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Abstract

Quantitative models describing environmentally-mediated disease transmission rarely

focus on the independent contribution of recruitment and the environment on the force of

infection driving outbreaks. In this study we attempt to investigate the interaction between

external factors and host’s population dynamics in determining the outbreaks of some

indirectly transmitted diseases. We first built deterministic and stochastic compartmental

models based on anthrax which were parameterized using information from literature

and complemented with field observations. Our force of infection function was derived

modeling the number of successful transmission encounters as a pure birth process that

depends on the pathogen’s dispersion effort. After accounting for individual heterogeneity

in pathogen’s dispersion effort, we allowed the force of infection to vary seasonally accord-

ing to external factors recreating a scenario in which disease transmission increases in

response to an environmental variable. Using simulations we demonstrate that anthrax

disease dynamics in mid-latitude grasslands is decoupled from hosts population dynam-

ics. When seasonal forcing was ignored, outbreaks matched hosts reproductive events,

a scenario that is not realistic in nature. Instead, when allowing the force of infection to

vary seasonally, outbreaks were only present in years were environmental variables were

appropriate for the outbreaks to develop. We used the stochastic formulation of the force

of infection to derive R0 under scenarios with different assumptions. The derivation of R0

allowed us to conclude that during epizootic years, pathogen contribution to disease per-

sistence is nearly independent of dispersion. In endemic years, only pathogens with high

dispersion significantly prevent disease extinction. Finally, we used our model in a maxi-

mum likelihood framework to estimate the parameters that determined a significant

anthrax outbreak in Montana in 2008. Our study highlights the importance of the
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environment in determining anthrax outbreak intensity and could be useful to predict future

events that could result in significant wildlife and domestic livestock losses.

Introduction

Many zoonoses have environmentally-mediated indirect transmission, where pathogens can

persist over time in reservoirs (e.g. on or in soil, grasses, or water), and transmission occurs

through ingestion (e.g. chronic wasting disease (CWD), Bacillus anthracis, Brucella spp., Vibrio
cholerae, and Escherichia coli 0157:H7) [1–7]. Infected hosts contribute pathogens to these

environmental reservoirs via pathogen shedding or host death. Predicting the transmission

dynamics in these systems is challenging, as data collection on pathogen persistence, host/

pathogen contact, and infection rates are difficult to measure empirically. The compartmental

modeling approach has long been used in disease ecology to understand disease dynamics [8–

13]. Classical compartmental models focused on directly transmitted diseases in populations

can be extended to environmentally-mediated indirect disease transmission [3, 4, 14–16].

Many directly and indirectly transmitted infectious diseases show seasonal patterns in

their population dynamics triggered by different intrinsic and extrinsic factors [9, 17]. Disease

dynamics can be determined by seasonally pulsed births of the host [18, 19], changes in vector

abundance or parasite virulence related to climatic variables [20, 21], or changes in host stress

that increase the susceptibility to parasites [22]. In order to effectively control and predict the

outcome of disease outbreaks, it is crucial to tease apart the influence of the different factors

that determine disease dynamics [23].

Anthrax, caused by the spore forming bacterium Bacillus anthracis, is a worldwide zoonosis

[2, 24]. The disease is not spread directly from contact between ill and susceptible animals, but

via exposure to bacterial spores in the environment [24]. The spores can remain viable in the

soil for extended time periods (several years) [25–27], and can infect many species of wildlife

and livestock, especially herbivores [24, 25]. The carcass sites of hosts killed by anthrax can

become locally infectious zones (LIZs) [28, 29].

Compartmental models have been proposed to understand natural anthrax dynamics in

herbivores [14, 15, 21, 30, 31]. The complexity and reality of these models has increased, incor-

porating animal migration [14] and strong seasonal effects linked to host reproductive cycle

[21]. Even though most previous models assume that individuals cannot recover from infec-

tion and do not return to the susceptible population [14, 31], some studies have shown that

many grazers recover and develop antibody titers against anthrax toxins [28, 32, 33]. A more

recent model incorporated pathogen virulence to explain host anthrax resistance [21]. Also,

most previous models do not account for seasonal forcing in the infection, although it has

been widely suggested that anthrax dynamics are closely tied to environmental drivers that

may or may not match the seasonality of host population dynamics [26, 34, 35]. Finally, all

models are deterministic in form (i.e. [14, 15, 21, 30, 31]) but stochastic models are amenable

to realistic predictions regarding disease persistence or extinction [36, 37].

Here we developed deterministic and stochastic models of anthrax transmission in bison

(Bison bison bison) allowing immune individuals to transition into the susceptible population.

We incorporate a stochastic infection probability assuming that the force of infection is sea-

sonal following an environmental covariable. Our model is an adaptation of previously devel-

oped models for understanding CWD [4] and anthrax [38] in elk (Cervus canadensis) and

bison populations in Montana. We investigated the role of population dynamics and seasonal

SMILE: Modeling a reservoir-driven disease
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forcing in infection probability on determining outbreak dynamics. We also defined the

model parameter space in which the basic reproduction number was different than unity.

