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Abstract: Skin inflammation may cause allergic diseases such as allergic rhinitis, asthma, and atopic
dermatitis. Euphorbia hirta (E. hirta) is a member of the Euphorbiaceae family and is well-known for
its anti-asthma effects. E. hirta has traditionally been used to treat respiratory ailments, dysentery,
jaundice, and digestive problems. However, its effects on skin inflammation remain unclear. Here,
we determined the effects of 70% ethanol extract of E. hirta leaves (ELE) in vitro using human
keratinocyte HaCaT cells, which constitute most epidermal skin cells. We determined the inhibitory
effects of ELE on the inflammation caused by tumor necrosis factor (TNF)-α/interferon (IFN)-γ in
keratinocytes using ELISA, immunoblotting, and qRT-PCR assay. ELE was found to reduce the
production and mRNA expression of pro-inflammatory cytokines such as TNF-α or interleukin-6 and
the expression of various proteins, including signal transducers, activators of transcription 1/3, and
mitogen-activated protein kinase. Expression levels of these proteins were found to be upregulated in
the TNF-α/IFN-γ-stimulated condition and downregulated by ELE treatment. These results indicate
that ELE protects HaCaT cells against TNF-α/IFN-γ-induced skin inflammation.

Keywords: Euphorbia hirta; keratinocytes; JNK; STAT1/3; inflammation

1. Introduction

The skin serves as the body’s primary barrier to the environment [1]. Each of the two
main layers of skin, the epidermis and dermis, perform specific functions in maintaining
homeostasis of the skin. In particular, the epidermal barrier reduces the absorption of
chemicals, limits passive water loss from the body, and prevents microbial infection [2].
The skin thus acts as an identifiable receptor and effector organ for the management
of cutaneous and systemic diseases [3]. Cutaneous inflammatory diseases, including
atopic dermatitis (AD), are characterized by a typical progression to allergic rhinitis and
asthma, which is also termed atopic march [4]. AD is a serious and incurable inflammatory
skin disorder with a high relapse rate [5]. AD does not only cause pruritic and severe
symptoms, but also reduces one’s quality of life and constitutes an economic burden [6].
To this end, the regulation of skin inflammation to maintain homeostasis may provide
an alternative protective mechanism against systemic health disorders caused by the
external environment.

Keratinocytes constitute around 90–95% of epidermal cells involved in the initiation
and progression of immunological responses in the skin [7]. Here, we studied the effects of
70% ethanol extract (ELE) of Euphorbia hirta leaves on skin inflammation using immortalized
human keratinocytes. When they are stimulated with pro-inflammatory cytokines, tumor
necrosis factor (TNF)-α and interferon (IFN)-γ mixture (TNF-α/IFN-γ), keratinocytes are
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known to overexpress inflammatory factors [8]. The cells have also been widely used to
investigate possible therapeutic agents against AD [9].

Euphorbia hirta (E. hirta), a member of the Euphorbiaceae family, has traditionally
been used to treat gastrointestinal disorders, malaria, and inflammation [10,11]. E. hirta
is also known as an asthma plant due to its therapeutic effects on respiratory diseases
such as allergic asthma [12]. Although the effects of E. hirta on asthma and inflammatory
diseases have been previously investigated in detail, its effect on skin allergic diseases
such as AD remains unclear. Therefore, here, we examined the effect of ELE on TNF-
α/IFN-γ-stimulated HaCaT keratinocytes, a cell line often used to study skin inflammation
in vitro.

2. Materials and Methods
2.1. Chemicals and Reagents

Dulbecco’s modified Eagle’s medium (DMEM), inactivated fetal bovine serum (FBS),
penicillin, and streptomycin were purchased from Life Technologies Inc. (Grand Island, NY,
USA). Dimethyl sulfoxide (DMSO) was supplied by Junsei Chemical Co., Ltd. (Tokyo, Japan).

2.2. Cell Culture and ELE Treatment

HaCaT keratinocytes were cultured at 37 ◦C in DMEM supplemented with 10% in-
activated FBS, penicillin (100 U/mL), and streptomycin (100 µg/mL) in a humidified
atmosphere with 5% CO2. Cells were pre-treated with ELE at concentrations of 60, 120, and
240 µg/mL, and then stimulated using a mixture of TNF-α and IFN-γ (each 10 ng/mL) for
the stipulated time, depending on the target markers.

