).
Multi-gene DMRs were more likely to overlap transcrip-
tion start sites (OR = 16.3, p < 6e-5) and lncRNAs (OR =
64.2, p < 7e-8), and a significant portion of the genes
they overlapped were in fact lncRNAs (OR = 16.7,
p < 8e-6). Therefore, even though only 3% of the
gene bodies overlapped by a DMR were lncRNAs (n = 15),
nearly half of them were antisense to a protein-coding
gene (n = 7), and this lncRNA-coding pairing made up
about half of all instances where a DMR overlapped two
genes. All the protein-coding genes in these pairs were
expressed less in D fish. DMR genes in coding-coding
pairs were not biased towards either status, but their ex-
pression levels were more correlated (r = − 0.7, p < 0.09)
than those in coding-lncRNA pairs (r = − 0.16, p < 0.8).

Relationships between gene expression, methylation, and
DMR location
The same tissue samples used to assay DNA methylation
were also processed for RNA-seq so that gene expres-
sion and methylation could be directly compared (see
Methods). Baseline gene expression was defined as the
average level across all fish, and fold-difference across
social status as log2(D/ND) expression. Seven genes that
were significantly differentially expressed across social
status had a DMR in their body, regulatory region (for
example ubxn4, see Fig. 1a), or within 40 kb upstream
(see Methods, Additional file 2: Table S3). Across all

Table 1 Significance of DMRs overlapping genomic features

A body p-val 5′
reg

p-val 3′
reg

p-val

DMRs 522 <1e-4 147 0.027 145 0.042

> 1 gene 15 0.15 20 0.46 19 0.61

genes 484 <1e-4 166 0.057 162 0.11

> 1 DMR 42 0.042 2 0.47 5 0.053

coding 469 <1e-4 150 0.12 156 0.053

lncRNA 15 0.43 16 0.055 6 0.94

B TE <null p-
val

CNE >null p-
val

DMRs 111 <1e-4 44 <1e-4

DMRs (> 1 hit) 29 0.006 3 0.29

hits 146 <1e-4 48 0.001

+gene body
65 <1e-4 28 <1e-4

+ 5′ region 34 0.46 6 0.0093

+ 3′ region 33 0.34 3 0.28

A: Numbers of DMRs in gene bodies and regulatory regions with p-values
(columns). Rows are the numbers of: DMRs overlapping at least one (1) or
more (2) genes, genes with at least one (3) or more (4) DMRs, protein-coding
genes (5), and long-non-coding RNAs (6). P-values are defined as the fraction
of nullDMR sets with as many or more overlaps as the real DMRs and p-values
< 0.1 are bolded (see Methods). The 3′ regulatory region-lncRNA p-value is
italicized because this number was actually lower than expected since only ~
6% of the nullDMR sets had fewer hits in 3′ regulatory regions of lncRNAs
B: Numbers of DMRs containing transposable elements (TEs) and conserved
non-coding elements (CNEs) with p-values (columns). Rows are the numbers
of: DMRs overlapping at least one (1) or more (2) TE/CNE, TE/CNEs in a DMR
(3), TE/CNEs in a DMR that also overlapped a gene body (4) or regulatory
region (5,6). P-values reflect the fraction of nullDMR sets with fewer (TEs) or
more (CNEs) hits than the actual DMRs
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C

D

E

Fig. 3 DMRs overlapping different genomic features had distinct methylation profiles. a: Upper heatmap and dendrograms show unsupervised
hierarchical clustering of 709 DMRs (rows) based on the combinations of genomic features they overlapped (columns). Green colored cells
indicate DMR-feature overlap. Bottom heatmap shows Pearson correlations between the first 5 principal components (PCs, rows) of the DMR
correlation matrix and genomic features (columns). The name of each PC is followed in parentheses by the amount of variance it explained
within the DMR correlations. Red and blue denote strong positive and negative correlations, respectively. Correlation coefficients are shown in
cells where the p-value was significant after Bonferroni-correction for 55 tests (5 PCs × 11 feature types). b-e: Boxplots show comparisons of DMR
baseline methylation levels (b-c, y-axis) and the absolute value of ND - D methylation differences (d-e, y-axis) within different groupings of the
DMRs. Baseline methylation is defined as the mean of all smoothed methylation values within the DMR across all fish and denoted as all.mean in
Additional file 1: Figure S2 and Additional file 2: Table S1, while the absolute value of ND - D methylation differences is denoted as meanDiff.abs
in Additional file 1: Figure S2 and Additional file 2: Table S1. First, DMRs are grouped by whether they were contained within one part of a gene
body or regulatory region, including introns, exons, within 5 kb upstream of transcription start site (5′ type-1), or within 5 kb downstream of 3′
end (3′ type-1) (b, d), and second, DMRs were grouped by whether they contained transposable elements (TEs) or conserved non-coding
elements (CNEs) (c, e). The number of DMRs in each grouping is reported in parentheses below group names in each boxplot. Horizontal grey
lines denote the median value across all DMRs tested. Kruskal-Wallis omnibus p-values are reported above each plot and asterisks indicate
significance levels of pairwise comparisons after Dunn’s test with Bonferroni-correction; p < 0.05*, 0.01**, 0.001***
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DMR genes, the relationships between expression and
methylation varied by which part(s) of genes were differ-
entially methylated.
Baseline gene expression and DMR methylation levels

were not correlated overall (Fig. 4a), but they were in
genes with type-2 regulatory region DMRs: negatively
when the DMR was on the 5′ end, and positively when it
was on the 3′ end (Fig. 4b). That is, when average methy-
lation levels across all fish were high within a DMR in the
first 1 kb of a gene then average expression levels were
low, but vice versa when the DMR was in the last 1 kb of a
gene. In contrast, there was no correlation between base-
line DMR methylation and gene expression when DMRs
were only in the gene body (Fig. 4b), but these genes had
more splice variants than those with regulatory region
DMRs (Additional file 1: Figure S8B), suggesting that
methylation could be controlling expression of specific
transcript isoforms in these cases. Finally, genes with a
DMR in their body also had higher baseline expression
than those with a 5′ regulatory region DMR (Fig. 4c).

Similar to baseline levels, there was no correlation overall
between methylation and expression fold-differences across
social status (Fig. 4d), or in genes with just a body DMR
(Fig. 4b). There was however a mild positive correlation
among genes with a 5′ type-1 DMR (rho = 0.21, p = 0.024;
Fig. 4b), i.e. the magnitudes of methylation and expression
differences were only linked when the DMR was in the first
1 kb of the gene. Genes where DMR methylation was
higher in one status but gene expression was lower, or vice
versa, were more likely to have type-2 DMRs (5′: OR = 3.8,
p < 2e-3; 3′: OR = 2.7, p < 0.04) where methylation was
higher in D fish (D-DMRs: OR = 2.4, p < 1e-5), but when
methylation and expression were both higher or lower
in one status, gene expression tended to be higher in
D fish (Additional file 1: Figure S8C).

Properties of DMR genes and connections with other
regulatory mechanisms
Genes with a DMR in their body and/or regulatory re-
gion differed from genes that lacked a DMR in a number
of ways: they had significantly higher baseline expres-
sion, greater expression differences across social status,
higher GC content, more splice variants, and contained
more TEs than other genes (Additional file 1: Figure S9).
DMR genes were also more likely to be transcription
factors (OR = 2.1, p < 2e-7), overlap a lncRNA (OR = 1.8,
p < 9e-4, Additional file 2: Table S4), or have at least one
duplicate elsewhere in the genome (OR = 1.8, p < 2e-6).
Together, these findings indicate that genes with differ-
ential methylation are more constitutively active, and
that their expression is shaped by a more diverse set of
regulatory mechanisms than other genes.
Next, we asked whether transcription factor, lncRNA-

overlapping, or duplicated DMR genes differed from other
DMR genes. We found that transcription factor DMR
genes had relatively low baseline expression (p < 7e-4,
Mann-Whitney) and methylation levels (p < 4e-7) com-
pared to other DMR genes, and that their DMRs were
more likely to contain a CNE (OR = 4.5, p < 6e-5), sug-
gesting the presence of conserved regulatory elements.
Also, significant numbers of lncRNA-overlapping DMR
genes had a D-DMR and/or > 1 DMR (both OR > 2.4,
p < 0.05). For comparison, the number of DMR genes
that overlapped another protein-coding gene was unre-
markable (OR = 0.84, p > 0.16) and no more than ex-
pected had D-DMRs or > 1 DMR (0.7 < OR < 0.9, p >
0.7). Finally, not only were a significant amount of
DMR genes duplicates, there were a number of cases
where more than one copy of a duplicated gene had a
DMR (see Additional file 2: Table S1B).
These different subtypes of DMR genes were also

enriched for distinct but related biological processes
and functions (BY-adjusted p < 0.1, Additional file 1:

Table 2 Regulatory region DMRs were often linked to multiple
genes and had little relationship to TEs

A: DMRs 5' type-3 3' type-2 3' type-3 5' type-1

5' type-2 7.04
<2e-6

2.31
>0.12

11.6
<7e-11

5' type-3 9.06
<4e-7

2.69
>0.01

3' type-2 6.97
<8e-6

3' type-1 5.87
<5e-7

B: Genes DMR

body 5’ reg 3’ reg

TE

body 3.28
<4e-22

1.12
>0.54

1.16
>0.44

5’ reg
+body

1.46
<6e-5

0.97
>0.87

1.28
>0.13

5’ reg
-body

0.29
<5e-15

0.9
>0.68

0.83
>0.41

3’ reg
+body

1.94
<6e-12

1.28
>0.13

1.02
>0.93

3’ reg
-body

0.33
<4e-13

0.94
>0.83

0.94
>0.83

In both A and B, cells contain odds-ratios (top) and uncorrected p-values (bottom)
from Fisher’s exact test, and highly significant results (p<6e-5) are in bold. A:
Significance of overlaps between different types of DMR-regulatory region hits
(see Figure 1d). Type-1: within 5kb of a gene but outside the body. Type-2:
overlapping any of the first or last 1kb of a gene. Type-3: a type-1 or type-2 DMR
for one gene that was also within the body of another gene on the opposite strand.
Empty cells are either a redundant or undefined comparison, e.g. by definition 5’
and 3’ type-1 DMRs cannot overlap any part of a gene body so there were no
overlaps with type-2/3. B: TEs in gene bodies and regulatory regions were predictive
of DMRs in gene bodies but not regulatory regions. Significance of overlaps
between genes based on whether they had a DMR in their body or regulatory
region (columns) and a TE in their body, regulatory region and body (+body), or
regulatory region and not body (-body, rows)
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Figure S10A-C), commensurate with those enriched
in the DMR genes overall (described next).