Finally, we attempted to predict anthrax transmission for a mid-latitude grassland system with

ungulate grazers (bison and elk) using maximum likelihood.

Materials and methods

The model is based on five compartments that capture various disease states of hosts through

death and release of spores into the environment (susceptible (S), immune (M), infected (I),

locally infectious zone (L), environment (E); Fig 1). Although previous models were developed

using a box-car approach (see [4, 38] for details), to maintain simplicity of the model we do

not use any compartment sub-structuring. Using the deterministic basis of the model, we

assume that the outcomes of host birth and natural death, infection, immunity, disease death,

Fig 1. Conceptual diagram of the SMILE model describing compartments and transition probabilities among compartments.

The diagram also includes parameters related to population dynamics such as reproduction and non-disease related deaths. Solid

lines represent processes that are disease mediate while dashed lines represent non-disease related births and deaths.

https://doi.org/10.1371/journal.pone.0208621.g001

SMILE: Modeling a reservoir-driven disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0208621 December 12, 2018 3 / 20

https://doi.org/10.1371/journal.pone.0208621.g001
https://doi.org/10.1371/journal.pone.0208621


and spore decay are binomially distributed, to develop the stochastic version. We parameter-

ized our deterministic and stochastic models based on a multi-species outbreak of anthrax,

which occurred in southwest Montana where no cases had been reported in decades (Montana

outbreak from here on; [7, 39]). Nearly 300 Bison managed as livestock were lost, incurring

significant costs from loss of livestock and disease control [7, 33].

SMILE model description

Overall our model consists on five compartments that describe the weekly anthrax dynamics

in bison, but can be easily applied to any system where pathogens are indirectly transmitted

through the environment (e.g. brucellosis). The susceptible S compartment tracked bison that

were available for infection in each time step. When individual bison become infected with

probability λ they transition into the infected compartment I. Infected individuals can either

become immune M with probability z or die with probability (1 − z). The proportion z of

hosts that survive given an exposure to B. anthracis in the environment is not well known, but

several species develop antibody titers indicating they have survived an exposure [28, 33]. The

immune (M) compartment held bison that had become immune through spore exposure

assuming that antibody titers remain detectable for one year [33, 40]. Each week, immune

individuals had a probability α of becoming susceptible again or 1 − α to remain immune.

Those that did not survive infection were assumed to have died of acute anthrax, and transi-

tioned to the LIZ L compartment (i.e. carcasses infect the environment E). Acute illness in

bison can lead to rapid death (� three days [24]). The L compartment counted the number of

bison who had died of anthrax in each time step.

The carcass of any anthrax-killed bison was assumed to introduce a specified number of

spores ψ to the environment E. After ingestion from E, spores germinate into vegetative cells

leading to acute illness and death [24]. After host death, B. anthracis vegetative cells sporulate

and disseminate around the carcass through decomposition or scavengers [41]. Generally, E is

the cumulative number of spores in the environment available for infection. Bacillus anthracis
spores can persist in the environment for extended periods [26, 42, 43] but may lose virulence

with probability 1 − γ through loss of the pX02 plasmid [2, 24, 44, 45].

Susceptible S and immune M individuals survive to non-related disease deaths from one

time step to another with probability σ. At the end of each year, adult bison in S and M repro-

duced by a single pulse and each individual reproduces with density-dependent probability [4,

46]. It is rare for individuals younger than one year old to die from anthrax (Blackburn J.K.

unpublished data, [32, 47]), but we assumed these individuals entered the system as susceptible

S and overall calf mortality was similar to adult mortality. The latter assumption will not bias

the model since it only increases the influx of individuals to the S compartment by approxi-

mately 24%, the previously estimated mortality rate of calves during the first year [48, 49].

With the above description, a simple discrete time model where t is one week can be writ-

ten. The set of recursions representing the changes specified above are given by:

St ¼ sðð1 � lÞSt� 1Þ þ sðaMt� 1Þ;

Mt ¼ zIt� 1 þ sðð1 � aÞMt� 1Þ;

It ¼ lSt� 1;

Lt ¼ ð1 � zÞIt� 1;

Et ¼ cLt� 1 þ gEt� 1:

ð1Þ

This model can be used as the deterministic skeleton of a stochastic formulation. In the sto-

chastic formulation, the demographic events and the transitions from one compartment to

SMILE: Modeling a reservoir-driven disease
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another can be modeled with Binomial and Poisson distributions. By using these, the deter-

ministic model above becomes the expected value (mean) of the weekly predictions. The sto-

chastic model we used is written as

St � BinomialðSt� 1 � It; sÞ þMrt

Mst
� BinomialðMt� 1; sÞ

Mrt
� BinomialðMst� 1

; aÞ

Mt � BinomialðIt� 1; zÞ þ ðMst
� Mrt

Þ

It � BinomialðSt� 1; lÞ

Lt � It� 1 � Mt;

Et � PoisðcLt� 1Þ þ BinomialðEt� 1; gÞ:

ð2Þ

We needed to create an extra recursion in the stochastic version for the M compartment

since the number of Immune individuals recovered (Mrt
) depends on the realization of

Immune individuals that survived (Mst
) from previous time. The most critical component

of this model is the term that specifies the force of infection λ. Many plausible functional

forms for λ could be used and here we chose to follow the approach of [50] to derive our

probability λ.

