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In competing risks setting, we account for death according to a specific cause
and the quantities of interest are usually the cause-specific hazards (CSHs) and
the cause-specific cumulative probabilities. A cause-specific cumulative proba-
bility can be obtained with a combination of the CSHs or via the subdistribution
hazard. Here, we modeled the CSH with flexible hazard-based regression mod-
els using B-splines for the baseline hazard and time-dependent (TD) effects. We
derived the variance of the cause-specific cumulative probabilities at the popula-
tion level using the multivariate delta method and showed how we could easily
quantify the impact of a covariate on the cumulative probability scale using
covariate-adjusted cause-specific cumulative probabilities and their difference.
We conducted a simulation study to evaluate the performance of this approach
in its ability to estimate the cumulative probabilities using different functions
for the cause-specific log baseline hazard and with or without a TD effect. In
the scenario with TD effect, we tested both well-specified and misspecified mod-
els. We showed that the flexible regression models perform nearly as well as the
nonparametric method, if we allow enough flexibility for the baseline hazards.
Moreover, neglecting the TD effect hardly affects the cumulative probabilities
estimates of the whole population but impacts them in the various subgroups.
We illustrated our approach using data from people diagnosed with monoclonal
gammopathy of undetermined significance and provided the R-code to derive
those quantities, as an extension of the R-package mexhaz.
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1 INTRODUCTION

In survival analysis, the one-to-one relationship between the risk of an event (probability scale) and the rate at which the
event occurs (hazard scale) is well known when studying a single event/cause. This is a key feature in hazard regression
models in order to examine how covariates affect the survival probability.1 Thus, assuming that the survival time t of an
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individual can be described by a positive random variable T with probability density function f, the cumulative distribution
function F is defined as F(t) = P(T ≤ t) = ∫ t

0 𝑓 (u)du = ∫ t
0 𝜆(u)S(u)du, where S(t) = P(T > t) = 1 − F(t) is the survival

probability and 𝜆(t) is the hazard function.
However, in the competing risks setting where more than one cause are acting, the (total) hazard is the sum of all

cause-specific hazards (CSHs) 𝜆(t) =
∑J

𝑗=1 𝜆𝑗(t), where the cause j-specific hazard 𝜆j represents the rate of failure from
cause j per time unit for individuals who are still at risk.2,3 The cumulative probability of dying from a particular cause until
time t in the presence of all other causes (also called the cumulative incidence function) depends on all the CSHs

F𝑗(t) = P(T ≤ t,Cause = 𝑗) =

t

∫
0

𝜆𝑗(u)S(u)du,

where S is the overall survival (ie, from all causes), S(t) = exp
(
− ∫ t

0
∑J

𝑗=1 𝜆𝑗(u)du
)

. As a result, the one-to-one relationship
between the rate and the risk for a given cause is now lost, since in this case, the risk of a given cause is affected by all CSHs.
Therefore, a covariate effect in a CSH model cannot be directly translated to an effect on the cause-specific cumulative
probability.4,5

Nevertheless, the cause-specific cumulative probability is of great interest in competing risks case since it quantifies
the cumulative probability (risk) in the presence of other causes,6,7 thus being a useful overall measure of prognosis
for the patients.8 Cause-specific cumulative probabilities can be estimated nonparametrically using the Aalen-Johansen
estimator3,7 or the so-called subdistribution hazard with the Fine and Gray model.3,9 However, our focus here is on its
estimation via CSH regression models as this approach allows the estimation of both CSHs (rate) and cause-specific
cumulative probabilities (risk). CSH regression models are quite useful because they are easy to fit (since we only need
to censor for the competing event),4 and unlike models on subdistribution hazard, they give a simple interpretation of
parameter estimates: CSH ratios measure the impact of the risk factors on the rate that correspond to a given cause of
death.10 Moreover, there is a wide variety of models that we can apply, which range from the simple Cox proportional
hazards models11 to the more sophisticated flexible regression models including time-dependent (TD) effects.12 Lastly,
another advantage of modeling on the CSH scale is the possibility to estimate easily the covariate-adjusted cause-specific
cumulative probabilities,13,14 which can be used to further calculate standardized risk differences.

In this paper, we focus on the use of flexible regression models for the CSH. Section 2 details how to obtain individual-
and population-level smooth estimates of the cause-specific cumulative probabilities, along with their variances, using
the parameter estimates from CSH models. We also explain how this approach can be easily employed for deriving directly
adjusted cause-specific cumulative probabilities. In Section 3, we provide results from a simulation study assessing the
performance of the approach in its ability to estimate the cause-specific cumulative probabilities, depending on whether
the proportional hazard assumption for one CSH is correct or not. In Section 4, we provide an illustrative example using
data from individuals diagnosed with monoclonal gammopathy of undetermined significance (MGUS) that are provided
in themgus2 dataset from the R-packagesurvival. Finally, we discuss the results and present ideas for further research.