2.3. Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated from HaCaT cells using an Easy Blue RNA extraction kit
according to the manufacturer’s instructions. cDNA reverse transcription kits (Life Tech-
nologies, Grand Island, NY, USA) were used for synthesis. Reverse transcription was
conducted using the GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA,
USA) with SYBR Premix Ex Taq. The synthesized cDNAs were 200 base pairs in size.
The StepOnePlus® Real-Time PCR system (Applied Biosystems) was used for amplifi-
cation with the SYBR Green PCR Master Mix. The results were expressed according to
the comparative threshold cycle (Ct) method and were computed as the ratio of optical
density to GAPDH. SYBR Premix Ex Taq was purchased from Takara Bio (Shiga, Japan).
Oligonucleotide primers were supplied by Bioneer (Daejeon, Korea) (Table 1).

Table 1. Sequences of the RT-PCR primers.

Gene Primer Sequences

TNF-α
(human)

Forward (5′-3′) CGCTCCCAAGAAGACAG

Reverse (5′-3′) AGAGGCTGAGGAACAAGCAC

IL-6
(human)

Forward (5′-3′) CCGGGAACGAAAGAGAAGCT

Reverse (5′-3′) AGGCGCTTGTGGAGAAGGA

MDC
(human)

Forward (5′-3′) AGGACAGAGCATGGATCGCCTACAGA

Reverse (5′-3′) TAATGGCAGGGAGGTAGGGCTCCTGA

RANTES
(human)

Forward (5′-3′) CCGCGGCAGCCCTCGCTGTCATCC

Reverse (5′-3′) CATCTCCAAAGAGTTGATGTACTCC

GAPDH
(human)

Forward (5′-3′) AATTCCATGGCACCGTCAAG

Reverse (5′-3′) ATCGCCCCACTTGATTTTGG
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2.4. Western Blot Analysis

Protein extracts from HaCaT cells were prepared using the PRO-PREP™ protein
extraction solution (Intron Biotechnology, Seoul, Korea). The protein concentration was
determined using Bio-Rad assay reagent. Blots were visualized using enhanced specialized
chemiluminescence (GE Healthcare Life Sciences, Chalfont, UK) and X-ray film (Agfa,
Belgium). The details of the assay were as described in a previous study [13]. Primary
antibodies were obtained from Cell Signaling Technology (Danvers, MA, USA) or Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA, USA) (Table 2).

Table 2. List of primary antibodies.

Primary Antibody Product No. Primary Antibody Product No.

p-JNK cst #9251 JNK cst #9252

p-SEK1/MKK4 cst #9156 SEK1/MKK4 cst #9152

p-STAT1 (Ser727) cst #9177 p-STAT1 (Tyr701) cst #9167

p-STAT3 (Ser727) cst #9134 p-STAT3 (Tyr705) cst #9145

STAT1 cst #9172 STAT3 sc-482

p-JAK2 cst #3776 JAK2 sc-390539

p-Akt cst #9271 Akt sc-8312

periostin sc-398631 β-actin sc-47778

2.5. Cytokine Analysis

Culture media were obtained approximately 24 h after treatment with ELE and stored
at −70 ◦C. The levels of TNF-α and IL-6 were assessed using enzyme immunoassay
(EIA) kits for humans (BD OptEIATM, BD Science, San Jose, CA, USA) according to the
manufacturer’s instructions.

2.6. Statistical Analyses

Data were expressed as the mean ± SD of three experiments. Comparisons among
groups were performed using one-way analysis of variance (ANOVA), followed by Dun-
nett’s post hoc test. Statistical significance was set at p < 0.05.