First principles modeling of the incidence rate

Ponciano and Capistrán [50] used a general stochastic processes framework to derive the inci-

dence rate function from basic biological principles characterizing epidemic models. They

showed that general incidence rate functions result from modeling the number of successful

transmission encounters as a pure birth process. They derived an expression for the probability

of one or more successful transmission encounters when heterogeneity in the per-individual-

transmission probability is taken into account.

In the case of anthrax, where infection is indirect, once an individual host has been infected,

that individual will disperse to a particular area where, if it dies, its carcass (LIZ) will infect a

given number of susceptible individuals. In practice, secondary dispersion can be neglected

since scavengers and other carnivores feeding from the infected carcass only disperse B.
anthracis spores to a small radius around the carcass. The disease dispersion effort can then be

thought of as a combination of the distance traveled by the infected individual and the total

time the carcass has been on the ground. As time accumulates, successful transmission events

also accumulate. Mathematically, the realized dispersion effort could be expressed as a contin-

uous quantity computed from both the distance traveled by the infected animal and the total

time since LIZ formation. After death, disease dispersion effort, a, can only increase by a quan-

tity Δa proportional to time.

We modeled the total number of visitors to the LIZ that get infected as a pure birth process

where the quantity being born is the number of successful transmission events occurring in a

LIZ. The number of successful transmission encounters per LIZ will be modeled with a ran-

dom variable that changes as a function of a, X(a) [50]. To formulate our birth process, we first

assumed that the probability that a LIZ infects a susceptible individual given a realized change

in dispersion effort Δa (i.e. proportional to a small time increment) is proportional to the pre-

vious number of successful infections since LIZ formation and to a function of the average

density of infectious spores in E. This average density of infectious spores is taken to be a mea-

sure of the infection potential of the population of LIZs. These assumptions allowed us to

SMILE: Modeling a reservoir-driven disease
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specify a new infection event as the conditional probability

P½Xðaþ DaÞ ¼ xjXðaÞ ¼ x � 1� ¼ dðx � 1ÞDaE ð3Þ

where δ(.) is a non-negative function such that δ(0) = b is a constant. We remark that by defi-

nition, the expected value of X(a) is equal to the mean number of secondary infections, R0.

Assuming that the probability that more than one successful infectious encounter occurs after

an extra dispersion amount Δa is negligible, then X(a) can be modeled using a simple homoge-

neous birth process where the quantity being born is the number of successful transmission

encounters. The probabilistic law of this stochastic process is completely defined by the terms

px(a)� P(X(a) = x), x = 0, 1, 2, . . .. To solve for these terms, first note that according to Eq 3

pxðaþ DaÞ ¼ dðx � 1ÞDaEpx� 1ðaÞ þ ½1 � dðxÞDaE�pxðaÞ;

which leads to

pxðaþ DaÞ � pxðaÞ
Da

¼ dðx � 1ÞEpðx� 1ÞðaÞ � dðxÞEpxðaÞ:

In the limit when Δa! 0, the above equation leads in turn to the following system of dif-

ferential equations:

dpxðaÞ
da

¼ E½dðx � 1Þpx� 1ðaÞ � dðxÞpxðaÞ�; x ¼ 0; 1; 2; 3; . . .

Then solving this system of equations [51] leads to

p0ðaÞ ¼ exp � adð0ÞE ¼ exp � abE;

pxðaÞ ¼ exp adðxÞEdðx � 1ÞE
Z a

0

exp dðxÞEspx� 1ðsÞ@s:

Furthermore, approximating δ(x) using a Taylor Series expansion around 0 leads to specific

quantitative definitions of the stochastic process X(a). For example, if δ0(0)>0 or if δ0(0) = 0,

the one-step transition probability density function (pdf) of X(a) adopts the Negative Binomial

and Poisson forms, respectively [52]. In any case, the probability that one LIZ produces one or

more infected individuals is

PðXðaÞ � 1Þ ¼ 1 � p0ðaÞ ¼ 1 � exp � abE:

In a given population however, the magnitude of the realized disease dispersion for each

infected individual can be expected to vary widely. To take into account this demographic

source of heterogeneity, we model variation in disease dispersion assuming that a is a random

variable whose pdf fB(a) has support on (0,1). Then, the probability that an infected individ-

ual chosen at random from the population realizes more than one successful secondary infec-

tion is found by averaging 1 − exp−abE over all the possible realizations of a. That is,

PðXðaÞ � 1Þ ¼

Z 1

0

ð1 � exp � abEÞfBðaÞda:

A probabilistic model for a that has empirical and theoretical support in the genetics

literature of modeling fitness distributions is the exponential model [53]. However, the expo-

nential model is just a special case of the gamma distribution with shape parameter equals to

one. To allow more flexibility in dispersal heterogeneity, we assumed that a followed a gamma

distribution with shape and rate parameters θ and τ respectively. The assumption behind

using the gamma distribution here is the magnitude of the disease dispersion brought about

SMILE: Modeling a reservoir-driven disease
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by an infected individual is proportional to fitness. Accordingly, letting fBðaÞ ¼ yt

GðtÞ
at� 1e� ya;

0 < a <1 we get the probability of successfully transmission is

PðXðaÞ � 1Þ ¼

Z 1

0

1 � exp � abE
� � y

t

GðtÞ
at� 1e� yada:

When δ0(0) = 0, the probability that a LIZ causes a new infection does not depend on previ-

ous cases. Then, the probability mass function (pmf) of X(a) is Poisson [52]. Taking into

account the heterogeneity in dispersion then amounts to integrating this pmf over the distribu-

tion of a, i.e.,

PðXðaÞ ¼ xÞ ¼
Z 1

0

e� abEabEx

x!

y
t

GðtÞ
at� 1e� yada;

which upon integration gives (See S1 Appendix)

PðX ¼ xÞ ¼
xþ t � 1

x

� �
y

bEþ y

� �t bE
bEþ y

� �x

:

Then, we immediately get that

PðX ¼ 0Þ ¼
y

bEþ y

� �t

; and that

lðtÞ ¼ PðX � 1Þ ¼
ðbEþ yÞt � yt

ðbEþ yÞt
: ð4Þ

This expression for the infection probability depends on the distribution of the dispersion

effort (a� Gamma(θ, τ)), the number of infections that a LIZ causes assuming no dispersion

effort (b), and the number of spores in the environment (E). One of our primary objectives

was to identify the possibility that anthrax disease dynamics are a result of an external seasonal

driver causing seasonal forcing in the infection. To account for the latter possibility we

assumed b to vary seasonally by assuming that b is a sinusoidal function of time (t)

bðtÞ ¼ e b0 1þb1 cos 2pt
Pð Þð Þð Þð Þ; ð5Þ

where b0 and b1 determine the strength of the seasonality and P is the outbreak periodicity.

Other scenarios exist in which the probability of a new infection either decreases or increases

with the number of previous infections that a LIZ has produced. This accounts for the cases in

which δ(x) = b + cx and δ(x) = b − cx.

From this form of infection probability we can obtain a local R0, the number of cases that a

single LIZ can cause. Because the process X counts the number of successful transmissions of a

single carcass introduced in a population of non-infected individuals (after accounting for het-

erogeneity in dispersion), then its expected value E[X] can be thought of as the mean number

of secondary infections or R0 in the context of this disease transmission setting. For the case in

which the probability that a specific LIZ produces an additional infection does not depend on

previous infections, E[X] is simply the expected value of a Negative Binomial distribution with

parameters τ and probability bE
bEþt (See S1 Appendix). Thus, the local R0 for this specific model

SMILE: Modeling a reservoir-driven disease
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is

E½X� ¼ R0 ¼
tbE
y
: ð6Þ

We derive the infection probability and R0 for the cases in which δ(x) = b + cx and δ(x) =

b − cx in S1 Appendix.

Simulations

We developed a simulation experiment to determine the effect of population dynamics and

seasonal forcing in model predictions. The first model ignored both population and seasonal

dynamics. We assumed no reproduction (the addition of new susceptible individuals from

reproduction) and no death of individuals other than disease related. Infection probability

in this model was taken as in Eq 4 with constant b. Next, we allowed b to vary seasonally as

described in Eq 5. Following, we allowed individuals to reproduce annually with density

dependent reproduction, in which every individual had a probability of reproduction accord-

ing to Eq 7 and constructed models with and without seasonal dynamics.

For all models we assumed θ = 10, τ = 10 and allowed them to run for ten years (520

weeks). For the cases with no seasonal dynamics we assumed b = 0.001 and for the cases with

seasonal forcing we assumed b0 = −30 and b1 = 0.85. For all cases, initial population size was

3500 which was the approximate bison population size during the 2008 Montana outbreak. In

the models with population dynamics, reproduction was estimated as a single year-end pulse

assuming density-dependent probability of reproduction [4, 46]

r Ntð Þ ¼
r

1þ
Nt
K

� �10 ð7Þ

where ρ was the averaged reproduction rate, N is the total population, and K is the carrying

capacity, and the exponent is a factor that affects how dependent reproduction is to density

[46]. Only susceptible or immune bison were included in the birth-eligible population. We

estimated ρ = 0.41 from literature on bison herds in Yellowstone and elsewhere in North

America and fixed K = 5000 [46–48, 54, 55].