2 METHODS

2.1 Flexible hazard-based regression model
2.1.1 Cause-specific hazard model
The regression model used for the CSH is defined on the log-hazard scale. It was first described by Remontet et al15

and recently extended by Charvat et al.16 In its general formulation, this model uses B-spline functions for modeling
the logarithm of the baseline hazard parameters 𝜸j and the time-dependent (cause j)-specific hazard ratios 𝜶j(t) for the
corresponding vector of covariates x. Thus, the model for the (logarithm of) the (cause j)-specific hazard may be written as

log[𝜆𝑗(t, x; 𝜷𝑗)] = log(𝜆0(t; 𝜸𝑗)) + x⊤𝜶𝑗(t),

where 𝜷 j is a vector of parameters, which includes the parameters for (i) the baseline hazard and (ii) the time-dependent
(cause j)-specific hazard ratios, ie, 𝜷𝑗 = (𝜸⊤𝑗 ,𝜶

⊤
𝑗 )

⊤. We advise the reader to refer to section 2.1 in the work of Charvat et al16

and the references mentioned therein for more details on splines and knots selection.
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2.1.2 Likelihood function
For an individual i, denote by ti the observed follow-up time, 𝛿i the failure indicator (0 for censoring and 1 for death), ji the
type of event among J different types (set ji = 0 for censored times), and xi a vector of covariates. Therefore, our sample
may be defined as {ti, 𝛿i, 𝑗i, xi}, i = 1, … ,N.

In a competing risks setting with J different causes, and assuming a random censoring mechanism, the likelihood
function may be written as2,17

N∏
i=1

[𝜆𝑗i(ti, xi)]𝛿i S(ti, xi) =
J∏

𝑗=1

N∏
i=1

[𝜆𝑗(ti, xi)]𝛿i𝑗 exp
⎛⎜⎜⎝−

ti

∫
0

𝜆𝑗(u, xi)du
⎞⎟⎟⎠ , (1)

where 𝛿ij is equal to 1 if cause j was observed to happen at time ti, and 0 otherwise.
The likelihood can be factorized as the product of J cause-specific likelihood as defined in the right-hand side of for-

mula 1. Therefore, one can fit a hazard-based regression model for cause j on the observed data for statistical inference,
treating all failure times other than j as censored without relying on any assumption of independent competing risks.1,3

By doing so, the contribution to the log-likelihood for individual i when estimating the (cause j)-specific hazard is

l𝑗i (𝜷𝑗) = −

ti

∫
0

𝜆𝑗(u, xi; 𝜷𝑗)du + 𝛿i𝑗 log
[
𝜆𝑗(ti, xi;𝜷𝑗)

]
. (2)

2.2 Estimation of the cumulative probabilities of death from each cause
We show in the following how we estimated the cumulative probability of death for each cause, after plugging-in the esti-
mated parameters of the CSH models. We start with the estimation for a given set of observed covariates (individual-level
predictions) and then move on to the estimation of the cumulative probabilities of death from each cause in the whole
population. To simplify the notation without loss of generality, we consider only two different causes, denoted as j and 𝑗.

2.2.1 Individual-level prediction of the probability of death from a given cause
Point estimates
To estimate Fj at time t for an individual i with an observed vector of covariates xi, the CSHs need to be combined. We
use the (cause j)-specific vectors of parameters 𝜷𝑗 of length pj and define the total vector of parameters, 𝜷 = (𝜷

⊤

𝑗 , 𝜷
⊤

𝑗 )⊤ of
length m = p𝑗 + p𝑗 .

F̂𝑗

(
t, xi; 𝜷

)
=

t

∫
0

S
(

u, xi; 𝜷
)
𝜆𝑗

(
u, xi; 𝜷𝑗

)
𝑑𝑢

=

t

∫
0

exp
⎛⎜⎜⎝−

u

∫
0

𝜆𝑗

(
𝜈, xi; 𝜷𝑗

)
+ 𝜆𝑗

(
𝜈, xi;𝜷𝑗

)
𝑑𝜈

⎞⎟⎟⎠ 𝜆𝑗
(

u, xi;𝜷𝑗

)
𝑑𝑢

=

t

∫
0

S𝑗

(
𝜈, xi;𝜷𝑗

)
S𝑗

(
𝜈, xi; 𝜷𝑗

)
𝜆𝑗

(
u, xi; 𝜷𝑗

)
𝑑𝑢

(3)

Variance
The variance of the cause-specific cumulative probabilities is derived via the multivariate delta method. The delta method
is a general approach that allows to approximate the variance of a differentiable function 𝜙 of the estimated parameters as

Var
[
𝜙
(
𝜷
)]

≈
[
∇𝜙(𝜷)|𝜷=̂𝜷

]⊤
Σ𝜷

[
∇𝜙(𝜷)|𝜷=̂𝜷

]
,

where 𝚺𝜷 is the parameters covariance matrix and ∇𝜙 is the gradient of 𝜙, ie, the vector of first derivatives of 𝜙.

∇𝜙(𝜷)|𝜷=̂𝜷
=
(
𝜕𝜙

𝜕𝛽1

(
𝜷
)
, … ,

𝜕𝜙

𝜕𝛽p

(
𝜷
))⊤
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So, in our case, the variance of Fj at time t for the vector of covariables x and based on the vector of estimated parameters
𝜷 would be approximated by

Var
[

F𝑗

(
t, x;𝜷

)]
=
[
∇F𝑗

(
t, x;𝜷

)
|𝜷=̂𝜷

]⊤
Σ̂𝜷

[
∇F𝑗

(
t, x; 𝜷

)
|𝜷=̂𝜷

]
.

Details on how to derive this quantity can be found in Appendix 1.B.
It is possible to obtain the approximate 100 ∗ (1 − 𝛼)% confidence interval of 1 − Fj(t, x; 𝜷) based on the (approximate)

normality assumption as

Var
[
log

(
− log

(
1 − F𝑗(t, x; 𝜷)

))]
=

Var
[
1 − F𝑗(t, x; 𝜷)

]
(
log

(
1 − F𝑗(t, x; 𝜷)

) (
1 − F𝑗(t, x; 𝜷)

))2 , (4)

where Var[1 − Fj(t, x; 𝜷)] = Var[Fj(t, x; 𝜷)]. We opted to estimate the approximate confidence intervals based on the
complementary of Fj in order to avoid problems in the denominator due to small probabilities coming as a result of rare
events or for probability inference shortly after diagnosis.

