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A B S T R A C T   

Kinetic models of metabolism are promising platforms for studying complex metabolic systems and designing 
production strains. Given the availability of enzyme kinetic data from historical experiments and machine 
learning estimation tools, a straightforward modeling approach is to assemble kinetic data enzyme by enzyme 
until a desired scale is reached. However, this type of ‘bottom up’ parameterization of kinetic models has been 
difficult due to a number of issues including gaps in kinetic parameters, the complexity of enzyme mechanisms, 
inconsistencies between parameters obtained from different sources, and in vitro-in vivo differences. Here, we 
present a computational workflow for the robust estimation of kinetic parameters for detailed mass action 
enzyme models while taking into account parameter uncertainty. The resulting software package, termed 
MASSef (the Mass Action Stoichiometry Simulation Enzyme Fitting package), can handle standard ‘macroscopic’ 
kinetic parameters, including Km, kcat, Ki, Keq, and nh, as well as diverse reaction mechanisms defined in terms of 
mass action reactions and ‘microscopic’ rate constants. We provide three enzyme case studies demonstrating that 
this approach can identify and reconcile inconsistent data either within in vitro experiments or between in vitro 
and in vivo enzyme function. We further demonstrate how parameterized enzyme modules can be used to 
assemble pathway-scale kinetic models consistent with in vivo behavior. This work builds on the legacy of 
knowledge on kinetic behavior of enzymes by enabling robust parameterization of enzyme kinetic models at 
scale utilizing the abundance of historical literature data and machine learning parameter estimates.   

1. Introduction 

There has been a resurgence of interest in the construction of large- 
scale kinetic models of metabolism for model organisms in recent years 
(Millard et al. 2017; Srinivasan et al. 2015; Foster et al., 2019). These 
models hold promise in a number of applications that constraint-based 
models have difficulty addressing, such as understanding quantita-
tively how metabolite levels control metabolic flux across experimental 
conditions(Link et al. 2013; Andreozzi et al., 2016; Savoglidis et al., 
2016; Chowdhury et al. 2015). However, the primary issue impeding the 
development of practical large-scale kinetic models of metabolism is the 
need for a large number of kinetic parameters, the vast majority of 
which have not been experimentally measured(Heijnen and Verheijen 
2013). 

To address this parameterization challenge, a number of approaches 
have been developed(P. A. Saa and Nielsen 2017; Shepelin et al., 2020). 
Sampling methods randomly select parameters in particular expected 
ranges, sometimes with constraints such as thermodynamic consistency 
enforced in the sampling procedure(P. Saa and Nielsen 2015; Miskovic 
and Hatzimanikatis 2010; Tran et al. 2008). Top-down parameterization 
methods use data on the kinetic or steady-state behavior of the entire 
system and parameterize the entire model simultaneously to match this 
data(Chassagnole et al., 2002; Khodayari and Maranas 2016; Jamshidi 
and Palsson 2010). Bayesian methods have been proposed as a flexible 
and powerful tool for parameterization (Linden et al. 2022; P. A. Saa and 
Nielsen 2016). A number of software tools are available for parame-
terization using these methods(Adams et al., 2013; Gábor et al. 2017; 
Hoops et al., 2006; Gábor and Banga 2015). However, performance of 
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such methods can suffer due to sampling too wide a parameter space or 
having too many parameters for the limited amount of data. 

Bottom-up methods on the other hand use data related to the indi-
vidual components of the network to construct a model piece by piece 
(Kuzmic 1996; Olp et al. 2020; Choi et al. 2017; Ishii et al., 2007; 
Teusink et al., 2000). Bottom-up methods have the advantage of uti-
lizing the extensive amount of historical enzyme data(Placzek et al., 
2017; Costa et al. 2014) as well as machine learning estimates(Heck-
mann et al., 2018; Li et al., 2022). Further, recent high-throughput 
studies have shown substantial correlations between in vivo and in 
vitro kinetic parameters, supporting the use of available enzyme kinetic 
data(Davidi et al., 2016; Bennett et al., 2009). Our group and others 
have demonstrated that detailed enzyme kinetics can be inserted into a 
simplified kinetic background to construct large-scale kinetic models of 
metabolism(Jamshidi and Palsson 2010; Haiman et al., 2021; Du et al., 
2016). However, there are a number of difficulties with bottom-up 
construction of kinetic models that have impeded their development. 
First, the majority of enzymes do not have detailed kinetic assays per-
formed, requiring additional parameter estimation(Kotte and Heine-
mann 2009). Second, parameters from disparate sources may be 
inconsistent, requiring a framework to integrate this data(Choudhury 
et al., 2022; P. Saa and Nielsen 2015). If these challenges can be met, 
bottom-up methods may be complementary alternatives for construc-
tion of large-scale kinetic models of metabolism. 