DMR genes were involved in neural development,
synapse function, and signaling
To investigate the potential biological effects of differen-
tial methylation, we performed functional enrichment
analyses with the DMR genes (see Methods), finding
they were enriched in 43 GO categories, (BY-adjusted

p < 0.1; Fig. 5; Additional file 2: Table S5A) and 14
KEGG pathways (BH-adjusted p < 0.1; Fig. 6; Additional
file 2: Table S5B). Prominent themes among these re-
sults were neural development, synapse function, and
signaling, including many molecules in glutamatergic
and GABAergic synapses and axon guidance pathways
(Additional file 1: Figure S11, Figure S12).
Thirty-five DMR genes were each in 15–20 of the

enriched GO terms and/or at least 3 KEGG

A B

C D

Fig. 4 Relationships between DNA methylation and gene expression in DMR genes. a: Mean gene expression levels (TPM: transcripts per million,
y-axis) across all fish for each DMR gene (dots), plotted as a function of the mean methylation level across all fish (x-axis) for each gene’s DMR(s).
b: Heatmap representing Spearman correlations between methylation and gene expression as a function of DMR location (rows). Each row
corresponds to a subset of genes with the same color in a-c. Column 1 shows correlations between baseline (mean) gene expression (TPM) and
DMR methylation levels (all.mean from Additional file 1: Figure S2 and Additional file 2: Table S1), corresponding to subsets of genes from a.
Column 2 shows correlations between expression and DMR fold-differences (see Fig. 2d and Additional file 2: Table S1), corresponding to subsets
of genes from d. Darker red and blue colors in cells denote stronger positive and negative correlations, respectively, as shown in legend to right
of the heatmap. Spearman’s rho values are shown in cells with p-values < 0.03. c: Boxplot comparing mean gene expression levels across all fish
(y-axis) for DMR genes, based on whether DMRs were in the body and/or 5′ or 3′ regulatory regions (x-axis). Omnibus p-value from a Kruskal-
Wallis test is reported above the plot, and group sizes are reported in parentheses after the group name under each box. Top and bottom of
boxes represent the first and third quartiles, respectively, whiskers extend to the most extreme data points no more than 1.5 times the
interquartile range from the box. Dots show data points beyond this range, and horizontal grey line denotes the overall median. *p < 0.05 from
Dunn’s post-hoc test with BH-correction. c: Scatterplot of gene expression fold-difference, defined as log2 of D/ND (y-axis), as a function of
methylation fold-difference (x-axis) for DMR genes (dots). The same genes are represented in all panels (n = 712). Genes with a DMR in both the
5′ and 3′ regulatory regions are not shown (n = 4). In a, c, d, methylation levels were averaged across all DMRs for genes with > 1 DMR in their
body and/or regulatory region(s) (n = 58). In a and d, dashed lines represent the best-fit linear regression, Spearman’s rho is reported above the
plot, and gene colors match the color of their corresponding group in c
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pathways (Additional file 2: Table S5C), which led us
to cluster terms by their constituent genes and sys-
tematically look for overarching functional patterns
(Fig. 5). There were two distinct groups of GO terms
broadly related to: 1) development and cell differentiation
(Dev), and 2) neural structure and activity (Act). In turn,
these could be broken into sub-clusters of related GO
terms (Dev1–2, Act1–4), and six DMR genes were in at
least one term from every cluster (abl1, gabra5, gabrb3,
gnao1(102305147), shank3, slc8a3). See Methods section
on genome annotation for explanation of the gene naming
conventions in this paper.
Some properties of genes in the Dev and Act GO term

groups were significantly different, including average gene

size, GC content, TE content, baseline methylation and
expression levels, and whether methylation and expression
fold-differences went in the same direction across social
status (Additional file 1: Figure S13). Dev and Act terms
were also differentiated by the high numbers of transcrip-
tion factor genes in the Dev1 and Dev2 clusters (both
OR > 4.3, p < 3e-7), including several involved in hormone
signaling (Additional file 1: Figure S10C), compared to sig-
nificantly few in Act1, Act3, and Act4 (all OR < 0.3, p <
0.03).
Dev GO terms were uniquely enriched for gene

markers overexpressed in specific cell types from [56]:
endothelial cells (epithelium development-Dev1, stem
cell differentiation-Dev2; OR > 5.7, BH-adjusted p <

A B C D

Fig. 5 DMR genes were enriched for GO terms related to neural development and activity. a: Heatmap of pairwise Pearson correlations between
GO terms (rows and columns) and dendrogram showing the results of unsupervised hierarchical clustering. Each GO term was represented by a
vector of all DMR genes where values of 1 or 0 indicated the presence or absence, respectively, of a given gene in the term, then these vectors
were used to compute correlations. Clusters of GO terms that shared many of the same DMR genes are denoted by black boxes. See Additional
file 2: Table S5A for all DMR genes in each GO term. b: Names of enriched GO terms (rows), preceded by their significance rank, e.g. 1-synapse
was the most significant. Different shades of blue to the left denote clusters and sub-clusters of GO terms, broadly defined as related to
development (Dev) or activity (Act). The same color-cluster mappings are used in Fig. 6 and Additional file 1: Figure S10C and Figure S13. c:
Heatmap of Pearson correlations between the first five principal components (PCs) of the correlation matrix in a (columns) and GO terms,
represented by gene vectors as in a (rows). The name of each PC is followed in parentheses by the amount of variance it explained within the
GO term correlations. Red and blue denote strong positive and negative correlations, respectively. Values are shown for correlations significant
after Bonferroni correction for 215 tests (5 PCs × 43 GO terms). d: Bars plot -log10(Benjamini-Yekutieli-adjusted p-values) for each term. Vertical
grey lines represent p-values of 0.05, 0.01, 1e-4. Bar color represents the average DMR log2(D/ND) methylation fold-difference for genes in the
term, where darker red or blue represent higher mean methylation levels in D or ND fish, respectively. This quantity is referred to as log2fc in
Additional file 1: Figure S2 and Additional file 2: Table S1
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0.04), and newly-formed oligodendrocytes (chemorepel-
lent activity, semaphorin-plexin signaling pathway,
semaphorin receptor binding-all Dev2; all OR > 56, p <
0.04) (see Methods; Additional file 2: Table S6). In gen-
eral, GO terms were composed of genes with higher
DMR methylation levels in D fish, but two Dev1 terms
were the only ones where levels were higher in ND fish

(telencephalon development, forebrain neuron differenti-
ation, Fig. 5d).
Three Act GO terms were uniquely enriched for genes

with DMRs that overlapped a TE (intrinsic component
of plasma membrane, signal transducer activity, receptor
activity; all OR > 2.7, BH-adjusted p < 0.05). In general,
grouping DMR genes by GO term revealed correlations

A B

C

D

Fig. 6 Molecular pathways distinguish types of DMR gene GO term clusters. a: Heatmap of odds-ratios (OR) from Fisher’s exact tests comparing
the amount of overlap between DMR genes in enriched GO term clusters (rows) and KEGG pathways (columns). White represents OR~ 1 and
darker shades of red indicate higher values, and thus more overlap than expected. Black boxes highlight comparisons that passed Bonferroni-
correction for 84 tests (14 KEGG pathways × 6 GO term clusters). For reference, the overlap between Dev1 and Axon guidance (leftmost cell in
top row) was the least significant of these with OR > 5.8 and corrected p < 0.023. Dendrogram above shows the results of unsupervised
hierarchical clustering of the KEGG pathways based on the values in the heatmap. Complete lists of all DMR genes in each KEGG pathway can be
found in Additional file 2: Table S5B. b-d: Venn diagrams showing DMR genes in the Axon guidance (b), Cell adhesion (c), and ErbB signaling (d)
KEGG pathways, divided by their presence in one or more GO term clusters. Colors match those behind term cluster names in a. Dashed boxes
in b and d highlight receptor-ligand interactions and the dashed polygon in c contains four DMR genes of interest that were not in the Cell
adhesion pathway, but interact with sdc2, which was. pard3 and sema6b (b), jam3 and nlgn2 (c), and nrg3 (d) had at least one other copy in the
genome that also had a DMR (see Additional file 2: Table S1B)
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between the number of TEs in gene bodies and various
gene/DMR characteristics (Additional file 1: Figure S14),
suggesting a functionally important relationship between
TEs and methylation.
Finally, although the Dev and Act GO term clusters

were distinct there was meaningful overlap between
some of their subgroups. Dev1 and Act2 shared a signifi-
cant number of genes, as did Dev2 and Act2–4 (Table 3),
and Dev2, Act1, and Act4 were all enriched for gene
markers overexpressed in neurons (all OR > 2.5, p < 3e-3).
Comparing genes in the GO term clusters to those in
enriched KEGG pathways, much of the overlap between
the Dev1/Dev2 and Act2 clusters was due to genes in-
volved in axon guidance and ErbB signaling, and overlap
between the Dev2 and Act3/Act4 clusters was due to cell
adhesion molecules (Fig. 6).