3. Results
3.1. ELE Suppressed Production and mRNA Expression of Pro-Inflammatory Cytokines in
HaCaT Keratinocytes

TNF-α is a representative molecule of pro-inflammatory cytokines [14]. TNF-α expres-
sion was found to be higher in the TNF-α/IFN-γ-treated group than that in the control
group. The amount of TNF-α in the supernatant following TNF-α/IFN-γ treatment for 24 h
was measured using an EIA kit (Figure 1A). The results indicated that the absorbance levels
of the prepared standard and ELE-treated groups (120 and 240 µg/mL) were significantly
reduced. We also used qRT-PCR to evaluate TNF-α mRNA expression levels following TNF-
α/IFN-γ treatment for 6 h (Figure 1B). The results indicated a significant reduction with all
ELE treatment concentrations in contrast to that of to the TNF-α/IFN-γ-treated group. IL-6
expression is also often increased with inflammation [15]. Indeed, we found downregulated
IL-6 in ELE-treated groups at the protein and mRNA levels (Figure 1C,D). As with TNF-α
production, notable downregulation was observed at 120 and 240 µg/mL ELE.

3.2. ELE Ameliorated mRNA Expression of Pro-Inflammatory Chemokines in HaCaT Cells

The mRNA expression levels of two typical allergic chemokines, macrophage-derived
chemokine (MDC, also known as CCL22) and regulated upon activation, and normal T cell
expressed and secreted (RANTES, also known as CCL5), were evaluated [16]. The expression
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levels of these molecules were found to be downregulated by ELE treatment in human
keratinocytes compared to those in the group stimulated only by TNF-α/IFN-γ (Figure 2).
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Figure 1. Effects of ELE treatment on inflammatory cytokines in HaCaT keratinocytes. Cytokine
production and mRNA expression levels were evaluated. ELISA was used to determine the amount of
(A) TNF-α and (C) IL-6 production. Cells were pre-treated with 60, 120, or 240 µg/mL of ELE for 1 h
prior to additional treatment of TNF-α/IFN-γ and then incubated for 24 h. mRNA expression levels
of (B) TNF-α and (D) IL-6 were determined by qRT-PCR. Data were presented as the mean ± SD;
** p < 0.01, *** p < 0.001 versus the only TNF-α/IFN-γ-treated group, ### p < 0.001 versus the control
group; statistical significance of differences between the groups was evaluated by Dunnett’s post
hoc test.
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Figure 2. Effects of ELE treatment on inflammatory chemokines in HaCaT keratinocytes. mRNA
expression levels of pro-inflammatory chemokines were determined. Cells were pre-treated with 60,
120, or 240 µg/mL of ELE for 1 h prior to TNF-α/IFN-γ addition, and incubated for 6 h. The mRNA
expression levels of (A) MDC and (B) RANTES were determined by quantitative reverse transcription-
polymerase chain reaction (qRT-PCR). Data were presented as the mean ± SD; * p < 0.05, ** p < 0.01
versus the only TNF-α/IFN-γ-treated group, # p < 0.05, ### p < 0.001 versus the control group;
statistical significance of differences between the groups was evaluated by Dunnett’s post-hoc test.
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3.3. ELE Inhibited Periostin Expression and Akt Phosphorylation in HaCaT Keratinocytes

Periostin is a critical mediator of amplified and persistent allergic reactions [17]. We
also evaluated the expression of this protein. HaCaT cells were stimulated with TNF-α/IFN-
γ for 15–20 min after pretreatment with ELE for 1 h. As a result, periostin levels were found
to decrease at all ELE treatment concentrations, showing similar levels of normal control
(Figure 3A). Akt activation is known to increase due to elevated inflammation or aged
skin [18]. ELE treatment was found to suppress Akt phosphorylation following treatment
with TNF-α/IFN-γ (Figure 3B).
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Figure 3. Effects of ELE treatment on inflammatory protein expression in HaCaT keratinocytes.
HaCaT cells were treated with 60, 120, or 240 µg/mL of ELE for 1 h prior to an additional treatment
of TNF-α/IFN-γ. Cells were then incubated for 15–20 min. The protein levels of (A) periostin and
(B) phosphorylated Akt were determined by immunoblot analysis with specific antibodies. β-actin
and Akt were used as internal controls. Densitometric analysis was performed using Image J software
(version 1.50i). Values are presented as the mean ± SD of three independent experiments; * p < 0.05,
*** p < 0.001 versus the only TNF-α/IFN-γ treated group, ### p < 0.001 versus the control group;
statistical significance of differences between the groups was evaluated by Dunnett’s post hoc test.