Here, we present a computational workflow that attempts to address 
a number of issues with bottom-up construction of kinetic models of 
metabolism. This workflow parameterizes individual enzyme kinetic 
models to fit a variety of measured kinetic data types (e.g. kcat, KM), 

attempts to reconcile inconsistent data, and accounts for parameter 
uncertainty. To aid this, we utilize flexible user-defined microscopic 
mass action reaction mechanisms that can account for the vast majority 
of observed kinetic behavior and can be extended to the necessary res-
olution on an enzyme-by-enzyme basis. This workflow is implemented 
as a software package in Mathematica termed MASSef (Mass Action 
Stoichiometric Simulation Enzyme Fitting). There are three core fea-
tures of this software package: 1) a symbolic algebra system that gen-
erates equations for comparison with measured data based upon the 
enzyme mechanism, 2) robust nonlinear optimization to fit the model to 
data, and 3) a workflow that perturbs the fitting problem to characterize 
uncertainty in the parameters. We first present an overview of the 
computational workflow for parameter fitting before discussing the 
details of individual components, and then we present a series of case 
studies demonstrating the workflow for enzymes with different avail-
able kinetic data. Finally, we demonstrate a workflow to assemble 
pathway-scale kinetic models by inserting these parameterized enzyme 
modules in an approximate mass action kinetic model background. 

2. Results 

2.1. Overview of enzyme kinetic parameter fitting pipeline 

The parameterization workflow is divided into six steps (Fig. 1). 1) 
Gather available enzyme kinetic data and associated experimental 
conditions. 2) Construct a mass action enzyme mechanism, consisting of 
known individual reaction steps involved in catalysis and regulation of 
the enzyme. 3) Based upon the enzyme mechanism, define kinetic 

Fig. 1. Workflow for parameterization of rate constants using enzyme kinetic data. This workflow consists of six steps: A) Gathering and curating kinetic data, 
B) Defining an enzyme mechanism, C) Defining equations that relate model behavior to each data type, D) Processing kinetic data and correcting it to in vivo-like 
conditions, E) A nonlinear least-squares optimization to identify rate constant sets that fit available kinetic data, F) Assessing the fit for goodness of fit and parameter 
uncertainty, as well as calculating clusters of similar rate constant set results. 
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equations corresponding to the macroscopic kinetic data types (e.g. KM, 
kcat) to be fit. 4) Pre-process the kinetic data to allow direct comparison 
to the equations defined in Step 3.5) Fit the equations defined in step 3 to 
the processed data in Step 4 using a nonlinear least squares optimization 
approach to obtain a locally optimal set of microscopic rate constants 
that reproduces the experimental data. Data priorities specified by the 
user determine the weight of each data point in the fitting procedure. 
This optimization problem is solved N times with pseudo-random start 
points to account for the under-determined nature of problem. 6) Cluster 
the resulting rate constant sets to identify a reduced number of char-
acteristic rate constant sets for the enzyme, each of which reproduces 
the experimentally-determined kinetic behavior of the enzyme. Finally, 
fit performance is summarized, effective macroscopic kinetic parame-
ters are recalculated from the fitted microscopic rate constants, and the 
parameterized model can be exported as text files for modeling in 
desired kinetic simulation software. We discuss the details of each step 
below. 

2.2. Step 1: Preparation of enzyme kinetic data 

First, kinetic data on enzymes is gathered, curated, and placed into a 
table in a standard format (Fig. 1A). Data types currently handled 
include enzyme structure, reaction stoichiometry, kinetic reaction 
mechanism, reaction equilibrium constant (Keq), dissociation constants 
(Kd), and standard initial rate kinetic assay constants such as the 
Michaelis-Menten constant, KM, the turnover rate, kcat, and inhibition 
constants, Ki. Additional data types, such as in vivo flux data, can be 
utilized as well, provided that a comparison equation is specified by the 
user in step 3. Experimental condition data such as co-substrate con-
centrations, pH and temperature are also extracted for use in data ad-
justments to in vivo-like conditions, as discussed later. Weights for each 
data point are determined by the user. This allows the user to decide 
how heavily to consider data points that may be conflicting with other 
measurements or have reliability concerns. 

2.3. Step 2: Specify the enzyme reaction mechanism 

A mechanism for the enzymatic reaction, consisting of individual 
reaction steps that describe the binding of the enzyme to substrates, 
catalysis, and product release, is then specified by the user (Fig. 1B). 
Each of these steps is modeled using mass action rate laws. Since the 
reaction steps do not proceed through a single transition state, these are 
not true elementary reactions. Instead, we refer to them using Cleland’s 
nomenclature(Cleland 1963) as microscopic reaction steps, with 
microscopic kinetic rate constants, contrasted with macroscopic kinetic 
parameters such as Michaelis constants KM. 

The method is flexible to various reaction schemes, such as sequen-
tial versus random binding orders, ping pong mechanisms, and slow 
enzyme transitions. Both reversible and irreversible reactions can be 
specified, but fully reversible mechanisms are recommended for later 
use of thermodynamic Haldane relationships(Alberty 1953). Generally, 
protons and water are assumed constants and excluded from reaction 
mechanisms by convention. At this stage, individual catalytic tracks and 
thermodynamic cycles can be defined by the user to serve as thermo-
dynamic constraints, such as Haldane constraints arising from the First 
Law of Thermodynamics. A catalytic track consists of a particular set of 
catalytic microscopic reaction steps that convert substrates into prod-
ucts. Haldane constraints, which consist of a multiplication of equilib-
rium constants along a particular catalytic track, are later fit to be equal 
to the overall reaction Keq. In addition, small molecule enzyme inhibi-
tion and activation can be modeled by adding the corresponding 
microscopic binding reaction step(s). For enzyme competitive, uncom-
petitive, and mixed inhibition mechanisms, these microscopic reactions 
are added automatically if the inhibitor and respective affected metab-
olites are specified. 