DMR gene markers of hypothalamic GABAergic neurons
To investigate how specific the DMRs were to hypothal-
amic cell types we compared DMR genes to groups of
hypothalamus cell type markers that came from un-
biased clustering of mammalian single-cell RNA-seq ex-
pression data [57]. These genes were not necessarily
overexpressed, but composed co-expression groups cor-
responding to 15 types of glutamatergic neurons, 18
types of GABAergic neurons, and six stages of oligo-
dendrocyte development.
There were 43 DMR genes in GABAergic neuron clus-

ters (OR > 1.4, p < 0.04) and 15 in glutamatergic clusters
(OR > 1.4, p < 0.16; Additional file 2: Table S6). Six were
in both types of neurons (cdh13, hlf, lhx1, nr3c1, six6,
tmeff2) and 14 were transcription factors (OR > 3.5, p <
5e-4; Fig. 7a). Altogether, they made up 16/63 neuron
overexpression markers among the DMR genes (OR >
5.5, p < 3e-6; Additional file 2: Table S6), including tyro-
sine hydroxylase (th), beta-synuclein (sncb), rbfox3(102,
308,260; aka NeuN), and cacna2d2 (see Discussion).
Notably, rbfox3 had four DMRs, three of which had

CNEs, including one with a putative binding site for
nr3c1. DMR genes in GABAergic cell clusters were
enriched for GO terms related to neural development
(BH-adjusted p < 0.1, Fig. 7b).
The strongest enrichments for DMR genes in specific

neuron types were in two GABAergic clusters representing
vasoactive intestinal peptide (VIP, GABA9) and
arginine vasopressin (AVP, GABA8) cells in the mam-
malian suprachiasmatic nucleus (SCN: OR > 2.7, un-
corrected p < 0.004; Fig. 7a). Also of note were 15
DMR genes in a cluster representing somatostatin
neurons (GABA1), nine in glutamatergic neurosecre-
tory cell clusters (Glu10–15), ten in arcuate nucleus
cell types (Glu11,13, GABA11–12, GABA15), and 23
in cell types with genes differentially expressed after
food deprivation (Glu5,8,12, GABA1,11,15,18).

DMR gene markers of early oligodendrocyte development
Many DMR genes were in clusters representing stages 1
(n = 42) and 2 (n = 57) of hypothalamic oligodendrocyte
development (both OR > 1.7, BH-adjusted p < 0.013;
Additional file 2: Table S6), including 15/22 oligodendro-
cyte progenitor cell (OPC) overexpression markers in the
DMR genes (OR = 24.1, p < 3e-11; Additional file 2:
Table S6). Thirty-four genes were in both the stage1
and 2 clusters. Notably, retinoic acid receptor rarg
(102310532) was specific to stage 1, while neuroligins
nlgn2 and nlgn3, BDNF/NT-3 growth factor receptor
ntrk2(102296022), and transcription factor hey2 (Fig. 1c)
were specific to stage 2. DMR genes in these clusters were
enriched for 15 GO terms (BH-adjusted p < 0.1; Fig. 7c,
Additional file 2: Table S8).

Discussion
Neural plasticity, DNA methylation, and A. burtoni social
change
A. burtoni social change involves neural plasticity at the
synaptic, cellular, and circuit levels (reviewed in [58]).
Synaptic/Hebbian plasticity has not been directly studied
in A. burtoni, but it likely underlies observations of ex-
perience guiding male social behavior [50–53], and is
probably important for learning optimal behavioral strat-
egies. Synaptic plasticity has been linked to phenomena
that are pertinent to A. burtoni social dynamics in other
species, including fear conditioning [59], inhibitory
avoidance [60], and spatial learning [61]. Also, cell-wide/
non-Hebbian changes affecting neural circuit function in
the hypothalamus occur after A. burtoni social ascent;
GnRH1 neurons increase in size and dendritic complex-
ity [35, 36, 45, 46], altering their firing and connectivity
[47, 48], somatostatin neurons grow [54], and adult
neurogenesis increases [44]. Since all of these changes
can revert if the social environment is altered A. burtoni
exemplifies “metaplasticity”, i.e. plasticity of plasticity.

Table 3 Overlaps between different enriched GO term clusters

Dev1 Dev2 Act1 Act2 Act3 Act4

Dev1 – 106 23 105 50 23

Dev2 <2e-24 – 28 110 67 40

Act1 0.78 0.063 – 55 45 31

Act2 <4e-5 <3e-9 <2e-10 – 97 48

Act3 0.92 <4e-5 <3e-13 <2e-7 – 46

Act4 0.82 <4e-6 <5e-13 <4e-4 <4e-12 –

Numbers of DMR genes shared across the 6 enriched GO term clusters (above
and right of diagonal) with uncorrected Fisher’s exact test p-values for each
test (below and left of diagonal). The highly significant overlaps within Dev1–2
or Act1–4 term clusters were considered somewhat trivial, but bold text
indicates highly significant comparisons across Dev and Act clusters. Also see
Fig. 6a, which shows that some of the overlap across Dev and Act clusters can
be attributed to DMR genes in the Axon guidance, ErbB signaling, and Cell
adhesion molecule KEGG pathways
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DMRs genes involved in synaptic plasticity
Many of the 716 genes we found with a DMR in their
body or regulatory region are known players in synaptic
plasticity in other species. Most encode molecules that
make up the core machinery of glutamatergic and
GABAergic synapses, including multiple types of glutam-
ate and GABA receptors, transient and voltage-activated
ion channels, intracellular scaffolding molecules, other key
intracellular effectors, and trans-synaptic cell adhesion
molecules like neuroligins and neurexins. Overall, 8/57
glutamate receptor genes and 6/33 GABA receptor genes
in the A. burtoni genome had DMRs, which was highly
significant (both OR > 5.8, p < 3e-4). Some had > 1 DMR

in their body and/or regulatory region, and a genomic re-
gion with three GABA receptor genes and three DMRs
was a compelling example of where methylation may
affect splicing to fine-tune the ratios of receptor subunit
isoforms (Fig. 8).
Beyond glutamate and GABA signaling, many DMR

genes modulate synaptic function, for example through
retrograde messaging and steroid hormone activity.
DMR genes were enriched for retrograde endocannabi-
noid signaling (see Additional file 2: Table S5B), which
affects neurotransmitter release via interactions with
neuroligins and neurexins [62, 63]. Also, nitric oxide
(NO) synthase adaptor protein nos1ap(102312463) had a

Fig. 7 DMR genes in specific hypothalamus cell-types. a: Distribution of DMR genes (rows) across GABAergic and glutamatergic neuron subtypes
in the hypothalamus (columns) from [57]. Blue cells indicate presence of a gene in a cell type, and pink shading behind gene names indicates
transcription factor genes. Starting from the bottom, rows represent DMR genes that were found in progressively more cell types. Most genes
were in one type, 11 genes were in 2 types, and 4 genes were in more than 2 types, as demarcated by the solid black horizontal lines. Dashed
horizontal lines are for visual reference. Starting from the left, the first 15 columns represent GABAergic clusters sorted by the number of DMR
genes they contained, then the final 9 columns (right of solid black vertical line) represent glutamatergic clusters. Note that not all clusters from
[57] contained a DMR gene. GABA8 and GABA9 represent cells in the suprachiasmatic nucleus (SCN, dark grey shading), while GABA11, GABA12,
GABA15, Glu11, and Glu13 represent arcuate nucleus cells (ARH, light grey shading), and GABA11 and Glu10 represent GnRH neurons (bold and
underlined). Blue, yellow, and green bars below columns match the colors in the venn diagram in c.b: DMR genes in GABAergic cell clusters
across GO categories that were enriched specifically in these genes (Benjamini-Hochberg-adjusted p < 0.1): Generation of neurons (GO:0048699),
Neuron projection (GO:0043005), Transcriptional regulation (GO:0006355). Black box groups genes that are part of voltage-gated potassium
channel complexes. c: Venn diagram of some DMR genes that were in the stage 1 and/or stage 2 oligodendrocyte progenitor cell (OPC)
coexpression clusters from [57]. See Additional file 2: Table S6 for all DMR genes in these clusters. Genes are shown from GO categories that were
enriched specifically in OPC cluster DMR genes (Additional file 2: Table S8). Bold and italicized text indicate genes specific to the stage 2 or stage
1 clusters, respectively. The solid black box surrounds genes involved in cell adhesion, the dashed box surrounds genes involved in axonogenesis
and/or neuron projection extension, and the shaded box surrounds transcription factor genes
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DMR, and knockout of nos1ap in mice leads to altered
dendritic spine morphology [64], thus it is plausible that
nos1ap is involved in the GnRH1 cell dendritic changes
after social ascent, or in other neuroendocrine cells
(more on this below).
Other DMR genes could also be involved in den-

dritic remodeling after A .burtoni social change, and
make up some of the common mechanisms under-
lying synaptic and homeostatic plasticity. For example,
arhgap32 (aka RICS), β-catenin interacting protein
ctnnbip1, and N-cadherin cdh2(102297691) all had
DMRs, and interactions among RICS, β-catenin, and
N-cadherins affect dendritic structure in mammals
[65]. In total, seven cadherin genes had DMRs, and
cadherin-catenin complexes are implicated in many pro-
cesses underlying synaptic and homeostatic plasticity,
including CREB (cAMP response element-binding pro-
tein)-mediated transcription [66–69].