After backtransforming, the approximate 100 ∗ (1 − 𝛼)% confidence intervals can be estimated as

F𝑗(t, x;𝜷)Ω, (5)

where Ω = {exp{±z𝛼Var[log(− log(F𝑗(t, x; 𝜷)))]}} and z𝛼 is the (1-𝛼∕2) quantile of the standard normal distribution.

2.2.2 Population-level prediction of the probability of death from a given cause
Point estimates
To obtain the population value of the cumulative incidence function for cause j at time t, we need to compute the average
of the N individual predicted cumulative probabilities of death from cause j.

F̂P
𝑗 (t; 𝜷) =

1
N

N∑
i=1

F̂𝑗(t, xi; 𝜷)

Variance
The key point here is to account for the correlation of the N individual-predicted cumulative probabilities because they
were obtained from the same vector of estimated parameters 𝜷.18,19 By applying the multivariate delta method, we obtain
a variance estimation of the population value

Var
[
FP
𝑗 (t; 𝜷)

]
= w⊤

[
∇FMat

𝑗 (t; 𝜷)|𝜷=̂𝜷

]⊤
Σ̂𝜷

[
∇FMat

𝑗 (t; 𝜷)|𝜷=̂𝜷

]
w,

where w is a column vector of N weights (in our case, all equal to 1∕N), and ∇FMat
𝑗 (t, 𝜷) is a (m × N) matrix

∇FMat
𝑗 (t; 𝜷) =

(
∇F𝑗(t, x1; 𝜷)|𝜷=̂𝜷

, … ,∇F𝑗(t, xN ; 𝜷)|𝜷=̂𝜷

)
,

with its elements defined in formula 4 of Appendix 1.B. The 100 ∗ (1 − 𝛼)% confidence interval is obtained using
formulae 4 and 5.

2.2.3 Adjusted cumulative probability of death from cause j and their difference
Using our approach, we can extend the idea of adjusted survival curve14,19-22 to the competing risks setting for providing
the adjusted cumulative probability of death estimates from a given cause FAdj

𝑗 .23 It would provide a quantity that is directly
standardized to the empirical distribution of the covariates observed in the study24 and may be further used to calculate
the standardized risk difference.25 FAdj

𝑗 is useful when there is an effect of interest, eg, treatment, and the treatment groups
are imbalanced with respect to factors influencing the CSH.14 Another advantage is that we can quantify the effect of a
specific covariate of interest on the probability scale (cumulative incidence). Although the covariate effect on the CSH is
not directly linked to the probability scale, with the adjusted probabilities it is possible to translate the covariate effect on
the probability scale by quantifying both the “direct” effect of a variable on the CSH of interest, as well as the “indirect”
effect of this variable on the competing hazard.26
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To compute the FAdj
𝑗 , we predict the Fj for each individual using their observed covariates (except for the variable we

are interested in, which is set to a specific value), and then, we average the estimates.19 For example, if the use of a specific
drug (say, A or B) is the exposure of interest, then we can construct hypothetical populations where all individuals keep
their characteristics z (z ⊂ x) as observed except that the drug is set to drug K = {A,B}.

FAdj
𝑗 (t,Drug = K, z) = 1

N

N∑
i=1

F̂𝑗(t,Drug = K, zi)

By taking the difference between FAdj
𝑗 (t,Drug = A, z) and FAdj

𝑗 (t,Drug = B, z), we can quantify the average treatment
effect on probability scale as

D(t; 𝜷) = E
[

FAdj
𝑗 (t,A, z;𝜷) − FAdj

𝑗 (t,B, z;𝜷)
]
= E

[
FAdj
𝑗 (t,A, z;𝜷)

]
− E

[
FAdj
𝑗 (t,B, z;𝜷)

]
. (6)

The 100 ∗ (1 − 𝛼)% confidence interval is obtained as D̂(t)± z𝛼
√

Var(D̂(t)), where

Var[D(t; 𝜷)] = w⊤

[
∇D(t; 𝜷)Mat

|𝜷=̂𝜷

]⊤
Σ̂𝜷

[
ΔD(t;𝜷)Mat

|𝜷=̂𝜷

]
w.

For more information on the variance calculation, the reader is referred to Appendix 1.C.
The same procedure can be repeated for the other cause 𝑗, and more generally, we can get as many estimands as the

number of competing events in the data.26 We can also apply this direct standardization process to a subsample of the
entire population (eg, the treated) if the interest is on standardizing only on the treated individuals or even use an external
(reference) population.

2.3 Implementation
To implement those theoretical quantities, we made some choices presented in the following.

Firstly, the log-likelihood (formula 2) cannot be evaluated analytically because the integral defining the cumulative
hazard, ∫ ti

0 𝜆𝑗(u, x)du, does not have a closed analytical form. In our approach, we used the Gauss-Legendre (G-L) quadra-
ture, which is a numerical integration technique that approximates the integral of a function defined in [−1, 1] with a
weighted sum using K pre-specified weights and nodes. By applying a simple change of variable, we can approximate the
integral of a function g on any bounded domain [a, b] on which it is defined by using the following formula:

b

∫
a

g(t, x)dt ≈ b − a
2

K∑
k=1

wK
k g

(
a + b

2
+ b − a

2
zK

k , x
)
,

where wK
k and zK

k are the weights and abscissas for the K-point G-L rule, respectively. We used the G-L quadrature to
calculate the cumulative hazards in formula 2, and the maximum likelihood estimates were obtained using a Newton-type
algorithm for the optimization (function nlm in R).