We note that although the mechanism is specified in terms of mass 

action reactions, an overall rate equation is derived based on a quasi- 
steady state assumption, and either the original mass action equations 
or this overall rate equation can be used for downstream kinetic 
modeling, as the user desires. 

2.4. Step 3: Constructing symbolic comparison equations 

We then set up the equations that are used to fit the kinetic data 
(Fig. 1C). These equations are functions of microscopic rate constants 
and in some cases of metabolite concentrations as well. For Keq values, 
Haldane relationships are defined in terms of individual rate constants 
for each catalytic track through the enzyme mechanism. For kcat, KM, 
and Ki values, equations are derived from the overall steady-state rate 
equation of the reaction, vss, as described in the methods. The equation 
for the steady-state flux, vss, is found by solving the system of mass 
balance equations at steady-state along with a total enzyme sum equa-
tion representing total enzyme conservation (see Methods for details 
and Supplementary Information for a case study). Other data types 
such as dissociation constants can be used as well, if the user specifies a 
corresponding equation relating the data type to the enzyme micro-
scopic rate constants. 

2.5. Step 4a: Preparing kinetic data for fitting 

The macroscopic kinetic data, such as Keq, kcat, KM, and Ki, are then 
processed into a form that enables direct comparison to model behavior 
(Fig. 1D). For reaction Keq values, the processed form is simply the Keq 
value calculated under experimental conditions (pH, IS, and T). For kcat, 
the processed form is the value along with the measured experimental 
conditions, including substrate concentrations. If substrate concentra-
tions are not available, a concentration that is likely to be saturating is 
assumed (i.e. 1 M), in order to represent the excess concentrations 
typically used in the measurement of turnover rates. In these cases, it is 
recommended that KM values are specified as well to ensure this 
constraint is satisfied by the final parameter set. For KM and Ki, an initial 
rate curve is generated using the classical Michaelis-Menten equation 
with the KM and Ki value substituted when applicable. This curve is 
simulated at substrate concentrations an order of magnitude above and 
below the measured KM value. Other experimental conditions such as co- 
substrate concentration and media conditions are reported when avail-
able. Co-substrate concentration values in particular are substituted in 
the equations used to fit the KM and Ki data. This procedure attempts to 
simulate the original experiment. However, in lieu of this experimental 
plot simulation procedure, raw data could be used in principle as well. 

To deal with uncertainty in macroscopic kinetic data, upper and 
lower bounds can be specified and data sampled from a normal distri-
bution with a given mean and standard deviation. In the case of un-
known macroscopic kinetic data, a uniform distribution spanning a 
characteristic range for the data type may be sampled. For example, Km 
values tend to fall in the range of 10− 7 to 10− 2 M, while kcat values may 
fall in the range of 10 to 105 s− 1(Bar-Even et al., 2011). When sampling 
is performed, a number of samples is defined, and a data set is created for 
each sample point. 

2.6. Step 4b: Correcting data for in vitro to in vivo differences 

To correct these values for in vitro to in vivo differences, several ad-
justments to the data are implemented. First, kcat can be adjusted to in 
vivo temperature from in vitro conditions using a user defined Q10 value 
for the enzyme, which is specified by the user but has a default value of 
2.5, typical for metabolic enzymes(Hochachka 1991; Yurkovich et al., 
2017). Effects of temperature on Km are thought to be less substantial 
and thus are currently ignored(Scopes 1995). Further, for each data 
type, concentrations can be corrected to the more accurate chemical 
activities using a Debye-Huckel model for the activity coefficient given 
the ionic strength under experimental conditions, though currently this 
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must be performed by the user(de Jiménez et al., 1964). Reaction 
equilibrium constants can be calculated at a specific pH and ionic 
strength as well using published tools(Du et al., 2018). Finally, inhibi-
tory effects of pH changes on enzyme behavior can be modeled by 
adding proton binding and dissociation reactions to the enzyme mech-
anism with associated dissociation constants, as has been done in the 
enzymology literature(Tipton and Dixon 1979; Moxley et al. 2014). 

2.7. Step 5: Two-stage randomized fitting of microscopic rate constants to 
macroscopic kinetic data 

Once both the data and equations have been prepared, these are 
passed to a two-stage nonlinear least squares optimization procedure 
(Fig. 1E). The target values are given by the data, while the model values 
are given by the equations with the experimental conditions substituted 
into the equations, leaving them functions of the microscopic rate con-
stants alone. The fitting procedure then yields microscopic rate constant 
values that cause the enzyme model to reproduce the measured data. As 
an objective, we use the absolute difference between the logarithm of 
the model-predicted value and the logarithm of the data, multiplied by 
the user-defined weights on each data value. We use bounds on the 
microscopic rate constants of 10− 6 and 109 s− 1 based on typically 
assumed limits of diffusion and an arbitrarily slow lower bound(Alberty 
and Hammes 1958). These rate constant bounds may not be relevant for 
reactions not involving association or dissociation. However, we have 
not found these bounds to affect the fitting error for the cases we have 
examined thus far, and the lower bound in particular is rarely hit in 
practice. Additionally, to address the broad scale of potential rate con-
stants, we log transform the rate constants during this optimization. 
Furthermore, weights can be assigned to each data point for balancing 
the contribution of each data point to the fitting objective function or to 
reflect confidence in particular measurements. 