DMR genes involved in homeostatic plasticity
Our results suggest that DNA methylation is involved in
regulating homeostatic plasticity related to A. burtoni
social status through mechanisms like CREB-mediated
signaling, steroid hormone activity, and protein degrad-
ation. Several genes directly related to CREB/cAMP had
DMRs (adcy1, atf6b, crebrf, crtc3, ubxn4). crtc3 regulates
steroidogenic acute regulatory protein (StAR), a CREB-
activated gene linked to increased steroid hormone
levels during social behavior in A. burtoni [70]. atf6b
and crebrf are regulators of protein degradation via the
unfolded protein response (UPR), which activates endo-
plasmic-reticulum (ER)-associated protein degradation

(ERAD) in response to altered calcium homeostasis in
the ER [71]. ERAD is thought to modulate homeostatic
plasticity via activity-dependent degradation of GABA
receptors [72, 73]. The most significant DMR overlapped
the TSS for ubxn4, a critical molecule for ERAD [74,
75], and there were several DMRs in genes for GABA
receptors.
Ubiquination and degradation of AMPA and GABA re-

ceptors may be mediated by DMR genes, thereby helping
to maintain cell homeostasis, and ERAD function is mod-
ulated by ubiquitination [76, 77], Overall, we identified
DMRs in several E3 ubiquitin ligases, ubiquitin-specific
peptidases (e.g. usp32), and small ubiquitin-related modi-
fier sumo2(102294941). AMPA receptor and and PSD-95
ubiquitination are important for receptor endocytosis,
degradation, and surface expression [78, 79]. Here, the
AMPA receptor gene gria4(102292924) had a DMR, and a
significant number of DMR genes interact with PSD-95
(encoded by dlg4; see Additional file 2: Table S7). Also,
glutamate receptor-interacting protein (GRIP1) is essential
for AMPA trafficking during synaptic scaling [80], and it
interacts with DMR genes like hormone receptors (nr3c1,
thra (102296139)), and cspg4 (aka neural/glial antigen 2,
ng2; Additional file 2: Table S7).
The androgen receptor (AR) is a steroid hormone recep-

tor that affects specific A. burtoni social behaviors [81, 82],
and our results suggest it may act in this context by
modulating intracellular calcium and ERAD. There are
two A. burtoni AR subtypes [83], and their expression in
the brain correlates with that of GnRH1 [42]. Neither was
differentially methylated in our study, but several DMR
genes mediate AR or its effects in various contexts in
other species: hey2 (Fig. 1c), pkn1(102295574) and ncoa2,

Fig. 8 Genomic region with three GABA receptor genes and DMRs. Schematic of a 127 kb region on scaffold 31 of the A. burtoni genome that
contains multiple GABA receptor genes and DMRs. Solid rectangles above gene names indicate their complete spans and arrows show which
strand the genes are on. Individual isoforms are named with their NCBI-assigned transcript ids and are colored to match their respective genes.
The positions of one D-DMR and two ND-DMRs are indicated with black rectangles below the genes
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usp12, usp32 (Fig. 1b), and zmiz1(102310819) [84–88]. Of
particular interest here, AR regulates aspects of the UPR
in non-neural tissue [89, 90]. It is an open question
whether AR plays a similar role in the brain of A. burtoni.
But, a DMR in the gene for voltage-gated calcium channel
(VGCC) subunit cacna2d2, contained a CNE with a puta-
tive AR binding site, suggesting that this is likely a true
genomic target of AR.
The involvement of DMR genes in molecules and mech-

anisms that play roles in homeostatic plasticity is particu-
larly intriguing with respect to GnRH1 and somatostatin
cells, whose growth after A. burtoni social change must
necessitate considerable homeostatic regulation, and some
aspects of this section are revisited later in the Discussion
on GnRH1 and other neuroendocrine cells below.

DMR genes involved in adult neurogenesis
Adult neurogenesis is ongoing in A. burtoni and ampli-
fied in D males [44], thus DMRs in developmentally im-
portant genes may play a role in this difference. For
example, the strong enrichment of genes in the axon
guidance pathway could reflect the integration of new
neurons into existing circuits. Notably, development-re-
lated DMR genes were not fundamentally distinct from
those important for synapse structure and plasticity. Al-
most half of the DMR genes in enriched GO terms were
involved in development and activity, including all in the
ErbB signaling pathway, > 90% in the axon guidance and
cell adhesion pathways, and > 75% in the insulin secre-
tion, oxytocin signaling, Rap1 signaling, and circadian
entrainment pathways. Also, 5/6 GO term clusters were
enriched for genes in the OPC clusters from [57], 19 of
which were involved in development and activity, includ-
ing transcription factors (bcl11b, hey2, nr2f2(102292088),
rarg (102310532)), axon guidance (ntn1, sema3d, unc5a),
and cell adhesion molecules (cdh13, nlgn2, nlgn3,
nrxn1).
DMRs in OPC genes may modulate integration of

adult-born glia and/or neurons into existing circuits, in-
cluding around hypothalamic neuroendocrine cells. We
found no evidence of OPC-GnRH1 interactions in the lit-
erature but GnRH1 cells are in close contact with other
glia that play a critical role in GnRH1 secretion [91]. For
example, GnRH1 neuronal activity is reduced in mice with
impaired prostaglandin E2 signaling that is due to defect-
ive ErbB signaling in astrocytes [92]. DMR gene hpgd reg-
ulates prostaglandin E2 [93] and erbb4(102292440) was
one of the more prominent DMR genes involved in many
functions. The DMR gene cspg4 (aka ng2, see above), was
in both OPC clusters, and cspg4 knockout in mice affects
glutamate signaling and behavior [94]. cspg4-positive
OPCs are unique among glia in forming glutamatergic
and GABAergic synapses with neurons and functionally
integrating into neural networks [94].

Potential roles for differential methylation in regulating
GnRH1 cell function
The electrical properties of GnRH1 neurons are ex-
tremely complex and there are many DMR genes with
the ability to play subtle roles in their modulation.
Mammalian studies have shown that GnRH1 neurons
generate activity-dependent, long duration calcium tran-
sients that arise via interplay between electrical activity,
VGCCs, intracellular calcium release from the ER,
GABA and AMPA receptors, and calcium-activated po-
tassium (SK) channels [95]. In addition to the multiple
GABA receptors and AMPA receptor gria4 that had
DMRs, other DMR genes can affect calcium dynamics
by modulating one of the above mechanisms, potentially
in relation to AR or erbb4: VGCC subunits (cacna2d2,
cacna1b(102311676)), ryanodine and BDNF receptors
(ryr2, ntrk2), and Q subfamily voltage-dependent potas-
sium channels (kcnq1(102292488), kcnq3).
Three DMR genes were in coexpression clusters corre-

sponding to GnRH cells in [57] (cacna2d2, tmeff2,
slc8a1; see Fig. 7a). cacna2d2 acts as a regulatory sub-
unit in L-type VGCCs, and its DMR contained an AR
binding site just upstream of an anti-sense lncRNA. L-
VGCCs activate ryr2 to release calcium from intracellu-
lar stores in muscle cells and a similar mechanism could
exist to release calcium from the ER in GnRH1 cells.
slc8a1 (aka ncx1) is located on the plasma and ER mem-
branes, and regulates intracellular calcium. There is evi-
dence that its effects prolong calcium transients in
dendritic spines and contribute to synaptic metaplasti-
city [96]. Finally, tmeff2 is a transmembrane protein that
inhibits cell growth, is regulated by androgen in cancer
cells [97], and is a potential ligand for erbb4 [98].
Changes in potassium conductance and Q subfamily

potassium channels mediated by DMR genes could
contribute to the difference in GnRH1 repolarization
across A. burtoni social status [47], and play a role in
stabilizing GnRH1 calcium transients after changes in
cell membrane properties. First, multiple voltage-gated
potassium, calcium, and chloride channel genes had
DMRs (Additional file 2: Table S1B). Also, A. burtoni
GnRH1 neurons are coupled by gap junctions [48]
and inhibited via dopamine D2 receptors that are
likely coupled with potassium channels [99]. Multiple
DMR genes could influence interactions between
chemical and electrical synapses, such as NMDA
receptors (grin2a, grin3b) or genes involved in endo-
cannabinoid activity and cAMP signaling (adcy1)
[100]. Finally, in mice, Q-type potassium channels like
those encoded by DMR genes kcnq1 and kcnq3 are
inhibited by a chemical that blocks the GnRH1 sAHP
current, but only when the membrane potential is
positive; kcnq3 is enhanced when the membrane po-
tential it is negative [101].
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This last point is intriguing with respect to the similar-
ity between social ascent and puberty [37] and the
excitation of GnRH1 cells by GABA, which has not been
tested in A. burtoni but does exist in other teleost fish
[102, 103]. Work in mammals has linked GABA excita-
tion to development and shown that the switch from
depolarization to hyperpolarization occurs during pu-
berty [104, 105]. Expression patterns of GABA receptor
subunits in GnRH1 cells change during development
and involve activation of these neurons at puberty in
mammals [104], and similar processes could be at work
in A. burtoni GnRH1 cells every time social change oc-
curs. In addition, there is evidence that retrograde endo-
cannabinoid signaling regulates excitatory GABAergic
inputs to GnRH1 cells [106], and several DMR genes are
involved in this pathway.

Potential roles for differential methylation to influence
other neuroendocrine cells
The samples we analyzed contained many types of neu-
rons and glial cells from the hypothalamus and some ad-
jacent areas (see Methods). Since methylation patterns
are cell-type specific in the brain [107], we explored
whether DMR genes could be indicative of processes in
particular cells, finding that they were enriched in coex-
pression clusters from [57] representing hypothalamic
AVP and VIP cells in the mammalian SCN. We also per-
formed multiple layers of DMR curation, partly to re-
move DMRs that could have reflected an imbalance of
extra-hypothalamic tissue across the samples (see
Methods). We caution that while cell types are generally
conserved across vertebrates, homologous brain struc-
tures such as the SCN and arcuate nucleus are not as
straightforward to identify. Nevertheless, our results
were intriguing. The SCN is known for its role in circa-
dian timing and DMR genes were enriched in the circa-
dian entrainment KEGG pathway, but interestingly none
were among the DMR genes in the SCN clusters. In-
stead, almost all were part of multiple pathways and/or
synapse types, representing a core set of DMR gene sig-
naling molecules (Additional file 2: Table S5B-C). The
only two DMR genes specific to the circadian entrain-
ment pathway were aforementioned nos1ap, and the T-
type voltage-gated calcium channel cacna1i(102289833),
which encodes a calcium channel subunit involved in
the pacing of neuronal firing and network oscillations. It
may be affected by DMR gene gnao1(102305147), which
modulates presynaptic calcium channels, and could
directly affect the activity of calcium-sensitive DMR
genes in GABAergic cells like adcy1, cask, kcnip4,
necab1, and specifically cdh13 and rph3a in the SCN.
A recent study deleted erbb4 - a prominent DMR gene

- specifically in mice VIP neurons, causing long-term
dysregulation of cortical function that emerged during

adolescence [108]. This is intriguing due to the similar-
ities between A. burtoni social ascent and puberty [37]
and the functional connections between VIP and GnRH1
neurons [109]. If erbb4’s effects on neural function are
connected with onset of puberty in other species, it
could play an analogous role during A. burtoni social
ascent. erbb4 deletion in mice interrupted the ability of
cortical circuits to adapt to ongoing cognitive and
behavioral demands, and to accurately encode informa-
tion about behaviorally relevant environmental features,
abilities absolutely central to successful A. burtoni social
ascent. It also eliminated neural network synchrony, dis-
rupting temporally organized activity that is key for
information processing [110]. Interestingly, erbb4 is a re-
ceptor for neuregulins, and two copies of the neuregulin
3 gene (102,306,195, 102,314,635) had DMRs; in one
DMR methylation was higher in D fish, while in the
other it was higher in ND fish, suggesting different pat-
terns of regulation with respect to social status, and po-
tentially evolutionary subfunctionalization.