Because we estimated the parameters separately for each cause, we ended up with a m × m block diagonal covariance
matrix 𝚺𝜷 with two blocks Σ̂𝜷 𝑗

and Σ̂𝜷 𝑗
corresponding to the covariance matrix returned from each CSH model.

The cause-specific flexible hazard regression models were fitted using the R-package mexhaz with some additional
R-functions programmed in R. The R-code to implement our approach for the data used in the illustrative example is
provided in Appendix 2.

3 SIMULATION STUDY

We performed a simulation study to evaluate the frequentist properties of our approach based on flexible regression
models for the CSH in its ability to estimate the cumulative probabilities of death from each cause. To quantify the
impact of neglecting a TD effect on the estimation of the cause-specific cumulative probabilities, we simulated two sce-
narios: scenario 1 where the proportional hazards assumption is met and scenario 2 where a TD effect was simulated
on the cancer-specific hazard. We also evaluated the coverage properties of the detailed confidence intervals using the
multivariate delta method for the cumulative probabilities at population level.
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3.1 Data generation and simulation design
For each scenario, we simulated nsim = 500 datasets with sample size of N = {300, 1000}. Each individual was assigned a
vector of three covariates that included information about sex, year of diagnosis, and age at diagnosis. Sex was simulated
as a binary covariate drawn from a Bernoulli distribution with probability 0.5 in scenario 1 and 0.3 (of being a woman) in
scenario 2. This choice was made based on the fact that a TD effect of sex was simulated in scenario 2 and an unbalanced
distribution of sex would be more appropriate in order to test the performance of the method. Year of diagnosis was sim-
ulated as a continuous variable and sampled from a uniform distribution, ranging from 2000 to 2003. Age was simulated
as a continuous variable by first selecting an age class according to predefined probabilities (0.25 for age class [30, 65),
0.35 for age class [65, 75), and 0.40 for age class [75, 80)) and then sampling from a class-specific uniform distribution.17

The two scenarios tried to mimic typical real situations for colon cancer patients. We generated two independent
simulating processes as to account for two causes, namely, death from colon cancer and death from other causes.

We chose a Generalized Weibull distribution with parameters (𝜅, 𝜌, 𝛼) for the cancer-specific survival time (TC), and
we used the inverse probability transform method.17,27 For individual i, the cancer-specific hazard used to simulate TC
in scenario 1 was defined as 𝜆C(t,Agei, Sexi) = 𝜆0(t) exp

{
𝛽AgeAgei + 𝛽SexSexi

}
where 𝜆0(t) = 𝜅𝜌𝜅 t𝜅−1

1+ (𝜌t)𝜅
𝛼

. In scenario 1, the

parameters (𝜅, 𝜌, 𝛼) for the baseline hazard were equal to (2, 1.2, 0.1), and the values used for the covariate parameters
were 𝛽Age = 0.03 (for 1 year increase) and 𝛽Sex = 0.3. In scenario 2, we used a sex-specific baseline hazard (which leads
to a TD effect of sex), with the simulated parameters (𝜅, 𝜌, 𝛼) set to (2, 0.4, 0.2) for men and (2, 0.3, 0.2) for women, with
𝛽Age = 0.03 (for 1 year increase) for both sexes.

The time to death from other causes (TC̄) was simulated assuming a piecewise exponential distribution with the rates
coming from the population mortality rates obtained from the UK age- and sex-specific life tables. We set the adminis-
trative censoring time (C) at 10 years and a separate distribution for the dropouts following an exponential distribution
(𝜆d = 0.035) as to account for approximately 15% of people lost to follow-up, while the total amount of censoring in each
dataset was on average around 38%. The final survival time (T) was obtained as T = min(TC,TC̄,C). A vital status indi-
cator 𝛿 was created, 𝛿 = 0 for individual censored at T, and 𝛿 = 1 for those being dead at time T (whatever the cause).
Additionally, the cause of death j was denoted as j = 1 for death from cancer and j = 2 for death from other causes.

The true values F̃C(t) and F̃C̄(t) of the cumulative probabilities of death from cancer and from other causes were
obtained at time t = 1, 5, 10 years, calculated using the G-L quadrature. Although we assumed the same covariate distri-
bution in both simulations (N= 300 and N= 1000), the true values differ slightly because they rely on different simulated
individuals.

3.2 Analysis of simulated data
The simulated data were analyzed with a nonparametric method and with the flexible regression models for the log of the
baseline hazard. In scenario 1, we tested two flexible regression models for the logarithm of the cancer-specific hazard:
(a) a model with a quadratic B-spline baseline hazard function and knots at 1 and 5 years and (b) a model with cubic
B-spline baseline hazard function with same knots. The explanatory variables in both models were age at diagnosis and
sex. We omitted the year of diagnosis since we did not simulate an effect on the cancer-specific hazard (its range was very
small and it was mainly used to retrieve the population mortality rates from the UK life tables). In scenario 2, we used
the same models as in scenario 1 (models (a) and (b)) but also an additional model (model (c)) that had a cubic B-spline
for the baseline hazard function (with two knots at 1 and 5 years) and a TD effect for sex, which was modeled also with a
cubic B-spline with two knots at 1 and 5 years. The knots were located at these points based on our previous experience
analyzing cancer survival data.28,29 The model for the hazard of other causes was kept in all cases the same, with a baseline
hazard modeled with a quadratic B-spline with one knot at 1 year.