However, the equations are highly nonlinear, causing many opti-
mization algorithms to fail to converge to an acceptable fit. To address 
this challenge, we first run a non-derivative based particle swarm opti-
mization (PSO) to find rate constant sets that fit the data well enough to 
serve as initial points for a more precise derivative-based optimization. 
The second optimization is a Levenberg-Marquadt (LMA) derivative- 
based optimization with the same log-parameter scaling and objective. 
Resulting fits are examined for total residual, and points that fit satis-
factorily are kept. These rate constants are then once more substituted 
into the equations for the kinetic data to verify that this kinetic data used 
to fit the model can be reproduced. 

Importantly, as PSO is a randomized algorithm, initial points passed 
to LMA are different each time that the algorithm is run. For typical 
underdetermined systems, different rate constant sets are returned by 
the optimization every time, each of which fits the kinetic data equiv-
alently well. This effectively samples the rate constant space in the 
prevalent cases where rate constants are not uniquely specified by the 
available kinetic data. Thus, this procedure inherently addresses the 
underdetermined system issue in parameterization of enzyme reaction 
mechanisms. 

2.8. Step 6: Cluster parameters to extract characteristic rate constant sets 

As initial points to the LMA optimization are defined pseudo- 
randomly based on the PSO optimization results, the resulting rate 
constants are generally different in each optimization. The fitting pro-
cedure is then repeated a number of times until qualitatively new 
alternative rate constant sets are no longer found (Fig. 1F). To determine 
convergence, clustering is used to identify whether new clusters have 
been formed by addition of new fitted points, or whether these points 
fall within existing clusters. Then, once convergence has been reached, 
characteristic rate constants sets for the enzyme are selected based on 
proximity to the centroids of these clusters. These centroids then serve as 
candidate rate constant sets for the enzyme, each of which reproduces 

measured kinetic data for the enzyme equivalently well. 
After the parameters are fit, the best fit parameter set is evaluated. 

The macroscopic parameters corresponding to the fit microscopic rate 
constants are recalculated and compared to the data used in training to 
assess final error on each parameter. Centroid cluster parameter sets can 
be exported to text files for import into desired kinetic modeling pack-
ages, such as the MASSpy kinetic modeling package in Python(Haiman 
et al., 2021). 

2.9. Case studies demonstrating the ability of MASSef to fit specific data 
types 

Having described the workflow for parameterizing microscopic mass 
action reaction mechanisms using enzyme kinetic data, we now present 
a series of case studies demonstrating the workflow in action when 
different types of data are available. 

2.10. Case study 1: demonstrating the fitting procedure on kcat, Km, and 
keq data for glyceraldehyde-3-phosphate dehydrogenase 

We first demonstrate the basic capabilities of the fitting procedure, 
using the case of the glycolytic reaction Glyceraldehyde-3-phosphate 
Dehydrogenase (GAPDH) from E. coli (Fig. 2). This reaction catalyzes 
the substrate level phosphorylation of glyceraldehyde-3-phosphate 
(g3p) to produce 1,3-diphosphoglycerate (13dpg) and NADH. The 
enzyme has reported Km values of 0.89 mM, 0.045 mM, and 0.53 mM for 
glycerol-3-phosphate, NAD, and inorganic phosphate (Pi), respectively 
(Eyschen et al., 1999) (Fig. 2B). Also reported in the study was a forward 
kcat of 268 s− 1 at 295K and a dissociation constant Kd for NAD of 
0.00032 mM. A Keq value of 0.452 was extract from eQuilibrator at a pH 
of 7 and ionic strength of 0.25M. While the substrate binding order in 
E. coli has not been experimentally determined, it has been reported in 
humans to be an ordered Bi Bi mechanism with a binding order NAD, 
then g3p, then Pi, and a release order of 13dpg followed by NADH(Wang 
and Alaupovic 1980). This mechanism was constructed and fit to the 
data using the MASSef workflow, and rate constants enabling the model 
to perfectly fit the data were found (Fig. 2C). Rate constants were not 
uniquely identified, but instead were constrained to certain ranges 
(Fig. 2D). Due to the presence of more data on the forward direction than 
the reverse, the microscopic rate constants associated to the substrate 
binding steps are constrained to a greater degree. Examination of good 
fitting rate constant sets showed nonlinear dependencies between the 
rate constants, a reflection of the alternate possible rate constant sets 
that can equivalently satisfy the constraints on enzyme function places 
by measured turnover rates and Michaelis-Menten constants (Fig. 2E). 
Clustering of the identified rate constants then extracts sets of charac-
teristic rate constants with particular nonlinear dependencies (Fig. 2F). 