Implications for female A. burtoni social status
Most work on A. burtoni social behaviors and status has
focused on males, but females can also form social hier-
archies. Similar to males, aggressive behaviors and an-
drogen levels increase in D females [111], and social
defeat hampers sensory information processing [112]. In
contrast, relationships between hormones and domin-
ance behaviors differ from those in males [111], and pro-
active social behavior seems to protect against major
sensorimotor deficiency in ND females [112]. D females
also do not show the dramatic increases in growth rate
and reproductive ability characteristic to D males [113],
although volatility in female social status may be tied to
their reproductive cycle [111].
It is reasonable to think some of the differences we

identified in DNA methylation could also be found in fe-
males. For example, DMRs in nr3c1 and genes related to
oxytocin signaling or ErbB signaling (see Additional file
2: Table S5B) in VIP neurons may exist in D females.
nr3c1 and oxtr methylation has been linked with aggres-
sive behavior in mammals [114], and VIP-specific erbb4
knockout in mice disrupts neural activity key for infor-
mation processing in the context of reproductive matur-
ation (see above). Additionally, disrupting nrg3 or VIP
signaling in mice leads to sensorimotor deficits similar
to those in ND male and female A. burtoni, although the
hypothalamus was not specifically implicated in these
studies [115, 116].
On the other hand, while male reproductive capability

increases as a result of social ascent, in females the abil-
ity to maintain D status seems contingent on their re-
productive cycle [111]. Thus, for social status DMRs in
genes that we linked to puberty-related phenomena in
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mammals - ErbB signaling and GABA excitation in neu-
roendocrine cells - it is not clear whether they would be
found in a methylation study of female social status. The
expectations for DMRs in genes affecting growth and/or
GnRH1 activity are also murky, given that female social
status is not correlated with growth rate or gonad size,
two major features of A. burtoni D males, but androgens
are elevated in D females.

Transcriptional plasticity, DNA methylation, and A. burtoni
social change
Experience-dependent changes in methylation can direct
later transcription and plasticity through regulation of
alternative splicing and TEs, or by priming genes for fu-
ture transcription [117–119], and our results highlight
many ways that methylation could differentially modu-
late transcription in D versus ND A. burtoni. These
included directly increasing/decreasing expression by
methylation near the 5′ or 3′ ends of a gene, regulation
of transcription factor expression, differentially regulat-
ing gene duplicates, and interactions with other epigen-
etic mechanisms. DMR genes had high numbers of TEs,
splice variants, and antisense lncRNAs compared to
other genes, suggesting that the physiological conse-
quences of A. burtoni social change are mediated by
interplay between multiple epigenetic systems in poten-
tially subtle ways that would not be detectable in overall
measures of gene expression.
Nuclear hormone receptors are well-studied in the

context of A. burtoni. Social status, and our results link
their differential methylation with another prominent
epigenetic mechanism, histone deacetylase (HDAC) ac-
tivity. Eight DMR genes were nuclear receptors or coac-
tivators, for example nr3c1 and thra, and 18 interact
with several nuclear receptor coregulators. These in-
cluded the transcription factor hey2, which had one of
the most significant DMRs (see Fig. 1), and two HDACs:
hdac4(102312396) and hdac7. In total, 18 DMR genes
interact with HDACs, including 6/18 nuclear receptor
related genes, and two copies of the gene for histone
H3.3 (h3f3a: 102308796, 102,309,100), which is associ-
ated with gene activation and specific methylation
marks.
Surprisingly few DMRs overlapped a TE, but the loca-

tion of TEs in and around genes was predictive of having
a DMR. Also, the number of TEs in DMR gene bodies
was related to how much methylation changed and gene
function. There were more TEs in DMR genes related to
neural activity as opposed to development, particularly
those that interact with MAGUK family proteins like
PSD-95 in glutamatergic synapses. TE movement could
influence and/or reflect A. burtoni social change since in
other species it occurs in adults, is elevated in the brain
[118, 120, 121], occurs in response to environmental

stimuli [122, 123], and may generate unique experience-
dependent transcriptomes of individual neurons [124].
Experience-dependent alternative splicing affects syn-

aptic plasticity [125], and regulation of alternative iso-
forms may be reflected in altered ratios of splice variants
but not overall gene expression changes [126], which
could be related to the lack of correlation between
methylation and expression we found in genes with a
DMR in their body. An intriguing example of DMRs po-
tentially affecting splicing was in rbfox3 (aka NeuN), a
massive gene (431 kb) with 10 splice variants and four
DMRs, three of which were in introns upstream of the
TSSs for different variants. Thus, methylation could
affect relative expression levels of rbfox3 splice variants,
meaning these DMRs had the potential to affect the spli-
cing of a gene that is itself a splicing regulator. One
rbfox3 DMR contained three CNEs and potential bind-
ing sites for nr3c1. It was near the gene’s 3′ end and
may also affect the expression of downstream grin2c, an
NMDA receptor gene.
rbfox3 was in the AVP coexpression cluster from [57]

with other DMR genes that demonstrate the multi-lay-
ered regulatory potential of the DMRs (cdh13, gabra5,
hlf, msi2). msi2 is a post-transcriptional regulator that
inhibits translation (msi1 also had a DMR). cdh13 had a
DMR near each end of the gene, and only the 5′ DMR
contained a CNE and potential estrogen receptor bind-
ing sites. gabra5 was in a region with two other GABA
receptor genes and three DMRs, all of which had the po-
tential to regulate expression or splicing of one or more
of the genes (Fig. 8). Finally, the DMR 2.5 kb upstream
of hlf was also 1 kb upstream of a lncRNA.
The functions of some DMR genes involved in synapse

plasticity are highly dependent on alternative splicing in
other species. For example, splicing of neuroligin and
neurexin genes affects function in ways specific to gluta-
matergic versus GABAergic synapses [127, 128] and dif-
ferent aspects of synapse formation and function [129].
Also, context-specific alternative splicing of arhgap32/
RICS is crucial for its function. One isoform is expressed
primarily in postsynaptic membranes and neurite growth
cones and another is in the ER and Golgi, where it is in-
volved in transport of molecules like N-cadherin from
the ER to Golgi [130], and ergic2(102314043), a
chaperone molecule involved in ER-Golgi transport also
had a DMR.
Finally, many DMR genes had an antisense lncRNA

(Additional file 1: Figure S10A; Additional file 2: Table
S4), including nuclear hormone receptors (nr2f2, nr6a1,
rarg) and genes involved in calcium dynamics (cac-
na2d2, ryr2, slc8a3), signal transduction (for example
ctnnbip1, erbb4), and axon guidance (sema6b, nrxn3b,
plxnb1). Antisense lncRNAs can interfere with the spli-
cing, RNA editing, sub cellular distribution, transport, or
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nuclear retention of the corresponding sense RNA, and
can alter mRNA stability and modulate translation [131,
132].
Two particularly intriguing lncRNA-overlapping DMR

genes were retinoic acid receptor gamma (rarg) and
VGCC cacna2d2. The rarg DMR overlapped an entire
coding exon as well as the TSS for an antisense lncRNA.
It was just downstream of the TSS for a truncated rarg
splice variant and contained potential retinoic acid and
estrogen receptor binding sites. Retinoic acid is known
to mediate synaptic scaling [133] and the retinoic acid
induced transcription factor rai1 also had a DMR. The
third intron of cacna2d2 contains an antisense lncRNA.
A DMR was in the same intron ~ 10 kb upstream of the
lncRNA and contained a CNE with a putative AR bind-
ing site, suggesting that this is likely a true genomic tar-
get of AR and regulated differentially as a function of A.
burtoni social status.

Stress and glucocorticoid receptor methylation
Differential methylation of the glucocorticoid receptor
gene nr3c1 can affect multiple mechanisms of neural
and transcriptional plasticity. In male A. burtoni, as in
many species, levels of stress and reproductive hormones
reflect the social standing of individuals. ND males have
low androgen and GnRH1 levels, but high levels of
stress-related corticotrophin releasing factor (CRF) and
cortisol [134], which binds to GR. CRF suppresses repro-
ductive function, potentially by acting on GnRH1 cells,
which express GR. Many fish species including A. bur-
toni have two glucocorticoid receptor genes, one of
which had a DMR here (nr3c1, referred to as GR1 in
[135]). One isoform of this gene leads to less efficient
cortisol binding and is expressed at higher levels in ND
males, protecting GnRH1 cells and allowing reproduct-
ive neural circuits to remain relatively intact during
chronic stress [135]. It is possible that these relative iso-
form expression levels are shaped by the DMR that we
identified in the body of nr3c1.
DMRs could also affect the ability of GR to regulate

other molecules. GR can downregulate brain-derived
neurotrophic factor (BDNF) expression through direct
binding [136], and the DMR in BDNF receptor gene
ntrk2 contained a putative GR binding site. GR/BDNF
methylation has been extensively studied with respect to
early life experience, chronic stress, neuropsychiatric dis-
orders, and synaptic plasticity in mammals [137–140],
and other DMRs in important plasticity-related genes
contained putative GR binding sites as well, such as
nrxn1, nlgn2(102313675), nlgn3, and ntrk2. GR can also
rapidly and selectively stimulate endocannabinoids or
NO to suppress excitatory or facilitate inhibitory synap-
tic inputs, respectively, in neuroendocrine cells [141],
and the inhibitory effect of stress hormones on

neurogenesis seems to result from disruption of the exci-
tation-inhibition balance in neural progenitor cells caused
by aberrant GR activation [142].
A classic example of methylation and transcriptional

priming involves nr3c1 [143], and there are many sce-
narios wherein methylation of specific binding elements
or transcription factors could dynamically orchestrate
transcriptional priming or bookmarking genes in just D
or ND males, leading to contextually-appropriate behav-
ioral responses. It is possible that in ND males, for ex-
ample, methylation of nr3c1 primes transcription of
genes important for aggressive territorial behaviors only
when D males are absent, but the lack of this epigenetic
mark in D males would allow aggression-related genes
to be expressed constitutively.