We assessed the performance of the aforementioned methods in their ability to estimate the probabilities of death from
cancer and death from other causes at t = {1, 5, 10} years after diagnosis. We calculated the following quantities: (i) the
bias, defined as the difference between the average of the nsim = 500 estimated values and the true value 𝜃: 1

nsim

∑nsim
i=1 �̂�i−𝜃;

(ii) the relative bias, expressed as the bias divided by the true value and multiplied by 100; (iii) the empirical standard error√
1

nsim−1

∑nsim
i=1 (�̂�i − �̄�)2 where �̄� =

∑nsim
i=1 �̂�i; (iv) the model standard error

√
1

nsim

∑nsim
i=1 V̂ar(𝜃i); (v) the root mean squared

error (RMSE)
√

1
nsim

∑nsim
i=1 (�̂�i − 𝜃)2; and (vi) the coverage probability that is the proportion of samples in which the 95%

confidence interval included 𝜃.
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Our computations were performed in R 3.2.0. We used the nonparametric method for the cumulative probability pro-
vided by R-package cmprsk (version 3.4.2, function cuminc), while flexible parametric models were estimated using
R-package mexhaz (version 1.5, function mexhaz).

3.3 Results
Performance on the whole population
Although sample size did not seem to affect the general performance of the method in scenario 1, density plots
(see Figure A1.4) showed that the models that were applied to bigger sample size datasets resulted in more accurate esti-
mates as expected. In all methods, the relative bias and the RMSEs were very low, the model standard errors (ModSE)
were quite close to the empirical ones (empSE), and the majority of the coverage probabilities were within the acceptable
coverage probability range ([0.931, 0.969])30 (see Table 1). Exception to that is model (a) at the 1st year for the 1st cause.
This could be explained by the fact that the model with a quadratic B-spline was not flexible enough and the estimated
baseline hazard could not approximate adequately the sudden peak of the simulated baseline hazard during the 1st year
(see Figure A1.1).

In scenario 2, where a TD effect of sex was simulated, models (a) and (b) were misspecified, while model (c) was prop-
erly specified. Interestingly, all methods performed well in terms of overall performance on the whole population. In
all cases, relative bias was low, empSE was very close to the ModSE, and RMSEs were all quite similar for a given time
(see Table 2). Estimates were nicely spread around the true values regardless of the sample size used, while higher accuracy
was achieved when sample size was equal to 1000 (see Figure 1).

We also tested whether a change in the knot location would affect the results. Therefore, we applied an additional model
to each scenario, with the same specification as model (b) for scenario 1 and model (c) for scenario 2, but with the only
difference being the knot location. The knots were corresponding to the 33rd and the 66th percentile of the time-to-cancer
distribution, meaning that, for each dataset, there was a different set of two knots. The results for the new models (model
(b′) and model (c′)) can be found in Table A1.3. Although differences compared to model (b) and model (c) were minor,
we observed that the relative bias in the new models was in most cases less than 1% for each cause and at each time point,
leading to more accurate results.

Performance on subgroups
It is also interesting to look at the sex-specific estimates and how these were affected by (i) model misspecification and
(ii) the distribution of sex (men/women: 201/99 for N = 300 and 703/297 for N = 1000). Results found in Tables A1.1
and A1.2 show the performance of flexible parametric models separately in men and women. In the misspecified models
(model (a) and model (b)), women were affected more than men especially in the earlier times regardless the sample size
used. This was true for men only when the sample size was equal to N = 1000. These results can be explained by the
incapability of the models to estimate the baseline hazards adequately in the earlier times where a sudden peak occurred
(see Figure A1.2 and Figure 2).

However, even with model (c), there was an occasion where the coverage probability at the 5th year for the 1st cause in
case of women was slightly worse than expected when N = 300 (Table A1.2). According to Figure A1.3, the estimates of the
baseline hazard in the top right panel were rather unstable after the 4th year (although the median is in good agreement
with the true), which can explain why we observed this poor coverage. With bigger sample sizes similar problems were
not observed.

In summary, neglecting the TD effect for sex did not affect much the population estimates but it did affect the sex-specific
estimates. Also, the effect of sex estimated with model (b) was overestimated in the beginning and underestimated after
2 years, whereas with model (c), the estimated effect was approximating well the true one (see Figure A1.3).

4 ILLUSTRATIVE EXAMPLE

We used the mgus2 dataset from the R-package survival to illustrate our approach. The dataset contains the
time-to-occurrence of plasma cell malignancy (PCM) or death whichever comes first of individuals diagnosed with MGUS.
By treating the progression to PCM as an absorbing state, we defined a competing risks setting that allowed subjects to
make a single transition to one of two terminal states. Our goal was to estimate the cumulative probabilities of progressing
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FIGURE 1 Empirical distribution of the 500 parameter estimates of cumulative probabilities for each model and each cause at
3 timepoints: 1, 5, and 10 years in scenario 2. Vertical lines denote the true values. Model (a) has a quadratic B-spline baseline function and
knots at 1 and 5 years, whereas model (b) has a cubic B-spline baseline function with the same knots. The explanatory variables in FPM
models were age and sex. Models (b) and (c) have the same baseline function (cubic B-spline with knots at 1 and 5 years), but model (b) has a
fixed effect for sex, whereas model (c) has a TD effect for sex, which is modeled with a cubic B-spline with two knots at 1 and 5 years

to PCM and of death—while not having progressed to PCM—according to age at diagnosis (age), sex, and the size of the
monoclonal serum splike (mspike). The R-code to implement the following is explained and provided in Appendix 2.