2.11. Case study 2: reconciling inconsistent data for Phosphoglycerate 
Mutase 

We then demonstrate the ability of MASSef to reconcile data that is 
inherently inconsistent, using Phosphoglycerate Mutase (PGM) as a case 
study. This enzyme catalyzes the conversion of 2-phosphoglycerate to 3- 
phosphoglycerate and has well specified kinetics, with both forward and 
reverse kcat and KM defined by data (Fig. 3A and B). The kcat data was 
corrected to 37oC using a Q10 of 2.5. The equilibrium constant for the 
reaction was obtained from the eQuilibrator web server(Flamholz et al., 
2012) for pH of 7.5 and IS of 0.25M. The fitting procedure reveals that 
the kinetic data and Keq are not kinetically consistent (Fig. 3C). The 
reason for this inconsistency is apparent once the Haldane relationship is 
calculated using the kinetic data and compared to the reaction equilib-
rium constant. The Keq for the reaction is 5.3, while the Keq calculated 
from kinetic parameters is only 1.4, indicating significant inconsistency. 
This type of inconsistency suggests that some data may not be trust-
worthy. While distinguishing good data from bad data is the task of the 
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modeler, the workflow results in rate constants that attempt to reconcile 
the inconsistent data as well as possible. The resulting kinetic constants 
are not far from the measured values. Furthermore, different weight 
values can be used to weigh particular data points more heavily based on 
user confidence. We demonstrate several possible data point weights for 
this enzyme, based on individually deprioritizing Kms, kcats, or Keq data 
(Fig. 3C,D,E). 

2.12. Case study 3: incorporating in vivo flux data for Triose Phosphate 
Isomerase 

A common issue with the use of in vitro data is an incompatibility 
with the in vivo requirements of pathway flux. For example, a kcat may be 
measured inaccurately or in a non-physiological condition, resulting in 
less activity than required to sustain a physiological flux given a 
measured protein concentration. Here, we demonstrate how MASSef can 
incorporate in vivo data to obtain a set of microscopic kinetic parameters 
that balance in vitro measurements with in vivo requirements. We show 
this for the glycolytic enzyme triose-phosphate isomerase, TPI, in E. coli, 
which converts dihydroxyacetone phosphate (DHAP) to glyceraldehyde- 
3-phosphate (G3P) (Fig. 4A). The equilibrium of this reaction is slightly 
favored toward DHAP with a Keq of 0.11 under standard conditions, and 

extremely fast kinetics in the direction toward DHAP production with a 
catalytic efficiency near the diffusion limit, while an experimental KM 
for DHAP was not available in the literature (Fig. 4B). We gathered in 
vivo data on fluxes estimated from flux balance analysis based on growth 
rate and metabolic exchanges during aerobic growth on glucose and 
acetate(Gerosa et al., 2015), metabolite concentration data(Gerosa 
et al., 2015), and proteomics data(Schmidt et al., 2016) (Fig. 4C). We 
first fit the in vitro data alone using MASSef and found that the model 
was able to perfectly capture the data (Fig. 4D). We then added the in 
vivo data as additional target values, by asking the model to fit the in vivo 
flux given the measured metabolite and enzyme concentrations 
(Fig. 4E). The model was unable to perfectly fit both in vitro and in vivo 
data, indicating an inconsistency. As lower glycolysis reactions are 
known to be near equilibrium, which affects the thermodynamic effi-
ciency of the enzyme(Noor et al., 2013), we hypothesized that changing 
the metabolite concentrations may enable a consistent fit. Indeed, by 
adjusting the metabolite concentrations only slightly to affect the dis-
tance of the reaction from equilibrium, by changing G3P from 0.08 mM 
to 0.1 mM on the glucose condition, we were able to find rate constants 
that match both in vitro and in vivo behavior (Fig. 4F). We recalculated 
the effective macroscopic parameters and found that the unadjusted in 
vivo data resulted in less efficient kinetic parameters than predicted by in 

Fig. 2. Demonstrating the fitting procedure for Glyceraldehyde- 3-phosphate Dehydrogenase (GAPDH) from E. coli. A) Enzyme mechanism for GAPDH. B) 
Available kinetic data for GAPDH. C) Best fit results for GAPDH and resulting kinetic parameters calculated using symbolic equations for these parameters. Target 
data is shown as circles, while the model results are shown as boxes for clarity. Data is ordered by index as it is generated from the data simulating equations by type 
of data (e.g. Keq, Km, kcat). Data is replicated for certain data types (Keq, kcat, KD) to balance the contribution of error on these data points to the objective function 
with that of KM data. For this enzyme, the fit between model and data was tight, as no discrepancies are apparent. D) Distribution plot of rate constant sets obtained 
from 100 optimizations showing parameter ranges E) Rate constant sets showing connections between rate constants F) Clustering of rate constant sets reveals 
nonlinear dependencies between rate constants. The four identified clusters and the rate constant sets that are nearest to the cluster means are shown. 

D.C. Zielinski et al.                                                                                                                                                                                                                             



Metabolic Engineering Communications 18 (2024) e00234

6

vitro experiments, while the adjusted in vivo data was consistent with the 
in vitro experiments (Fig. 4G). The adjusted concentrations were well 
within apparent experimental error, especially given that 
condition-specific concentrations for DHAP were not available. Thus, we 
interpret this result to indicate that neither in vitro nor in vivo data are 
inherently problematic or erroneous, but rather the system is inherently 
highly sensitive to small changes in all parameters due to the reaction 
being near equilibrium where sensitivity to metabolite concentration 
differences is high. This work highlights the need to systematically 
reconcile in vitro and in vivo data to obtain consistent kinetic models, and 
specifically suggests the sensitivity of reactions near equilibrium to fine 
adjustments in metabolite concentrations as a source of potential 
discrepancies. 