Considerations related to small sample size
Due to resource limitations, only two fish of each social
status were assayed in this study. This small sample size
is obviously not ideal, and readers should take appropri-
ate caution when interpreting the results. However, we
were careful and conservative in our approach, and have
confidence that the results reliably fulfill the main aims
of this study: 1) creating a genome-wide picture of DNA
methylation in the brains of socially dominant and non-
dominant A. burtoni, and 2) building a resource to facili-
tate the generation of novel hypotheses.
We tailored our methods in several ways to limit sam-

ple size-related worries as much as possible. First,
BSmooth [55] was used to detect DMRs because it can
produce robust findings with small sample sizes. An ex-
tensive analysis of multiple whole-genome bisulfite se-
quencing datasets found that improvements in true
positive rates (TPR) and false discovery rates (FDR) for
BSmooth DMR detection were minimal when the num-
ber of samples per group increased from two to three,
and that TPR gains fell off rapidly beyond 8-10X gen-
omic coverage (see [144] - Fig. 2; mean coverage here
was ~8X, see Methods section “BS-seq read alignment
and calculation of CpG methylation ratios”). Second, be-
cause there were no gold-standard DMRs or a high-
quality publicly available linkage map for A. burtoni, we
ran BSmooth multiple times and kept only the DMRs
that were robust to varying the main parameters (see
Methods section “Smoothing and identification of differ-
entially methylated regions (DMRs)”). Third, because
some DMRs could have reflected individual differences in,
e.g., life history or dissection variability, and not necessar-
ily social status, we permuted the social status labels and
repeated the DMR detection process, then filtered out any
of the actual DMRs that were also identified from the per-
muted data (see Methods section “Filtering putative
DMRs for robustness and social status specificity”). Fi-
nally, to determine whether the distribution of DMRs in/
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near genes and other functional genomic features was bio-
logically meaningful, we bootstrapped the final list of fil-
tered DMRs to create pseudo-random lists of “null
DMRs”, which allowed us to estimate the likelihood of ob-
serving the genomic distribution of the actual DMRs by
chance (see Methods section “Relating DMRs to genomic
features and nullDMR generation”).

Conclusions
Our results revealed genome-wide effects of A. burtoni
social status on DNA methylation in the hypothalamus
and strongly suggest a role for methylation in plasticity
across multiple biological levels. DMRs had the potential
to affect transcription directly or through interactions
with other epigenetic mechanisms, many DMR genes are
known to be important for multiple forms of synaptic
and homeostatic neural plasticity, and genes key to sta-
tus-specific behaviors could be primed by methylation
for transcription only when specific environmental and/
or internal conditions are met.
GnRH1 neurons ultimately control reproduction and

our results suggest multiple ways their unique electrical
properties and calcium dynamics could be influenced by
social status-specific methylation patterns. Mechanisms
of homeostatic plasticity are likely important in GnRH1
cells (and others like somatostatin cells) that grow dra-
matically after social ascent, but they also receive highly
complex inputs via different neurotransmitters and neu-
romodulators, and synaptic plasticity is probably crucial
to optimal GnRH1 function as well. GnRH1 and other
neuroendocrine cells can be excited by GABA in a man-
ner potentially related to the onset of puberty, and at
least one prominent DMR gene (erbb4) affects the func-
tion of mammalian GABAergic VIP interneurons and re-
lated neural circuits in a way that is only observable
during adolescence. This is intriguing given that the
physiological changes that accompany A. burtoni social
change strongly resemble a form of repeated puberty

that is contingent on the social environment and
behavior.
We chose to focus on genes related to neural plasticity

and related signaling pathways but there were functional
themes and molecular interactions related to, for ex-
ample, immune function, chromatin modification, and
growth factors (insulin-like, transforming, fibroblast, vas-
cular endothelial, growth arrest-specific, and brain-de-
rived neurotrophic) that were well-represented in the
DMR genes. There were DMRs in some well-studied
genes like gsk3b, β-synuclein (sncb), and various disease-
related genes that did not easily fit into the discussion
(see Additional file 2: Table S9), so we encourage readers
to explore the Additional file figures and tables. Our re-
sults also implied that subfunctionalization of duplicated
genes could be affected by methylation. In some cases
more than one copy of a gene had a DMR, often in dif-
ferent parts of the gene, and we expect that a deeper
analysis of the relationship between methylation and
gene duplication would yield exciting novel information
relevant to the evolution of social behaviors.
Going forward, our findings and data can be used as a

resource to generate new hypotheses about A. burtoni
social status (e.g. see Table 4), and more generally, the
relationships between behavioral, neural, and transcrip-
tional plasticity in the context of social status.

Methods
Animals and tissue collection
A. burtoni derived from wild-caught stock [34] were
maintained in aquaria under conditions mimicking their
natural habitat (28 °C, pH 8, 12 h:12 h full-spectrum
light:dark cycle, constant aeration and water chemistry
matched to that of Lake Tanganyika), and fed cichlid
flakes (AquaDine) and brine shrimp once a day. Fish
were reared in community tanks (∼35 fish per 114 L
tank, 91.4 × 55.9 × 30.5 cm, l × w × h) with four terra
cotta pots cut in half lengthwise to produce a truncated
half cone territorial sites (11 × 11 × 5.5 cm, l × w × h).

Table 4 Example hypotheses inspired by DMR findings

Finding(s) Hypothesis

Top DMRs in ERAD genes, e.g. ubxn4, possible
connections to AR

ERAD modulation by AR necessary to stabilize neural circuits that include GnRH1 and somatostatin
cells after social ascent.

cacna2d2 DMR upstream of lncRNA has AR
binding site & CNE

lncRNA regulates cacna2d2 under specific control of AR in the context of altered Ca2+ currents in
cells that recently changed size

DMR in erbb4 and interactors, DMR genes in
VIP gene clusters

erbb4 signaling in VIP cells modulates neural circuit changes related to reproductive capability, D fish
lacking erbb4 may struggle to mate or maintain status

DMRs in nr3c1, nos1ap, GABA/glutamate/
endocannabinoid pathways

GR stimulation of endocannabinoids/NO selectively regulates excitatory/inhibitory signals onto VIP
and AVT cells, based on social status

Intronic DMR in nr3c1 DNA methylation governs the expression of specific nr3c1 isoforms, driving status-specific cortisol
sensitivity

This table summarizes some results from this study in column 1 and hypotheses they inspired in column 2. This is by no means an exhaustive list, but we think
these represent some provocative but testable ideas that would not have arisen if not for this whole-genome scan of methylation patterns in the context of A.
burtoni social status
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Pairs of size- and age-matched males (within 10% body
length and 1 week) were moved to smaller (30 L) tanks
that contained three reproductively able females. We re-
stricted our experiments to males that were 5–6 months
of age and chose animals that showed few territorial be-
haviors in rearing tanks to minimize differences in life-
experience across competitors. Within 1–2 days a stable
dominant(D)-nondominant (ND) dyad relationship was
established between the two males and they remained in
this configuration for 3–6 weeks, since suppression of
the reproductive axis requires this length of sustained
social suppression [134].
To collect tissue for sequencing, two D and two ND

males from four separate dyads were sacrificed via cervical
transection in the morning and brains were immediately
extracted and dissected. A coronal (transverse) cut was
made in the caudal telencephalon, but rostral to the optic
nerves/chiasm to include the nPPa. Then we made a diag-
onal-horizontal cut above the inferior lobe of the hypo-
thalamus that was angled dorsally at the rostral side. Thus
samples contained the hypothalamus, including the POA
and GnRH1 cells, but potentially also some thalamic areas
& caudal telencephalon areas rostrally. Tissue was flash-
frozen and stored at -80C. Both D males had gonadoso-
matic indices > 0.8 (GSI; ratio of gonad weight to body
weight × 100) and ND males had GSI < 0.3. All experi-
mental procedures were approved by the Stanford Admin-
istrative Panel for Laboratory Animal Care.

DNA/RNA isolation, library construction, and sequencing
DNA and RNA were purified from hypothalamic sam-
ples using a standard protocol for DNA and RNA
extraction (Qiagen AllPrep DNA/RNA Mini kit). Nucleic
acid yield (Qubit spectrophotometer) and quality
(Agilent Bioanalyzer) were verified before sequencing li-
brary preparation. Strand-specific bisulfite-treated gen-
omic DNA libraries for BS-seq and cDNA libraries for
RNA-seq were prepared following established protocols
[145, 146]. Library quality was verified (Agilent Bioanaly-
zer) and sequencing was performed (Illumina HiSeq
2000 platform), generating 101 bp paired-end read data.
For BS-seq, each library was sequenced in its own lane,
with an average of ~ 125 million read pairs passing qual-
ity filters for each sample (~ 96% of total reads). For
RNA-seq, samples were processed to remove rRNA
(Epicentre Ribo-Zero rRNA removal kit), then barcoded
with standard Illumina index sequences and sequenced
in a single lane, yielding an average of ~ 38 million good
quality read pairs per sample (~ 95% of total reads).