In [32], up to 70% of wood bison, B. bison athabascae, had high titers after an epizootic

event. Given the 172 deaths in the latter event of a population of 2026 individuals, this implies

that approximately 88% of exposed bison survived with high titers. We used this as an estimate

of probability of bison surviving spore exposure and developing immunity (z). The quantity of

spores released (ψ) is uncertain and for computational ease, a unit-less value of 1 was used.

Given the uncertainty of how long spores remain viable and virulent in the environment, we

assumed that spores decay at the highest rate possible (γ1 = 0.0132) as a conservative estimate

[38].

Finally, we explored the parameter space to determine the conditions under which R0 was

different from unity. Specifically, we wanted to know what conditions of dispersal could

increase or decrease disease persistence. We allowed both θ and τ to vary between 0.01 and

100 and assumed seasonal forcing as above. We selected values of b that were high (b = 0.01),

intermediate (b = 0.005) and low (b = 0.0001), characteristic of the peak of an outbreak, mid-

way before/after an outbreak and between outbreaks. Since the R0 is also dependent on the

number of spores in the environment (E in Fig 1; see Eq 6), we fixed the number of spores to

the highest possible obtained in one of the simulations (i.e. 800; see Table 1 for a summary of

all the parameters of the SMILE model and the values used for simulations).

SMILE: Modeling a reservoir-driven disease
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Bias and parameter estimation

We designed an additional simulation experiment to evaluate the bias in the estimation of the

parameters. Because of the complexity of the stochastic model it was difficult to derive the like-

lihood function for each of the time series. Instead, we assumed that observed time series in

the field might be the product of observation error. Thus, we performed parameter estimation

using the deterministic model and assuming observation error as a Poisson realization of the

deterministic model. For example, if Lt and lt are the expected and observed number of car-

casses at time t respectively, then lt� Poisson(Lt). We assumed the same rationale for all of the

other time series in the model (i.e. S, M, I, E).

We generated 100 data sets using the stochastic version of SMILE allowing it to run for 10

years fixing θ = 10, τ = 10, b0 = −30 and b1 = 0.85, assumed a disease periodicity (P) of three

years and left the compartment transition probabilities and population dynamics parameters

as described in previous section. We estimated the values of b0, b1, τ and θ that maximized

lnðLðs;m; i; l; e; b0; b1; t; yÞÞ ¼
XT

t¼1

Sst
t e� St

st!
þ
XT

t¼1

Mmt
t e� Mt

mt!
þ

XT

t¼1

Iit
t e� It

it!
þ
XT

t¼1

Llt
t e� Lt

lt!
þ
XT

t¼1

Eet
t e� Et

et!

ð8Þ

for each of the 100 stochastic data sets. While the parameters do not directly define the likeli-

hood function, they are required to generate the deterministic prediction of the model. We

then calculated the bias in each of the parameters as the relative deviation from the true value.

The relative bias for b0 is Biasðb0Þ ¼
bb0 � b0

b0

, for example. We estimated the bias in the param-

eters assuming that all the SMILE time series were available, a subset of them where available

(i.e. SMIL, SML, SL and L) and also by removing one time series at a time and all possible com-

binations of two time series. Estimation of the parameters was performed by minimizing the

Table 1. Parameters considered in the SMILE model and their description. The values described in the Value col-

umn correspond to the values used during simulations and in the cases in which the parameters are functions, the

equation is given.

Parameter Description Value

λ(t) Force of Infection PðXðaÞ � 1Þ ¼
ðbEþyÞt � yt

ðbEþyÞt

τ, θ Define dispersion effort τ = 10, θ = 10

b Number of infections caused by one LIZ when t

y
¼ 0 0.001

b0, b1 Strength of Seasonality b0 = −30, b1 = 0.85

P Periodicity of infection 3 years

α Probability of transitioning from Immune to Suceptible 0.02

z Probability of becoming Immune after Infection 0.88

ψ Number of Spores per carcass 1

γ Spore persistence rate 0.9868

ρ(Nt) Reproduction Probability r Ntð Þ ¼
r

1þ
Nt
Kð Þ

10

Nt Population size at time t St + Mt

ρ Average Reproduction Rate 0.41

K Carrying capacity 5000

https://doi.org/10.1371/journal.pone.0208621.t001
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negative log likelihood in the optim function in R [56]. The code used for parameter estima-

tion is available online.

Prediction of the 2008 Montana outbreak

To further test model performance, we used a one-year real data set from an anthrax outbreak

in bison in Montana. The data set consisted of the number of bison deaths each week of 2008.

We used the same rationale described above and estimated parameters that maximized Eq 8

given the observed time series. One caveat in the real scenario was the limit of a single year of

data, it was impossible to estimate periodicity of additional outbreaks. To evaluate the effect of

the period on the prediction of the outbreak, we used a likelihood profile approach. We used

100 values of T varying between 1 and 20 and for each of the values estimated the values of b0,

b1, τ, and θ that maximized the value of Eq 8. We then retained the value of the T that yielded

the maximum likelihood.