From the 1384 people originally in the dataset, we removed 11 patients with missing values for the variable mspike.
We observed 115 patients who progressed to PCM and 854 deaths among 627 females and 746 males. For each cause, we
applied 8 models depending on whether time-fixed or TD effects for each of the three variables were included, and the
baseline hazard was modeled with a cubic spline with two knots located at the 33rd and the 66th percentile of the distribu-
tion of times to event (without distinguishing the type of event). We selected the best model using the Akaike Information
Criterion. From the retained CSH regression models, we estimated the cumulative probability of progressing to PCM and
the cumulative probability of death, and we compared those model-based predicted probabilities to the nonparametric
estimates, using the cuminc function of the R-package cmprsk.

For the event PCM, the selected model assumed a time-fixed effect for the three variables, while for death a TD effect
was retained only for age. The model-based estimates of the cumulative probabilities of progressing to PCM and non-PCM
death are in very good agreement with the nonparametric estimates (Figure 3). We also quantified the effect of sex on the
cumulative probability scale. To do so, two hypothetical populations were created, one where all patients were considered
as women and another where all patients were considered as men, while keeping the other variables as observed. The new
hypothetical populations had the same sample size with the initial dataset. We predicted the cumulative probabilities of
progressing to PCM and non-PCM death and plotted the probabilities for both populations along with the standardized
risk difference due to sex for each cause (Figure 4). For progression to PCM, we observed a higher adjusted cumulative
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FIGURE 2 Simulated and estimated baseline hazard functions in scenario 2 with sample size of N = 1000. In each panel, the bold solid
curve represents the simulated baseline hazard function, the gray curves represent the 500 cause-specific spline estimates, and the dashed
curve represents the mean of these 500 estimates. Model (a) has a quadratic B-spline baseline function with knots at 1 and 5 years, whereas
model (b) has a cubic B-spline baseline hazard function with the same knots. The explanatory variables in both models were age and sex.
Models (b) and (c) have the same baseline function (cubic B-spline with knots at 1 and 5 years). Models (a) and (b) have a fixed effect for sex,
whereas model (c) has a TD effect for sex, which is modeled with a cubic B-spline with two knots at 1 and 5 years

probability in women (7% (95% CI:[5;9]) vs 6% (95% CI:[5;8]) at 10 years and 14% (95% CI:[11;18]) vs 10% (95% CI:[8;14]) at
30 years), while for death, we observed that the adjusted cumulative probability was higher in men (59% (95% CI:[56;62])
vs 47% (95% CI:[44;50]) at 10 years and 84% (95% CI:[80;87]) vs 77% (95% CI:[71;82]) at 30 years). The corresponding
time-varying differences of adjusted cause-specific probabilities between women and men are also displayed (Figure 4,
bottom panels).

5 DISCUSSION

This work presented a way of estimating the cumulative incidence function through flexible regression models for the
CSH. Once the regression coefficients of the CSH models have been estimated, one can derive individual or population
estimates of the cause-specific cumulative probabilities, with their corresponding variance accounting for the correla-
tion between individuals predictions.19 We also showed how to derive directly adjusted cumulative probabilities for each
competing event, in the same spirit of directly adjusted survival curves. Even though we exemplified our approach in the
context of two CSHs, it may be easily extended to situation with more than two competing events.

In the competing risks setting, it is advised that we report both quantities due to the lack of one-to-one relationship
between rates and risks.31 Indeed, a covariate may be strongly associated with one CSH while showing a fairly small effect
on the cause-specific cumulative probability (and vice versa). The cumulative probability for one cause is affected
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FIGURE 3 Cumulative probability of PCM and cumulative probability of death without malignancy over time (with the 95% confidence
intervals), estimated using the nonparametric approach (solid lines) and our approach based on the flexible CSH models (dashed lines). The
table below the graph indicated the number of subjects at risk as well as the cumulative number of each type of event [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 4 Adjusted cumulative probabilities of PCM (left top panel) and to death without malignancy (right top panel) for men and
women, and standardized risk difference due to sex (women-men) for PCM (left bottom panel) and death without malignancy (right bottom
panel) [Colour figure can be viewed at wileyonlinelibrary.com]
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by the CSHs of all competing events and unlike subdistribution hazard models, we need to define the same number of
models as the number of competing events observed in our data. On the other hand, the Fine and Gray approach based on
subdistribution hazard modeling allows for a direct prediction of the cause-specific cumulative probability although care
is needed when interpreting the subdistribution hazard ratios.10 Using our approach and the directly adjusted cumulative
probability, we can visualize and quantify (with the standardized risk difference) how the combination of the direct effect
(on the CSH of interest) and the indirect effect (on the CSH of the competing event) of a given variable translates to the
cumulative probability scale. It should be highlighted that CSH modeling in a competing risks analysis does not rely on
the assumption that the competing risks are independent3; this assumption is not really needed for inference purposes.1

Flexible regression models for the CSH have been used to estimate the cumulative probabilities for different causes12

using models defined on the cumulative (cause-specific) hazard scale that can accommodate both nonlinear (use of
splines) and TD effects of covariates.16 We proposed in our approach to stick to the instantaneous hazard scale as we believe
this scale is more familiar to researchers analyzing time-to-event data.32 Individual predictions of the cumulative proba-
bilities can be derived using parameters estimated with regression models,12 and we extended here those predictions to
population-level estimates, while accounting for the correlation of individuals predictions obtained from the same set of
regression parameters. Although nonparametric approaches are frequently used when population estimates are of inter-
est, covariate effects on CSH and predictions for a given covariate pattern are additional advantages flexible regression
models are bringing in.