2.13. Constructing large-scale models with parameterized enzyme 
modules 

Once a desired set of enzyme modules have been parameterized, 
these can be integrated to form pathway or network scale kinetic models 
of metabolism(Haiman et al., 2021; Du et al., 2016). We provide a case 
study integrating enzyme modules within a mass action model of 
glycolysis as a Jupyter notebook workflow implemented in Python 
(scripts available on github.com/opencobra/massef). Code is provided 
to export text files of enzyme modules from MASSef in a format that can 
be directly imported using the MASSpy Python package(Haiman et al., 
2021). In this workflow, we demonstrate that a steady state solution can 
be obtained through simulation of the system before and after enzyme 

modules are introduced, supporting the viability of the complete 
bottom-up workflow for model construction. 

3. Discussion 

In this work, we present a workflow and software tools for the 
parameterization of detailed kinetic models of enzyme reactions using 
enzyme kinetic data. This software tool has a number of powerful fea-
tures. First, the workflow allows flexible user-defined reaction mecha-
nisms and can handle the majority of common reaction schemes, 
including different binding orders, reaction mechanisms such as ping- 
pong mechanisms, inhibition schemes, protonation reactions, and allo-
stery. Second, the workflow enables the fitting of standard kinetic data 
types, including thermodynamic and initial rate data, and can correct 
these data, to a degree, to in vivo-like conditions. Third, the optimization 
procedure can handle the inherently highly nonlinear least-squares 
optimization and sample rate constant sets to deal with under- 
determined systems. 

The modeling procedure here depends on user-specified reaction 
mechanisms. These manual curation efforts can be seen as analogous to 
metabolic reconstructions in the constraint-based modeling framework 
(Monk et al., 2017). Reconstructions require an up-front time invest-
ment from model curators to assess literature information and incor-
porate known enzyme kinetic mechanisms. However, once established 
these kinetic mechanisms represent a community resource that can be 
iteratively improved and applied for diverse applications. Currently, 
kinetic modules can be built for tens of enzymes per day, primarily gated 

Fig. 3. Fitting data for Phosphoglycerate Mutase (PGM) from E. coli shows customizable handling of inconsistent data. A) Enzyme mechanism for PGM. B) 
Available kinetic data for PGM. C) Best fit results for PGM and resulting kinetic parameters calculated using symbolic equations for these parameters. Error in the Keq 
values are due to data conflicts between Km, kcat, and Keq due to the Haldane constraint that relates these parameters. On the right, distribution plot of rate constant 
sets obtained from 100 optimizations showing parameter ranges D) Best fit results for PGM and resulting kinetic parameters calculated with data priorities scores 
adjusted to de-prioritize Km data, which has the effect of placing the fitting error on these values. On the right, resulting rate constants show small changes as a result 
of the adjusted fit. E) Best fit results for PGM and resulting kinetic parameters calculated with data priorities scores adjusted to de-prioritize kcat data, which has the 
effect of placing the fitting error on these values. On the right, resulting rate constants show small changes as a result of the adjusted fit. 
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by determining the enzyme mechanism and reconciling any discrep-
ancies between model behavior and kinetic data. Further workflow 
scaling is likely possible through semi-automated application of estab-
lished mechanisms and quality control assessment. This approach to 
bottom up reconstruction of enzyme kinetics contrasts with other recent 
approaches(Khodayari and Maranas 2016; P. Saa and Nielsen 2015; 
Miskovic and Hatzimanikatis 2010; Choudhury et al., 2022) that utilize 
somewhat approximated Michaelis-Menten or other kinetic rate laws 
that are simultaneously parameterized to match systems-level data such 
as measured steady state fluxes. One strength of the bottom up approach 
is inconsistencies between model behavior and systems-level data, due 
for example to factors such as unknown regulators, can be assessed on an 
enzyme-by-enzyme behavior, simplifying diagnosis of issues. Mean-
while, a strength of systems level fitting approaches is the ability to take 
into account system level model behavior during parameterization. 
Currently, although multiple in vivo steady state flux values can be fit in 
the bottom up workflow as demonstrated for TPI, the stability and dy-
namic behavior of resulting network models is not guaranteed when 
assembling large-scale models in a bottom up fashion, requiring further 
workflow extensions. 

The reaction schemes that we have tested thus far are those based on 
standards set by Cleland and other enzymologists(Cleland 1963). These 
reaction mechanisms have certain assumptions but have seen practical 
success in representing enzyme behavior in initial rate and progress 
curve experiments(Teusink et al., 2000). Beyond the relatively simple 
kinetic mechanisms demonstrated in this work, there are additional 

levels of detail that potentially could be represented that we have not yet 
tested. These include additional breakdown of catalysis into individual 
interactions between the substrate and catalytic residues as well as 
breakdown of common deterministic and well-mixed assumptions due 
to restricted geometries(Ma and Nussinov 2013), low copy numbers 
(Tzafriri 2003), channeling(Spivey and Ovádi 1999), stochastic 
behavior(Sanft et al. 2011), proton tunneling (Klinman and Amnon, 
2013), and other complex kinetic phenomena. These more complex 
situations have been handled by others in various ways but not yet in-
tegrated into our workflow. 