3.4. ELE Ameliorated SEK1/MKK4-JNK Phosphorylation in HaCaT Keratinocytes

The mitogen-activated protein kinase (MAPK) signaling pathway is involved in in-
flammation [19]. We thus determined the effect of ELE treatment on MAPKs as well. The
cells were stimulated with TNF-α/IFN-γ for 10–15 min after pretreatment with ELE for 1 h.
The JNK pathway was found to be downregulated upon ELE treatment (Figure 4A). West-
ern blot assay results further showed a dose-dependent inhibitory effect of ELE treatment.
Phosphorylation of SEK1/MKK4, a molecule involved in the JNK MAPK pathway, was
also investigated at the protein level (Figure 4B). Treatment with ELE under TNF-α/IFN-γ-
stimulated conditions was found to downregulate the phosphorylation tendency.



Life 2022, 12, 589 6 of 11

Life 2022, 12, x FOR PEER REVIEW  6  of  11 
 

 

phosphorylated Akt were determined by immunoblot analysis with specific antibodies. β‐actin and 

Akt were used as internal controls. Densitometric analysis was performed using Image J software 

(version 1.50i). Values are presented as the mean ± SD of three independent experiments; * p < 0.05, 

*** p < 0.001 versus  the only TNF‐α/IFN‐γ  treated group, ### p < 0.001 versus  the control group; 

statistical significance of differences between the groups was evaluated by Dunnett’s post hoc test. 

3.4. ELE Ameliorated SEK1/MKK4‐JNK Phosphorylation in HaCaT Keratinocytes 

The mitogen‐activated protein kinase (MAPK) signaling pathway is involved in in‐

flammation [19]. We thus determined the effect of ELE treatment on MAPKs as well. The 

cells were stimulated with TNF‐α/IFN‐γ for 10–15 min after pretreatment with ELE for 1 

h. The JNK pathway was found to be downregulated upon ELE treatment (Figure 4A). 

Western blot assay results further showed a dose‐dependent inhibitory effect of ELE treat‐

ment. Phosphorylation of SEK1/MKK4, a molecule involved in the JNK MAPK pathway, 

was also  investigated at the protein  level (Figure 4B). Treatment with ELE under TNF‐

α/IFN‐γ‐stimulated  conditions was  found  to  downregulate  the  phosphorylation  ten‐

dency. 

 

Figure 4. Effects of ELE treatment on SEK1/MKK4‐JNK phosphorylation in HaCaT keratinocytes. 

HaCaT cells were treated with 60, 120, or 240 μg/mL of ELE for 1 h prior to an additional treatment 

with TNF‐α/IFN‐γ, and incubated for 10–15 min. The protein levels of phosphorylated (A) JNK and 

(B)  SEK1/MKK4  were  determined  by  immunoblot  analysis  with  specific  antibodies.  JNK, 

SEK1/MKK4, and β‐actin were used as internal controls. Densitometric analysis was conducted us‐

ing Image J software (version 1.50i). Values are presented as the mean ± SD of three independent 

experiments; *** p < 0.001 versus the only TNF‐α/IFN‐γ treated group, ### p < 0.001 versus the con‐

trol group; significances among the groups were evaluated by Dunnett’s post‐hoc test. 

3.5. ELE Inhibited JAK2‐STAT1/3 Activation in HaCaT Keratinocytes 

Another important signaling pathway involved in skin inflammation is Janus kinase 

(JAK)—signal transducer and activator of transcription (STAT) signaling [20,21]. We thus 

Figure 4. Effects of ELE treatment on SEK1/MKK4-JNK phosphorylation in HaCaT keratinocytes.
HaCaT cells were treated with 60, 120, or 240 µg/mL of ELE for 1 h prior to an additional treatment
with TNF-α/IFN-γ, and incubated for 10–15 min. The protein levels of phosphorylated (A) JNK
and (B) SEK1/MKK4 were determined by immunoblot analysis with specific antibodies. JNK,
SEK1/MKK4, and β-actin were used as internal controls. Densitometric analysis was conducted
using Image J software (version 1.50i). Values are presented as the mean ± SD of three independent
experiments; *** p < 0.001 versus the only TNF-α/IFN-γ treated group, ### p < 0.001 versus the
control group; significances among the groups were evaluated by Dunnett’s post-hoc test.