We evaluated the ability of our approach in a simulation study and showed that our flexible model-based approach per-
forms well. We simulated two competing events using one specific distribution for cause 1 and demographic life tables
for cause 2. Although we could have defined two parametric distributions (one for each cause), we decided to choose this
specification in order to resemble a real data situation, ie, where cancer could be one of the causes following a known
distribution and other causes is the competing event (coming from the general population mortality) to describe non-
cancer deaths. Our conclusions from the simulations are summarized as follows. Model estimates using cubic B-splines
outperformed the less flexible models (using quadratic B-splines); they captured the shape of the cancer-specific hazard
better and gave more accurate estimates of the cumulative probabilities. Moreover, including a TD effect of sex gave bet-
ter sex-specific cumulative incidence estimates, while the omission of such TD effect was mainly impacting those shortly
after the time of diagnosis (where the baseline hazard showed a rapid increase), but not considerably the overall popu-
lation estimates. Comparing the time-fixed and time-varying cancer-specific hazard ratios (Figure A1.3) confirmed this
observation. Also, the multivariate delta method, used to derive the confidence intervals, provides a reliable method for
in-population estimation, with the requisite coverage probability properties. Regarding the sensitivity of the results to
the number and position of the knots, previous work using empirical comparisons has shown that the cumulative prob-
ability is not affected by a sensible modification (eg, using the quantiles of the time-to-event distribution to define their
location).12,33 Indeed, we examined two additional models, which used the tertiles of the time-to-event distribution rather
than fixed knots (at the 1st and 5th years). Using tertiles gave similar conclusions to the fixed knot model, with the only
notable difference being in most cases a slight decrease in relative bias, when using tertiles.

When analyzing the simulated data, we adjusted for the covariates age at diagnosis and sex, which were both associated
to the two CSHs used in the simulation. Thus, we did not use any model-building strategy, and as far as we know, there is
still no consensus regarding the “best” way to select the appropriate variable to adjust for, while accounting for complex
nonlinear and TD effects.34-36 Using a model-building strategy for the CSH would call for refined methodology (such as
bootstrap) when evaluating the variance of cumulative incidence functions.37-39 Nevertheless, adjusting for confounders
on the CSH of the competing event has been proved to be important even though the main interest is on the primary
outcome.26 In the application, we relied on the Akaike Information Criteria to select the regression models for the CSHs,
which provide the best fit to the data. We used cubic B-splines for the baseline hazards with two internal knots corre-
sponding to the 33rd and 66th percentiles. We obtained the smoothed cumulative incidence estimates that nicely matched
the nonparametric ones. Using our approach, we also provided the adjusted cumulative probabilities of PCM and death in
order to quantify the effect of sex in each cause, which would have been difficult to identify given the complicated nature
of the cumulative probabilities.

In summary, our approach based on flexible CSH regression models demonstrated nice frequentist properties in esti-
mating the cumulative probability for each cause. Estimation of the cumulative probabilities of death from each cause
along with the CSH estimates provides a very useful insight of the underlying mechanisms of the competing events. We
also presented a simple way of displaying and quantifying the overall (direct and indirect) impact of a variable on the
cumulative probability of death from each cause through direct adjusted probability estimates. The R-code associated
with the R-package mexhaz provides a tool in a free software, which could be useful to other researchers for computing
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these cumulative probabilities along with their confidence intervals (Appendix 2). It is worth noticing that the approach
proposed here relies on the availability of the cause of death information. However, in many population-based studies,
the cause of death is either missing or unreliable. Thus, an adaptation of our approach to the relative survival setting33

(when reliable information on the cause of death is not available) would be an interesting extension.

ACKNOWLEDGEMENTS

This research was supported by Cancer Research UK under grants C7923/A18525 and C7923/A20987. The findings and
conclusions in this report are those of the authors and do not necessarily represent the views of Cancer Research UK.

AUTHOR CONTRIBUTIONS

All authors developed the concept and design of the study. Dimitra-Kleio Kipourou, Hadrien Charvat, and Aurélien Belot
did the data analysis. Dimitra-Kleio Kipourou drafted the manuscript, and all authors critically revised the manuscript.
All authors approved the final version of the manuscript. This work has been finalized while Aurélien Belot was fellow
at the Collegium - Lyon Institute for Advanced Study 2018-2019.

CONFLICT OF INTEREST

The authors declare no potential conflict of interests.

ORCID

Dimitra-Kleio Kipourou https://orcid.org/0000-0003-3416-9675

REFERENCES
1. Andersen PK, Geskus RB, de Witte T, Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol.

2012;41(3):861-870.
2. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. Hoboken, NJ: Wiley; 2002.
3. Geskus RB. Data Analysis With Competing Risks and Intermediate States. Vol 82. Boca Raton, FL: CRC Press; 2015.
4. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Statist Med. 2007;26:2389-2430.
5. Wolkewitz M, Cooper BS, Bonten MJM, Barnett AG, Schumacher M. Interpreting and comparing risks in the presence of competing

events. BMJ. 2014;349.
6. Benichou J, Gail MH. Estimates of absolute cause-specific risk in cohort studies. Biometrics. 1990;46:813-826.
7. Satagopan JM, Ben-Porat L, Berwick M, Robson M, Kutler D, Auerbach AD. A note on competing risks in survival data analysis.

Br J Cancer. 2004;91(7):1229-1235.
8. Eloranta S, Adolfsson J, Lambert PC, et al. How can we make cancer survival statistics more useful for patients and clinicians: an

illustration using localized prostate cancer in sweden. Cancer Causes Control. 2013;24(3):505-515.
9. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496-509.