Results

Simulations

The simplest model that we tested, which did not take into account population dynamics or

seasonality in the infection probability, showed an increase at the beginning of the simulation

that correlated with the decrease of the susceptible population. Once most susceptibles were

depleted, the number of anthrax deaths decreased until nearly zero cases were observed after

the ten year period (Fig 2A). Introducing seasonality in the infection probability had the effect

of producing three disease outbreaks during the ten year period, matching the periodicity

fixed to b in the simulations. Although there is no addition of susceptible individuals to the

population through reproduction, decreasing the infection probability during endemic years

allows immune individuals to recover and be available for infection during the following out-

break season (Fig 2B).

Introducing population dynamics, such as reproduction and deaths by causes other than

disease related, produced a pattern of a disease outbreak every year following a reproduction

event (Fig 2C). When incorporating both population and seasonal dynamics, the model

showed a similar pattern as without population dynamics. Three disease outbreaks were

observed, determined by the seasonality in the infection probability and with little effect from

reproduction events. Susceptibles are replenished by the recovery of immune individuals and

reproduction events during the endemic years (Fig 2D). During the peak of the outbreak, R0

was greater than 1 in the cases in which θ� 8τ (S1A Fig). During the time the outbreak was

midway, R0 > 1 for cases in which θ� 6τ (S1B Fig). Finally, during endemic years, R0 was

only larger than one in cases in which θ� 0.08τ (S1C Fig).

Bias and parameter estimation

Overall, we observed low bias irrespective of the amount of information used for parameter

estimation (Fig 3, S2 and S3 Figs). We found that the bias of θ and τ varied the most when

using a larger amount of information (i.e. four or five time series from the compartments; Fig

3). We found a small bias in b0 and b1. While the estimation tends to overestimate the values of

b0, the values of b1 were underestimated from 5 to 7%. Bias patterns were also similar indepen-

dent of the number of time series used (Fig 3, S2 and S3 Figs).
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Prediction of Montana 2008 outbreak

Using the data from the Montana outbreak, we were able to estimate the parameters and cor-

rectly predict the timing of the outbreak (Fig 4). We found θ = 927.9, τ = 0.12, b0 = −25.9, and

b1 = 3.9. We found the value of T that maximized the likelihood of the model given the Mon-

tana outbreak data was T = 1.96. Since the model we used to predict the outbreak assumed sea-

sonal forcing on infection dynamics, this means that R0 was also seasonally larger than one

beginning in week 32 and smaller than one between weeks one and 31.

Discussion

Here we attempted to improve our understanding of the dynamics of environmentally-medi-

ated diseases using a combination of simulation and statistical inference for stochastic pro-

cesses. Our primary objective was to disentangle the role of population dynamics and

Fig 2. Different types of simulations showing the effect of host population dynamics and seasonal driver on the number of

deaths caused by Bacillus anthracis. A) Simulations without population dynamics and seasonal dynamics B) Simulations without

population dynamics C) Simulations without seasonal infection dynamics D) Simulations with population and seasonal dynamics.

For all cases we assumed τ = 10, θ = 10 and for simulations with seasonal infection we set b0 = −30, b1 = −0.85 and the period was

three years.

https://doi.org/10.1371/journal.pone.0208621.g002
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environmental seasonality on environmentally-mediated diseases. We demonstrated how for

anthrax, assuming a non-seasonal infection probability predicts significant outbreaks yearly

after reproduction pulses. From our previous knowledge of anthrax dynamics in mid-latitude

grasslands, we know that large outbreaks do not occur annually but instead their periodicity

and intensity are determined by specific environmental conditions [26, 34, 35]. Our simula-

tions recreated this scenario. By incorporating population dynamics and allowing seasonal

forcing of infection to be dependent on an external factor we estimated seasonality to have a

large impact on the number of anthrax-related deaths (Fig 2). Additionally, we identified three

specific mechanisms through which R0 arises, allowing us to estimate scenarios in which R0 >

1 depending on different epizootic stages through the years.

Fig 3. Relative bias in the estimation of the parameters τ, θ, b0 and b1 different amount of information. Labels in the x axis refer

to the time series used for estimation. A) τ, B) θ, C) b0, D) b1. SMILE: Susceptible, Immune, Infected, LIZ, Environment; SMIL:

Susceptible, Immune, Infected, LIZ; SML: Susceptible, Immune and LIZ; SL: Susceptible and LIZ; L: LIZ.

https://doi.org/10.1371/journal.pone.0208621.g003
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Early models of anthrax dynamics focused on single year outbreaks and ignored popula-

tion dynamics [15, 30]. Although useful to understand single epizootic events, these models

do not allow prediction to future events because they ignore how populations behave in the

absence of the disease. More recent studies have extended such models to incorporate popu-

lation dynamics and migration in order to make inferences about the persistence of animal

populations subject to anthrax [14]. Friedman and Yakubu [14] showed how epizootic events

can be maintained in a region by migration of infected individuals into the region. We know

however, that this might not be likely in mid-latitude grasslands where the epizootics in spe-

cific regions occur without reference to epizootics in other regions. In this sense, it is more

likely that a scenario in which environmental variables (e.g. precipitation, speed of spring

greenup) determine the infectiousness of the LIZs on the landscape triggering outbreaks