3.5. ELE Inhibited JAK2-STAT1/3 Activation in HaCaT Keratinocytes

Another important signaling pathway involved in skin inflammation is Janus kinase
(JAK)—signal transducer and activator of transcription (STAT) signaling [20,21]. We thus
analyzed the level of STAT tyrosine (Y) and serine (S) phosphorylation (Figure 5A,B).
ELE treatment caused the significant inhibition of phosphorylation of both STAT residues,
serine, and tyrosine in TNF-α/IFN-γ-stimulated groups. JAK2 activation, which, in turn,
phosphorylates STATs, was induced. ELE was found to suppress the activation of JAK2,
STAT1, and STAT3 (Figure 5).
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Figure 5. Effects of ELE treatment on JAK2-STAT1/3 phosphorylation in HaCaT keratinocytes.
HaCaT cells were treated with 60, 120, or 240 µg/mL of ELE for 1 h prior to an additional treatment
of TNF-α/IFN-γ and incubated for 10–15 min or 2 h. The protein levels of (A) STAT1, (B) STAT3, and
(C) JAK2 phosphorylation were determined by immunoblot analysis with specific antibodies. STAT1,
STAT3, JAK2, and β-actin were used as internal controls. Densitometric analysis was performed
using Image J software (version 1.50i). Values are presented as the mean ± SD of three independent
experiments; *** p < 0.001 versus the only TNF-α/IFN-γ treated group, ### p < 0.001 versus the
control group; statistical significance of differences between the groups was evaluated by Dunnett’s
post hoc test.

4. Discussion

AD is an allergic skin disease characterized by severe pruritus and inflammation
due to T-helper type 2 (Th2)-mediated immune responses [5]. Numerous approaches to
alleviate the symptoms of AD have been developed, yet no therapeutic agents with strong
anti-AD effects have been found to date due to the complicated pathogenesis of the disease.
Glucocorticoids or topical calcineurin inhibitors are frequently used to treat AD despite
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their many side effects such as skin atrophy [22]. Other treatment alternatives, such as
topical phosphodiesterase 4 inhibitors, JAK-STAT inhibitors such as tofacitinib, or systemic
biological treatments, are also favored in practice [23,24]. However, their high costs reduce
accessibility to these treatments [25]. These limitations drive patients to seek safe treatments
with high efficacy, few side effects, and low cost. A fundamental approach in this regard is
the regulation of the inflammatory response. Here, we investigated the effects of ethanol
extract of E. hirta leaves (ELE) on AD in human keratinocytes. The efficacy of E. hirta
ELE in the treatment of allergic respiratory diseases has been previously investigated [12],
yet its effects on another allergic disease, AD, have been investigated for the first time in
this study.

Human epidermal keratinocytes (HaCaT), which are composed of keratinocytes,
melanocytes, and Langerhans cells [26], were used in the present study. ELE treatment
was not found to induce cytotoxicity at concentrations up to 1000 µg/mL and showed
suppressive effects on pro-inflammatory cytokines such as IL-6 or TNF-α at the lower
concentration (data not shown). Therefore, ELE concentrations of 60, 120, and 240 µg/mL
were used in further experiments. Additionally, we observed the morphological changes
between the normal group and TNF-α/IFN-γ-treated group under a microscope. The
change was ameliorated in the high concentration of ELE (240 µg/mL).