BS-seq read alignment and calculation of CpG
methylation ratios
Fastq files of raw sequencing reads were aligned to the A.
burtoni genome using BSMAP 2.9 [147]. Default values

were used for all BSMAP parameters except the following:
-A (3′ adapter sequences to trim: GAGCCGTAAGGACG
ACTTGG and ACACTCTTTCCCTACACGAC; default =
none), −q (trim bases below quality score: 30; default = 0),
−m (minimum allowed insert size: 0; default = 28), and -S
(seed for random number generator to select from reads
with multiple hits: 1, allows reproducible mapping results;
default = read index number). The resulting SAM files
were sorted, compressed into BAM files, and the bias-
plot.py script [148] was used to plot mean methylation
percentage as a function of base position within reads.
This was stable around 85–86% for all four subjects ex-
cept for positions 1–3 and 99–101 (Additional file 1:
Figure S15), therefore the first and last three bases were
trimmed from every read using fastx_trimmer [149],
then reads were realigned using the same BSMAP set-
tings. An average of ~ 56.9% of reads for each subject
aligned to the genome in proper pairs. Since the A. bur-
toni genome is ~831mb long this yielded a rough aver-
age coverage of: (125 million reads) x (95 bp/read) x
(.569 mapped) / (831 million bp) ~ 8X, exceeding
coverage recommendations for the regional smoothing
and DMR detection procedure used in downstream
analysis [55, 144].
CpG methylation ratios were computed from BAM

files using the methratio.py script included in the
BSMAP release, with the following options set: -u
(process only uniquely mapped read pairs), −p (process
only reads mapped in proper pairs), −z (report loci with
zero methylation ratios), −r (remove duplicated reads),
−m (report loci with given minimum sequencing depth,
set to 4), −g (combine CpGs across strands). Note that
we use “methylation ratio” here to refer to the raw pro-
portion of total reads at a given CpG locus that were not
converted by the bisulfite treatment (thus indicating
methylation). Throughout the paper we use “methylation
level” to refer to the smoothed values of these ratios pro-
duced by BSmooth (see below). Both quantities ranged
between 0 and 1, where 0 was no methylation and 1 was
complete methylation. Part of the output from methra-
tio.py is an estimation of cytosine coverage across the
genome, which averaged ~21X across samples. Exact
values of mapped reads and genome/cytosine coverage
for individual samples are reported in Additional file 2:
Table S10.

RNA-seq alignment and assessment of gene expression
Cutadapt [150] was used to trim the first two bases
from each read (−u 2, −U 2), low quality ends from
both ends of each read (−q 30,30), and Illumina adapter se-
quences (−a AGATCGGAAGAGCACACGTCTGAACT
CCAGTCAC, −A AGATCGGAAGAGCGTCGTGTAGGG
AAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT).
Processed reads shorter than 50 bp were discarded (−m 50).

Hilliard et al. BMC Genomics          (2019) 20:699 Page 19 of 27



Kallisto [151] was used to assign read pairs to annotated
transcripts and quantify transcripts per million (TPM). All
transcripts for a gene were summed to yield gene level ex-
pression values. Estimated read counts from Kallisto were
used as input to functions in the DESeq2 R package [152] to
generate log2(D/ND) differential expression fold-difference
estimates.

Smoothing and identification of differentially methylated
regions (DMRs)
DMRs were identified using functions in the bsseq pack-
age for R [55, 153]. Briefly, we used BSmooth to generate
smoothed methylation profiles for each subject,
BSmooth.tstat to compute estimates of the mean differ-
ences and standard errors for each CpG across groups,
and dmrFinder to find regions of consecutive CpGs that
passed a significance threshold based on the marginal
empirical distribution of the t-statistic, i.e. differentially
methylated regions (DMRs).
BSmooth uses local-likelihood smoothing with the key

parameters ns (minimum number of CpGs in smoothing
window, default = 70), h (minimum number of total
bases in smoothing window, default = 1000), and max-
Gap (maximum gap between two methylation loci be-
fore smoothing is broken across the gap, default = 10^8).
These were optimized using the human genome, for ex-
ample maxGap = 10^8 ensures that smoothing could not
occur across chromosomes, and [55] recommend adapt-
ing them when applying BSmooth to non-human organ-
isms. The public version of the A. burtoni genome [154]
is spread across 8001 scaffolds, the vast majority of
which are relatively small with roughly half that are
shorter than 5 kb and only 3% that are 1mb or longer
(median/mean length: 4.8 kb/104 kb). Each scaffold was
smoothed separately, therefore maxGap did not affect
our results except at values smaller than the length of
the longest A. burtoni scaffold (~7mb), so we held it at
10^8 and ran BSmooth using all combinations of n= [25,
50, 70] and h = [1000, 750, 500]. Only DMRs identified
in all nine of these smoothing runs were analyzed fur-
ther (see below). Scaffolds with fewer than 70 CpGs with
4X coverage in all fish were excluded since they had un-
defined methylation estimates in the runs where n = 70,
which left 2071 scaffolds containing 4.2 million loci.
They represented 96% of the entire genome (median/
mean length: 9 kb/384 kb) and 95% of all annotated
genes [155].
We used the same BSmooth.tstat settings for processing

the smoothed values from every combination of the
BSmooth parameters: estimate.var = “same”, local.correct =
TRUE, qSd = 0.75, k = 101. For dmrFinder, significance
cutoffs were defined as the 0.025 and 0.975 centiles of t-
statistics on each scaffold. Other settings were defaults:
maxGap = 300 (maximum distance allowed between two

CpGs in a single DMR), stat = “tstat.corrected”. Putative
DMRs with less than three measured CpGs or an absolute
mean methylation difference of 0.1 were removed, as per
the recommendation of [55]. For example, the default
BSmooth settings (n = 70, h = 1000) yielded 29,107 puta-
tive DMRs and this filter reduced that number to 5569,
mostly because ~ 75% had too small of an absolute mean
methylation difference. Ultimately, DMRs were identified
on 335 scaffolds. Scaffold length was not significantly re-
lated to any of the following DMR characteristics: size,
number of CpG loci or density, effect size, or whether
methylation was higher in D or ND fish (Additional
file 1: Figure S16). Custom R code for applying this
analysis to a scaffolded genome, analyzing the results,
and performing other downstream processing is avail-
able on the Fernald lab github repository [156].

Filtering putative DMRs for robustness and social status
specificity
We did not know how many DMRs to expect or what
their statistical characteristics might be. BSmooth can
identify true DMRs with minimal biological replicates, as
shown in [55] using data from a fibroblast cell line [145],
normal and tumor colon samples [157], and peripheral
blood mononuclear cells [25]. But, these datasets were
specifically selected for strong methylation signal with
minimal variability and represent more homogenous tis-
sue types than brain. Methylation patterns are cell-type
specific, including in the brain [107], and our samples
undoubtedly contained multiple types of neurons and
glial cells. Also, fish life histories were controlled as
much as possible (see above), but A. burtoni social be-
havior and physiology are interesting precisely because
of their plasticity and it is difficult to fully control early
life behavior while maintaining a naturalistic social en-
vironment. Thus we sought to minimize the chances of
identifying putative social status DMRs that actually
reflected extreme variability in the dissection or life his-
tory of one animal.
Toward this end we ran BSmooth multiple times and

combined automated filtering with hand curation to
identify DMRs that were both 1) robust to the smooth-
ing procedure and 2) the most likely to be specific to so-
cial status. First, we ran BSmooth using all combinations
of n= [25, 50, 70] and h = [1000, 750, 500]. DMRs were
identified separately for each smoothing run as described
above and compared, yielding 1872 “common” DMRs
that were present in all nine runs; 900 exact matches
and 972 with at least 100 bp overlap. Exact matches were
found using the base R functions intersect and setdiff,
and overlapping DMRs were found by converting them
to GRanges objects and using the findOverlaps function
in the IRanges package [158]. This process was repeated
two more times after shuffling the social status labels to
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compare D1&ND1 vs D2&ND2 and D1&ND2 vs
D2&ND1, with the key difference that every DMR from
every run was retained, yielding 68,664 “shuffled” DMRs.
Almost half of the common DMRs did not overlap a
shuffled DMR at all (n = 854) but even more overlapped
one by > 95% (n = 920). Any common DMR that over-
lapped a shuffled DMR by at least 50% was removed
(n = 999), leaving 873 putative DMRs that were robust to
smoothing parameters and unlikely to be driven by ex-
treme values in one fish. Finally, the remaining common
DMRs were curated to eliminate any that appeared to
result from over-smoothing, were situations where one
D and one ND fish were very different but the other two
were similar, or appeared spurious for any other reason.
Smoothed methylation levels and raw methylation ratios
were visualized using the bsseq::plotManyRegions func-
tion and were examined by eye, and 164 suspicious
DMRs were removed during this process, leaving 709
final DMRs.

Annotating features in the A. burtoni genome
Gene annotations were acquired from NCBI [155].
These include gene models, mRNA transcript isoforms,
exons, and lncRNAs. Almost half of the protein-coding
genes in these annotations were assigned a gene symbol
(for example nr3c1) but the rest were assigned an identi-
fier beginning with “LOC” followed by nine numbers (as
were lncRNAs). In the paper, the first time LOC genes
are mentioned they are referred to first by the gene
symbol of the best human or fish homolog (see func-
tional enrichment section below), followed by the nine-
digit LOC number in parentheses, for example
sema6b(102313929), then afterwards and in the figures
they are only referred to by gene symbol for clarity.
Gene basal regulatory regions were defined as 5 kb up-

to 1 kb downstream of the transcription start site (TSS,
5′) and 1 kb up- to 5 kb downstream of the end (3′)
based on [159]. Transposable elements (TEs) were anno-
tated by the BROAD Institute [154]. Conserved non-
coding elements were determined using a set of 54,533
high quality conserved non-genic elements identified in
zebrafish (CNEs) [160]. These sequences were aligned to
the A. burtoni genome using hardware that was specific-
ally built to optimize the Smith-Waterman algorithm for
alignment of non-coding sequences [161]. 32,210 se-
quences matched with a bit score > 3500 and were
retained as CNEs in A. burtoni.
Transcription factor binding site (TFBS) predictions

were performed using position weight matrices from the
JASPAR2016 database [162]. Nucleotide sequences for
each A. burtoni genome scaffold were loaded into R
using the getSeq function in the BSgenome package
[163]. Both strands of each scaffold were scanned using
the searchSeq function in the TFBSTools package [164]

and hits with min.score > 90% were recorded as putative
TFBSs. TFBS hits that overlapped a CNE were consid-
ered higher confidence. For comparison to the DMRs,
GRanges objects were constructed for genes, 5′ and 3′
basal regulatory regions, coding and non-coding exons,
introns, TEs, and CNEs. GC content for all feature types
was computed with the BSgenome::alphabetFrequency
function.