The current workflow has been developed to handle reaction Keq 
values as well as enzyme initial rate data such as kcat, KM, and Ki, due to 
the dominance of these data types in the enzyme kinetic literature 
(Chang et al., 2021). However, in principle this workflow could be 
extended to additional data types such as progress curve data(Choi et al. 
2017; Eicher et al. 2012) and stop-flow data(Hartwell and Grudpan 
2012). The requisite for utilizing these data types is the construction of 
equations to be used in the least-squares optimization. For example, to 
compare to progress rate data, the mass balance equations for the 
enzyme would be integrated over time and compared to the experi-
mental time course data. Additionally, in the current procedure we use 
simulated experimental curves that are effectively back-calculated for 
the parameters in the case of KM and Ki. This procedure was imple-
mented because the original data curves are often not available or are 
inconvenient to extract from the literature. However, in principle the 
original data plots could be fit directly and should have mostly 

Fig. 4. Fitting in vivo data for Triose Phosphate Isomerase (TPI) from E. coli enforces consistency of in vitro data with physiological function. A) Enzyme 
mechanism for TPI. B) Thermodynamic and In vitro kinetic data for TPI. C) In vivo data for TPI, including flux, metabolite concentration, and enzyme concentration 
data. *indicates manually adjusted value to ensure thermodynamic feasibility. D) Data fit using only thermodynamic and in vitro data. E) Data fit using thermo-
dynamic, in vitro, and in vivo data, with in vivo data heavily weighted to force a tight fit. F) Data fit using thermodynamic, in vitro, and adjusted in vivo data. G) 
Recalculated kinetic parameters for each fit, as well as in vivo metabolite concentrations used in the fit. 
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equivalent results to the current workflow. 
Microscopic mass action enzyme systems typically have many more 

rate constants than kinetic data, and thus are highly underdetermined. 
One of the most powerful aspects of this workflow is the ability to fit rate 
constants for these underdetermined systems, due to the inherent 
parameter sampling built into the optimization procedure. This capa-
bility is enabled by the pseudo-random start points for the LMA opti-
mization that are provided by the initial non-derivative based PSO 
optimization. One potential issue is to determine how completely the 
parameter space is being sampled. We attempt to address this by clus-
tering the rate constants through successive optimizations, and consid-
ering the parameter space to be fully specified when new clusters are no 
longer found. However, this procedure cannot discount inherent bias in 
the optimization procedure that would lead parameters with particular 
biases to be oversampled. Thus, more powerful sampling methods, such 
as Monte Carlo sampling, would still be desirable to be implemented. 

4. Conclusions 

Kinetic modeling of metabolic networks has seen a resurgence in 
recent years, driven largely by parameterization strategies involving 
sampling and system-level parameter fitting. The work here is intended 
to increase the accessibility of a ‘bottom-up’ parameterization approach 
that makes use of the plethora of historical enzyme kinetic data available 
in the literature. As these models are parameterized enzyme-by-enzyme, 
this parameterization approach is expected to scale well to the network 
scale. Additionally, there have been recent efforts to fill gaps in critical 
parameters such as turnover rates at the genome-scale that should 
further enable these efforts(Davidi et al., 2016; Heckmann et al., 2018). 
As parameterization becomes increasingly computationally feasible and 
biochemically accurate, practical kinetic models will likely soon become 
accessible and powerful tools for the systems biology community to 
study metabolism. 

5. Materials and methods 

5.1. Setting up comparison equations 

To construct comparison equations for each data type, the overall 
steady-state equation of the system is first solved by solving the system 
of equations consisting of mass balances on each species along with an 
expression of the total sum of enzyme: 

dx
dt

= Sv(k, x)

∑
Ei =Etot  

Where S is the reaction stoichiometry. This yields an expression for the 
steady state flux vss that is a function of the microscopic rate constants k, 
the metabolite concentrations x, and the total enzyme Etot. This 
expression can be used to derive comparison equations for specific data 
types as described below. 

kcat: The enzyme turnover rate kcat is a proportionality constant 
between the maximum rate of the enzyme vmax and the total enzyme 
concentration Etot. To obtain an expression that approximates vmax, we 
insert concentrations of the metabolite that are assumed to be satu-
rating, creating an approximating function vsat. A standard value of 1 M 
is used for this saturating concentration as a default, but the user can 
specify this value as needed. Then, the comparison equation is found by: 

kcat =
vsat

Etot 

In this expression, the value of Etot does not need to be specified, as 
vsat is a function of Etot as well and these terms cancel from the equation. 
Product and inhibitor concentrations are set to zero in these expressions, 

unless otherwise defined, which matches the standard conditions for 
initial rate experiments. 