The combination of TNF-α/IFN-γ stimulates keratinocytes to activate pro-inflammatory
signaling pathways, which results in the production of inflammatory cytokines and
chemokines [27,28]. Protein and mRNA expression levels of representative pro-inflammatory
cytokines, including TNF-α and IL-6, were found to increase with inflammatory stimulation,
and ELE treatment was found to suppress them (Figure 1). In particular, downregulation
by ELE was significant in mRNA expression compared to the protein secretion using ELISA.
It seemed to be caused by a later time point affecting the robust impact of ELE on protein
expression with the experimental method [29,30]. In addition, mRNA expression levels
of pro-inflammatory chemokines MDC/CCL22 and RANTES/CCL5 were found to de-
crease upon ELE treatment (Figure 2). MDC and RANTES are inflammatory chemokines
that are mainly expressed in various immune cells such as lymphocytes, dendritic cells,
and eosinophils [31]. Furthermore, the levels of chemokines in the serum and skin le-
sions of AD patients are also known to increase, suggesting that chemokines produced
by keratinocytes are crucial for attracting inflammatory lymphocytes to the skin [32]. In-
flammatory chemokines such as IFN-γ are generally known to induce inflammatory skin
conditions such as psoriasis [33]. ELE treatment showed inhibitory effects on increased
expression of pro-inflammatory chemokines caused by TNF-α and IFN-γ.

Other allergic responses due to periostin or the activation of Akt, which are pivotal
mediators of escalated allergic reactions, have also been investigated [17] (Figure 3). West-
ern blotting was used to evaluate protein expression levels. TNF-α/IFN-γ-stimulated
keratinocytes showed increased levels of periostin, which were decreased upon ELE treat-
ment in a dose-dependent manner. In addition, protein expression of phosphorylated
Akt was evaluated under inflammatory conditions [34]. The inhibitory effect of ELE on
inflammatory molecules is shown in Figure 3.

The effects of ELE treatment on inflammation-related signaling pathways, such as
the JAK/STAT and MAPK pathways, were also investigated. STAT1/3 is involved in
antiviral type 1 (Th1) responses [35] and regulates the elevated Th2 cell response and
the maturation of B cells [36]. The JAK2-STAT1/3 signaling pathway was investigated in
terms of protein expression levels (Figures 4 and 5). Since JAK phosphorylates STAT, the
dissociated STAT from the receptor forms homodimers or heterodimers via SH2-domain-
phosphotyrosine interactions, translocating to promoters of target genes [37,38]. Here, ELE
treatment was found to inhibit increased JAK2 activation by TNF-α/IFN-γ, and the phos-
phorylation of serine and tyrosine residues on STAT1/3 was decreased upon ELE treatment
in a dose-dependent manner. In particular, the inhibitory effects of ELE on STAT1/3 tyro-
sine phosphorylation were significant compared to those in the TNF-α/IFN-γ-stimulated
group. Typical Th1-type cytokines, TNF-α/IFN-γ mixture, caused HaCaT cells to activate
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the intracellular MAPK signaling pathway, and thereby induced the secretion of pro-
inflammatory cytokines such as TNF-α or IL-6, mimicking AD-like responses [39,40]. Here,
ELE treatment was found to downregulate the protein expression levels of phosphorylated
SEK1/MKK4-JNK caused by TNF-α/IFN-γ in HaCaT keratinocytes (Figures 4 and 5). JNK
MAPK activation was found to be downregulated upon ELE treatment. This effect was
considered to be related to an upstream pathway of JNK MAPK, SEK1/MKK4 phospho-
rylation, caused by TNF-α/IFN-γ. These observations suggest that ELE suppresses the
activation of the intracellular pathways STAT1/3 or JNK MAPK by inhibiting JAK2 or
SEK1/MKK4 phosphorylation, respectively. Hence, ELE was found to exert inhibitory
effects on two types of inflammatory pathways.

At the same time, it is necessary to investigate the clear interaction mechanism of ELE
through whether ELE showed the suppressive effects on the phosphorylation of STAT1/3
or JNK MAPK. The other experimental accesses could have facilitated our determination
of the specific binding to a particular receptor. Otherwise, in vivo study of ELE could
express the clear mechanism with pre-clinical development. It would be easier to figure out
the mechanism of ELE with the results of chromatography demonstrating the contained
compounds such as ellagic acid. With these points, we could perform further studies on
ELE based on the effectiveness determined by the in vitro results.

In conclusion, we showed the anti-inflammatory effects of ELE on TNF-α/IFN-γ in
keratinocytes via the downregulation of STAT1/3 signaling pathways. ELE treatment
promoted the production and mRNA expression of pro-inflammatory cytokines in the
human keratinocyte cell line, HaCaT. The results also indicated the inhibition of JNK MAPK
or STAT1/3 signaling pathways.
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