Fig 4. Observed number of cases during the 2008 Montana outbreak and the deterministic and stochastic predictions of the

SMILE model.

https://doi.org/10.1371/journal.pone.0208621.g004
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[35]. In this context, three processes might lead to increased infectiousness: 1) increase or

shift in host foraging, 2) mechanical transportation of bacterial spores to the surface or

directly on to vegetation or 3) promotion of germination, increasing the pathogen popula-

tion at the LIZ. We have recreated this infection scenario by adding the seasonal function to

the infection probability that depends only on external factors and not on parameters of the

disease itself. Further studies can help us identify the specific mechanisms through which

infectiousness changes.

Recent anthrax models have demonstrated the conditions for the dynamics to be stable

while allowing for a reproductive number larger than unity [31]. It has been shown that the

only way in which the disease persists (i.e. R0 > 1) is by having a time delay between infection

and death of the individual [31]. We have incorporated the same concept by using an alterna-

tive approach to modeling the infection dynamics. We assume that the infection is based on a

stochastic birth process but further assume that the dispersion effort is also stochastic, repre-

senting variability in the time delay between infection and death. We demonstrate how in

different points of the dynamics, R0 might be larger or smaller than one depending on the dis-

persion effort. This dispersion effort can alternatively be interpreted as the fitness of the infec-

tious agent itself. Our results show that during epizootic years, even bacteria with very low

fitness can contribute substantially to the dynamics by increasing R0 to values larger than one

(S1A and S1B Fig). In contrast, during enzootic years, the persistence of the disease is deter-

mined only by bacteria or genetic lineages that have a high fitness (i.e. high dispersion effort;

S1C Fig).

Outbreaks of environmentally mediated diseases are connected to strong and extreme var-

iablity in climate. For example, some of these outbreaks happen during years experiencing El

Nino Southern Oscillation (ENSO) events [57]. The periodicity of these climatic events pro-

duce seasonal outbreaks in diseases that are separated by long periods of time, such as the

periodicity observed in anthrax in North America. For example, warmer water and air temper-

ature during ENSO events have been suggested as important drivers of the occurrence of chol-

era in Asia and South America [57]. The shift in the basic reproductive number driven by

disease fitness found in our modeling approach can be directly applicable to these other dis-

eases. In years when climatic conditions are suitable for parasite reproduction (i.e. during

ENSO years), disease cases are drastically increased by the capability of low fitness parasites to

successfully cause an infection. In the light of climate change these extreme climatic events are

becoming more frequent, consequently understanding how the transmission of these diseases

operates allows for timely control and prevention of outbreaks.

Previous models for anthrax assumed that the only fate of infected individuals was death

and posterior contribution of spores to the environment. Our model instead, following on

recently published models [21] and literature that suggests that a large proportion of the

infected individuals survive [28, 32, 33, 40], allows for a compartment in which individuals

acquire immunity for at least one year and then recover. The Immune M compartment clearly

has a strong impact in driving dynamics as it allows for the susceptible population to replenish

without reproduction (Fig 2). Although our model does not allow for variation in infectious-

ness among LIZs as in [21], we also conclude that disease persistence depends on the variabil-

ity in the infectiousness of the LIZ [21]. We however show an alternative approach in which

the variability is driven inter-annually by external abiotic factors. We still need further studies

to understand the potential mechanisms driving this inter-annual variability in infectiousness

that might be responsible for the large and sporadic outbreaks observed in the mid-latitude

grasslands.

It is interesting to show how three different processes through which LIZs contribute to

future infections arrive at the same infection probability (λ). As it is now routinely recognized
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in the mathematical modeling of diseases literature, from a single deterministic system of

equations one can derive multiple R0 forms [58]. In these cases, the onus falls on the biological

interpretability of each mathematical form [58]. We believe that in order to select an adequate

R0 formulation future research needs to be focused on generating data tracking the individual

fate of a LIZ and actual accumulation over time of host contact and infection rates per LIZ. To

date, obtaining such data remains implausible and logistically challenging.

Although we didn’t develop a likelihood function to find the maximum likelihood estimates

under the stochastic version of the model, assuming that the observed data resulted from

observation error rather than process error, we still had good parameter estimates irrespective

of the amount of data used (Fig 3). Other computer intensive alternatives are feasible but are

beyond the scope of this analysis. The parameter estimates resulting from the 100 stochastic

simulations showed little to no bias, allowing us to estimate the parameters related to infection

probability with confidence. Anthrax is often underestimated and under reported across its

range [24]. At the same time, identifying and sampling carcasses in remote wildlife areas

remains logistically challenging [59]. Fortunately, we were able to accurately recover the

parameters describing the dynamics using only the number of carcasses in the environment

at a given week, which is one of the more frequently reported types of data across anthrax

literature.