Km: The Michaelis constant Km for a metabolite is defined as the 
concentration of that metabolite at which the enzyme rate is half of its 
maximal value. 

vss (x = Km)=
1
2
vmax 

While this equation can be directly solved to generate an expression 
for Km, this can yield multiple solutions for certain reaction mechanisms. 
As a simplifying approach, we instead define a relative rate vrel 

vrel =
vss

vsat  

Where vsat is the overall rate law with an assumed saturating concen-
tration of the metabolites substituted in. The validity of this saturating 
concentration must be reassessed at the end by the user to ensure that 
the effective KM of the enzyme is sufficiently below the saturating con-
centration to ensure effective saturation. In generating this expression, 
the concentration of any co-substrates is set to their experimental values. 
This expression can then be directly fit to a simulated Michaelis-Menten 
curve generated with the experimental Km value. 

vrel =
x

Km + x 

Ki: Inhibition constants are fit analogously to Km values, but addi-
tional terms are present in the simulated Michaelis-Menten curve, 
dependent upon the types of inhibition present. Competitive (Kic), un-
competitive (Kiu), and noncompetitive schemes are currently supported. 

Competitive vrel =
x

Km

(

1 + I
Kic

)

+ x  

Uncompetitive vrel =
x

Km + x
(

1 + I
Kiu

)

Noncompetitive vrel =
x

Km

(

1 + I
Kic

)

+ x
(

1 + I
Kiu

)

Keq: Reaction equilibrium constant data is fit by generating a Hal-
dane relationship for each catalytic path through the enzyme. 

Keq =

∏
k+

∏
k−

These catalytic paths are currently manually specified by the user. 

5.2. Optimization 

To find microscopic rate constants that measured macroscopic 
enzyme kinetic data, we utilized a two-stage non-linear regression 
approach. Rate constants were constrained to be between 10− 6 s− 1 and 
109 s− 1, where the upper bound is set based on the diffusion limit and 
the lower bound is an arbitrarily slow reaction rate. In practice, we did 
not observe rate constants within several orders of magnitude of the 
lower bound in any of the rate constant set solutions. Rate constant 
variables were transformed to logarithmic variables to help span the 
large range in possible rate constants. 

Each optimization step minimizes the sum of squared residuals be-
tween the comparison equations and the data values. Priorities on each 
data point are specified by the user and used as a weighting on errors on 
those data points in the objective function. As certain data types, such as 
Km values, consist of curves rather than single points and thus may 
artificially weigh more heavily in the optimization, the data points are 
balanced to contribute equally to the objective. 

In the first optimization step, a non-derivative-based particle swarm 

D.C. Zielinski et al.                                                                                                                                                                                                                             



Metabolic Engineering Communications 18 (2024) e00234

9

optimization was run. Parameters for this optimization that were found 
to be successful across diverse data values and enzyme mechanisms are 
included as defaults in the fitting code, but can be changed by the user. 
The resulting rate constants from this initial optimization problem were 
then used as initial values to a second optimization problem. The second 
optimization was a derivative-based Levenberg-Marquadt method that 
refines the rate constant sets to a low sum of squared deviations to the 
measured data. Once again, robust options for this algorithm, such as 
tolerances, were identified based on performance across multiple 
enzyme mechanisms and are included as default options. 

This optimization procedure did not always return a good fit, due to 
the pseudo-randomness of initial points and the local optimality prop-
erties of the derivative-based optimization. Repeated runs of the fit were 
executed until a user-controlled number of good fits were found. Addi-
tional termination criteria around convergence of rate constants into a 
consistent clustering set were also tested. 

The optimization procedure is implemented in Python. 

5.3. Clustering 

Once a series of rate constant sets was calculated, these rate constant 
sets were clustered using the Mathematica FindClusters function, with 
the “Optimize” method, and 2 iterations. The median rate constant set 
for each cluster was then calculated. The rate constant set closest to the 
median value was selected as the characteristic rate constant set for that 
cluster. 

5.4. Software and requirements 

The MASSef package is available at https://github.com/opencob 
ra/MASSef. The MASS Toolbox is available at http://opencobra.gith 
ub.io/MASS-Toolbox/. The following Python packages and versions 
are required for the optimization: 

numpy 1.12.0 
scipy 0.18.1 
ecspy 1.1 (deprecated, package included internally to MASSef) 
lmfit 0.9.5. 
Python 3.7+
Mathematica 10+
Computational run time varies by machine, enzyme complexity, and 

extent of exploring alternate parameter sets. Tested on a machine with a 
Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz processor with 32.0 GB of 
memory, the GAPD notebook from Fig. 2 took under 10 min to run 10 
fits (parameter sets computed with different randomized initializations) 
on a single core. The number of cores used directly improves run time as 
the bottleneck step is the parameter optimization, which can be split 
across cores. For more complex enzymes, such as allosteric enzymes 
with several effectors, the algebraic solution of the steady-state equa-
tions can also take a substantial amount of time (on the order of an 
hour), but results can be saved so that they only need to be run once per 
enzyme. Complex enzymes also take more time to fit, scaling with the 
number of parameters, but in our experience individual fits have not 
exceeded ~30 min per fit per core. 
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Gábor, Attila, Banga, Julio R., 2015. Robust and efficient parameter estimation in 
dynamic models of Biological systems. BMC Syst. Biol. 9 (October), 74. 
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