Relating DMRs to genomic features and nullDMR
generation
Distances between DMRs and all genes on their respect-
ive scaffolds were computed using the IRanges::distance
function. Gene counts and distances in different sized
windows around DMRs were determined by filtering
these results with various distance thresholds. Overlaps
between DMRs and all genomic feature types were
found using IRanges::findOverlap, as were overlaps be-
tween features, for example lncRNAs and protein-coding
genes.
To test the significance of these results “nullDMRs”

were generated with the following procedure. First, gen-
ome scaffold names were sampled with replacement 709
times using the number of DMRs on each scaffold as
probability weights. Then, the actual DMR widths were
randomly assigned to this new list of scaffold names and
used to generate random genomic intervals, for example
if scaffold_100 was assigned one DMR with width = 200,
then one nullDMR was defined as a randomly chosen
200 bp interval somewhere on scaffold_100. The end re-
sult was a list of 709 genomic intervals that 1) were posi-
tioned across scaffolds with a similar density as the real
DMRs, and 2) had the same width distribution as the
DMRs. This process was repeated to create 10,000 lists
of 709 nullDMRs each, and distances/overlaps to genes
and other features were computed for each nullDMR
list. P-values were defined as the fraction of nullDMR
sets that met or exceeded whatever DMR attribute we
were testing, and if none did we reported p < 1e-4. For
example, 15 DMRs overlapped > 1 gene, and 15 or more
nullDMRs overlapped > 1 gene 1498/10,000 times, so
p = 0.1498 (Table 1A).

General statistics and visualization
The bsseq::dmrFinder function returns statistics about
each DMR: n (number of smoothed CpGs, i.e. those with
enough coverage to be included in the analysis), width
(size of interval, bp), invdensity (mean distance between
CpGs, bp), areaStat (sum total of t-statistics), maxStat
(most extreme t-statistic value), group1.mean (mean
smoothed methylation value for ND fish), group2.mean
(mean smoothed methylation value for D fish), meanDiff
(mean difference of smoothed methylation values, ND-
D), tstat.sd (standard deviation of t-statistics). We also

Hilliard et al. BMC Genomics          (2019) 20:699 Page 21 of 27



computed overall GC content, mean methylation level
across all four fish, and log2(D/ND) mean methylation
values for each DMR. The following were computed for
every gene body, exon, intron, and basal regulatory re-
gion in the A. burtoni genome: size, GC content, and the
numbers of overlapping TEs, CNEs, and DMRs. We also
counted the number of isoforms for each gene, com-
puted expression levels and fold-difference in D vs ND
fish (see above), and kept track of whether the signs of
expression and methylation fold-difference were the
same.
All comparisons of these statistics across subsets of

DMRs or genes were performed in R using the Mann-
Whitney U test, or the Kruskal-Wallis extension when
more than two groups were tested, as were comparisons
of average gene counts and distances across different
window sizes around DMRs/nullDMRs (stats::kruskal.t-
est function). All p-values are uncorrected unless other-
wise stated. Tests of categorical associations between
subsets of DMRs or genes were performed with Fisher’s
exact test, for example Table 2 (stats::fisher.test). In
some cases, p-values for these tests were either Bonfer-
roni-corrected for the number of total tests, for example
testing for overlap between DMR genes in 14 enriched
KEGG pathways and 6 clusters of enriched GO terms,
or adjusted using the less conservative Benjamini-Hoch-
berg (BH) procedure (stats::p.adjust), for example testing
for enrichment of DMR genes in one of 33 hypothalamic
cell-type clusters. For correlations, Pearson’s r was used
when two variables were similarly scaled or one of the
variables was a principal component (p-values via Fish-
er’s Z-transformation), otherwise Spearman’s rho was
used (p-values via algorithm AS 89 or asymptotic t ap-
proximation, stats::cor.test). Principal components of the
correlations between DMRs (based on the types of gen-
omic features they overlapped, Fig. 3) and GO terms
(based on which DMR genes they contained, Fig. 5) were
computed using the stats::prcomp R function. The input
correlation matrices were scaled and centered first.
Most plots were initially made in R and all were edited

using Adobe Illustrator (Adobe Systems, San Jose, CA).
Smoothed and raw methylation ratios were visualized
using the bsseq::plotManyRegions function (Fig. 1).
Average numbers of genes around DMRs were plotted
as a function of average gene-DMR distance across dif-
ferent window sizes using ggplot2 [165] (Additional file
1: Figure S5). All other line and scatter plots were made
using graphics::plot, fit-lines for correlations were com-
puted using stats::lm and plotted with graphics::abline,
box-and-whisker plots and barplots were made with
graphics::boxplot and graphics::barplot, heatmaps and
dendrograms were made with stats::heatmap and stats::
hclust, and venn diagrams were made with functions in
the VennDiagram R package [166]. Two types of

visualizations were not constructed in R: KEGG pathway
diagrams were downloaded as .xml files from the KEGG
website [167] then edited in Cytoscape [168] and Illus-
trator, and gene/DMR schematics (Fig. 8) were exported
as .svg files from Integrated Genomics Viewer [169, 170]
then edited in Illustrator.

Functional enrichment analysis of DMR genes
Functional enrichment analysis of the DMR genes was
performed using Entrez gene identifiers for humans to
maximize exploratory power. Since systematic mappings
between A. burtoni and human gene ids were not avail-
able at the time of this analysis we performed a recipro-
cal blast procedure to generate high-confidence A.
burtoni-human mappings for as many genes as possible.
First, we used blastx to compare the A. burtoni tran-
scriptome [171] to the proteomes of five other well-an-
notated fish species (Danio rerio, Gasterosteus aculeatus,
Oreochromis niloticus, Oryzias latipes, Tetraodon nigro-
viridis) acquired from Ensembl [172], then blastp to
compare the best protein hit for each transcript back to
the A. burtoni proteome [173]. When the best hit for
this reciprocal blast was the protein made by the original
A. burtoni transcript we called it a successful hit, then
used the Ensembl id of the protein in the other fish spe-
cies to search for a human homolog using functions in
the biomaRt R package [174, 175]. This yielded human
Entrez ids for > 20,000 of the genes in the A. burtoni an-
notations. All A. burtoni genes that successfully mapped
to a human Entrez id were used as background in func-
tional enrichment tests. In cases where a single A. bur-
toni gene mapped to multiple human ids (< 5% of
mappings) we used the human Entrez id with the lowest
numeric value. The Fernald lab github repository con-
tains Python and R scripts and instructions for imple-
menting this procedure with any species [176].
Gene ontology (GO) analysis was performed in R using

the GOFunction package [177], and molecular pathways
from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database were screened for DMR genes using the
enrichKEGG function in the clusterProfiler package [178]
(Additional file 2: Table S5). GO categories and KEGG
pathways with p < 0.1 after adjustment via the Benjamini-
Yekutieli (BY) or Benjamini-Hochberg (BH) procedure
were considered “significantly” enriched, i.e. compelling
enough to report. GOFunction performs a standard gene
ontology analysis where the significance of overlap be-
tween input genes and GO terms is quantified using the
hypergeometric test. We chose it over other GO analysis
tools because it also culls the list of significant terms to re-
duce redundancy resulting from 1) ancestor-offspring
term relationships, and 2) non-ancestor-offspring terms
with overlapping genes.
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We also used the WEB-based Gene Set Analysis
Toolkit [179] to screen DMR genes for molecular inter-
actions in the Biological General Repository for Inter-
action Datasets (BioGRID) [180] and disease associations
with the Gene List Automatically Derived For You
(Glad4U) tool [181]. Only one molecular interaction set
was significant after BY-correction (1742:DLG4, see Re-
sults section on glutamatergic synapses, Additional file
2: Table S7), but 50 others were significant before cor-
rection and were used throughout as context for other
results. Fourteen disease categories were enriched at BY-
adjusted p < 0.05 (Additional file 2: Table S9).

Enrichments for cell-type markers in the DMR genes
We tested for DMR genes in two sets of cell-type marker
lists that were generated using single-cell RNA-seq data
from mice. Zhang et al. [56] identified markers for sub-
types of glia, neurons, and vascular cells in mouse cerebral
cortex based on relative overexpression in specific cell-
types. We downloaded expression values for astrocytes,
neurons, oligodendrocyte precursor cells, newly formed
oligodendrocytes, myelinating oligodendrocytes, microglia,
and endothelial cells from the web [182]. Following [56]
(Materials and Methods: Analysis of cell type-enriched
genes, transcription factors, signaling pathways, and meta-
bolic pathways), we defined markers as genes with > 5
FPKM expression levels that were > 5x higher in one cell-
type compared to their mean expression across all other
types. The resulting lists were > 99% mutually exclusive.
In contrast to overexpression, Chen et al. [57] used un-

biased clustering to detect cell-type specific coexpression
signatures in mouse hypothalamus that corresponded to
ependymal cells, tanycytes, six stages of oligodendrocyte de-
velopment, 15 types of glutamatergic neurons, and 18 types
of GABAergic neurons. Genes were often present in mul-
tiple clusters that each corresponded to a subtype of a spe-
cific kind of cell, for example GABAergic neurons. For this
reason, we prefer to designate cell-type-specific coexpres-
sion signatures, i.e. clusters, rather than individual gene
markers. Tables of gene-cluster mappings were downloaded
as supplementary data from the web. We also merged all
GABAergic and glutamatergic clusters into lists representa-
tive of these two classes of neurons in the hypothalamus,
and created some additional clusters based on Chen et al.’s
assessment of their data: neurosecretory cells (Glu10–15),
suprachiasmatic nucleus cells (GABA8–9), arcuate nucleus
cells (Glu11,13 and GABA11,12,15), Gnrh cells (Glu10,
GABA11), and cells containing genes that were differen-
tially expressed after food deprivation (Glu5,8,12 and
GABA1,11,15,18).
Identifiers for genes of interest from both datasets were

converted from gene symbols to human Entrez ids using
functions in the biomaRt R package [174, 175], then

compared to the DMR genes using Fisher’s exact test.
When markers/clusters were compared to multiple subsets
of DMR genes, for example enriched GO terms, p-values
were BH-corrected for the number of subsets tested.
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