Taking advantage of model properties, we predicted an outbreak in Montana’s mid-latitude

grasslands. Our estimation closely matched the observed 2008 outbreak progression in timing

and intensity. We successfully recreated the trajectory of the outbreak and estimated disper-

sion effort. Our model predicted anthrax in this system has a small dispersion effort (i.e.
t

y
¼ 0:0001), allowing us to conclude that the infection is entirely driven by a change in the

environmental variables. This is just the first attempt to estimate parameters, as the outbreak

was limited to a single year. Ideally, a longer time series should provide more accurate infor-

mation on the drivers and shape of the seasonal component especially in predicting the num-

ber of deaths.

The apparent overestimation of the number of deaths caused by the outbreak in 2008 might

be explained by the stochastic nature of the process. The observed trajectory was conceived as

a single stochastic realization of the true process. The deterministic prediction denotes the

average size of the epizootic. There are stochastic simulations in which the disease does not

develop and some others in which the number of deaths is higher than the expected. The deter-

ministic prediction gives the mean value of the process but the variance is as an important

metric in the prediction of outbreaks.

Modeling of a complex system requires abstraction, and a trade-off between including

more details and the simplicity of the model [28]. We endeavored to pick the main properties

of anthrax that were most relevant to this study, but there are many additional aspects that

could be added in the light of additional hypotheses. For example, we did not include any dis-

ease interventions, either surveillance and decontamination of carcasses or vaccination strate-

gies. Including vaccination rates and vaccine efficacy in future models could provide useful

insight for disease management. No sex structure was included, however, it has been observed

in multiple outbreaks, including the Montana outbreak, that male bison have disproportion-

ately high death rates [33, 47, 60–63]. Our model only included indirect transmission from the

environment, but it has been seen in some ecosystems that mechanical vectors (such as flies)

play a role in anthrax transmission [24, 64]. Finally, hosts of many of these environmentally

mediated diseases are migrating organisms or structured in space. Also, there is evidence that

grazers are attracted to high infectious zones creating a non-homogeneous distribution of dis-

ease in space. Consequently, a component making the model spatially explicit could enhance
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the predictions of the model and allow us to understand which are the focal areas in which out-

breaks are more likely to happen.

Our focus here was anthrax, an exemplar disease with long-term pathogen persistence due

to the spore-forming life history strategy of B. anthracis. However, our model is not anthrax

specific. Our parameters (θ and τ) can be interpreted in the light of the life history strategy of

any environmental pathogen. For example, Brucella abortus has been shown to persist for

more than 50 days under certain environmental conditions on the Montana landscape [6].

Inter-specific transmission (e.g. elk to domestic cattle) is hypothesized to occur when cattle

ingest bacteria aborted or shed during birthing events [5]. In this case, the dispersion effort

can be interpreted as the distance moved by an individual from the place of infection to the

place of shedding or abortion. In this sense, changing the parameters that determine the popu-

lation dynamics of the host should be sufficient to test our model on different environmen-

tally-mediated diseases.

Conclusion

In this study, we provide a mathematical framework and compartmental model for examining

the roles of LIZs for indirect transmission where a host contacts the pathogen directly within

the environment. Our model provides general knowledge of environmentally mediated dis-

eases by explicitly elucidating how intense environmental events determine the tempo and

amplitude of outbreaks of rare diseases. In the light of climate change, these environmental

events are prone to increase in frequency and intensity. A solid understanding of the relation-

ship of these events with the frequency and intensity of outbreaks should be useful in aiding

prevention strategies of environmentally mediated diseases, including those that are not well

understood.

Supporting information

S1 Fig. Variability in R0 with respect to τ, θ and A) high, B) intermediate and C) low values

of b determined by the seasonal component of the infection probability. The white line

indicates the one to one ration between τ and θ. Values above and below the line indicate low

and high dispersal effort respectively. Values along the line indicate cases in which mean dis-

persal effort is one. The inset in each panel shows the trajectory of b over time defining the sea-

sonality in the outbreaks. The value of b used for calculation of R0 in each of the three cases is

represented by the dashed line in each of the insets.

(TIFF)

S2 Fig. Relative bias in the estimation of the parameters τ, θ, b0 and b1 removing one time

series at a time. Labels in the x axis refer to the time series used for estimation. A) τ, B) θ, C)

b0, D) b1. SMILE: Susceptible, Immune, Infected, LIZ, Environment.

(TIFF)

S3 Fig. Relative bias in the estimation of the parameters τ, θ, b0 and b1 removing two time

series at a time. Labels in the x axis refer to the time series used for estimation. A) τ, B) θ, C)

b0, D) b1. SMILE: Susceptible, Immune, Infected, LIZ, Environment.
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S1 Appendix. Demonstration of the derivation of infection probability as a stochastic pro-

cess with heterogeneity in dispersion effort.
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S2 Appendix. Observed number of cases during the 2008 Montana anthrax outbreak. Data

is presented on a daily basis and only for the range of weeks for which there was at least one

anthrax case reported. Date is in Month/Day/Year format.

(PDF)
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