10. Andersen PK, Keiding N. Interpretability and importance of functionals in competing risks and multistate models. Statist Med.
2012;31(11-12):1074-1088.

11. Ozenne B, Sørensen AL, Scheike T, Torp-Pedersen C, Gerds TA. riskRegression: predicting the risk of an event using Cox regression
models. R Journal. 2017;9(2):440-460.

12. Hinchliffe SR, Lambert PC. Flexible parametric modelling of cause-specific hazards to estimate cumulative incidence functions. BMC Med
Res Methodol. 2013;13(1):13.

13. Zhang X, Loberiza FR, Klein JP, Zhang M-J. A SAS macro for estimation of direct adjusted survival curves based on a stratified Cox
regression model. Comput Methods Programs Biomed. 2007;88(2):95-101.

14. Storer BE, Gooley TA, Jones MP. Adjusted estimates for time-to-event endpoints. Lifetime Data Anal. 2008;14(4):484-495.
15. Remontet L, Bossard N, Belot A, Esteve J. An overall strategy based on regression models to estimate relative survival and model the effects

of prognostic factors in cancer survival studies. Statist Med. 2007;26(10):2214-2228.
16. Charvat H, Remontet L, Bossard N, et al. A multilevel excess hazard model to estimate net survival on hierarchical data allowing for

non-linear and non-proportional effects of covariates. Statist Med. 2016;35(18):3066-3084.
17. Belot A, Abrahamowicz M, Remontet L, Giorgi R. Flexible modeling of competing risks in survival analysis. Statist Med. 2010;

29(23):2453-2468.

https://orcid.org/0000-0003-3416-9675
https://orcid.org/0000-0003-3416-9675


3910 KIPOUROU ET AL.

18. Gail MH, Byar DP. Variance calculations for direct adjusted survival curves, with applications to testing for no treatment effect. Biometrical
Journal. 1986;28(5):587-599.

19. Therneau TM, Crowson CS, Atkinson EJ. Adjusted Survival Curves. 2015. cran.r-project.org/web/packages/survival/vignettes/adjcurve.
pdf

20. Makuch RW. Adjusted survival curve estimation using covariates. J Chronic Dis. 1982;35(6):437-443.
21. Cupples LA, Gagnon DR, Ramaswamy R, D'Agostino RB. Age-adjusted survival curves with application in the Framingham study. Statist

Med. 1995;14(16):1731-1744.
22. Nieto FJ, Coresh J. Adjusting survival curves for confounders: a review and a new method. Am J Epidemiol. 1996;143(10):1059-1068.
23. Neumann A, Billionnet C. Covariate adjustment of cumulative incidence functions for competing risks data using inverse probability of

treatment weighting. Comput Methods Programs Biomed. 2016;129:63-70.
24. Hernán MA. The hazards of hazard ratios. Epidemiol Camb Mass 2010;21(1):13.
25. Cole SR, Lau B, Eron JJ, et al. Estimation of the standardized risk difference and ratio in a competing risks framework: application to

injection drug use and progression to aids after initiation of antiretroviral therapy. Am J Epidemiol. 2014;181(4):238-245.
26. Lesko CR, Lau B. Bias due to confounders for the exposure–competing risk relationship. Epidemiology. 2017;28(1):20-27.
27. Ross SM. Simulation (Statistical Modeling and Decision Science). Cambridge, MA: Academic Press; 1997.
28. Belot A, Launoy G, Remontet L, Giorgi R, Jooste V. Competing risk models to estimate the excess mortality and the first recurrent-event

hazards. BMC Med Res Methodol. 2011;11(1):78.
29. Bossard N, Velten M, Remontet L, et al. Survival of cancer patients in france: a population-based study from The Association of the French

Cancer Registries (FRANCIM). Eur J Cancer. 2007;43(1):149-160.
30. Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Statist Med. 2006;25(24):4279-4292.
31. Latouche A, Allignol A, Beyersmann J, Labopin M, Fine JP. A competing risks analysis should report results on all s and cumulative

incidence functions. J Clin Epidemiol. 2013;66(6):648-653.
32. Remontet L, Bossard N, Iwaz J, Estève J, Belot A. Framework and optimisation procedure for flexible parametric survival models. Statist

Med. 2015;34(25):3376-3377.
33. Charvat H, Bossard N, Daubisse L, Binder F, Belot A, Remontet L. Probabilities of dying from cancer and other causes in french cancer

patients based on an unbiased estimator of net survival: a study of five common cancers. Cancer Epidemiology. 2013;37(6):857-863.
34. Sauerbrei W, Royston P, Look M. A new proposal for multivariable modelling of time-varying effects in survival data based on fractional

polynomial time-transformation. Biometrical Journal. 2007;49(3):453-473.
35. Wynant W, Abrahamowicz M. Impact of the model-building strategy on inference about nonlinear and time-dependent covariate effects

in survival analysis. Statist Med. 2014;33(19):3318-3337.
36. Heinze G, Wallisch C, Dunkler D. Variable selection – a review and recommendations for the practicing statistician. Biometrical Journal.

2018;60(3):431-449.
37. Efron B. Estimation and accuracy after model selection. J Am Stat Assoc. 2014;109(507):991-1007.
38. Buckland S, Burnham K, Augustin N. Model selection: an integral part of inference. Biometrics. 1997;53:603-618.
39. Wynant W, Abrahamowicz M. Flexible estimation of survival curves conditional on non-linear and time-dependent predictor effects.

Statist Med. 2016;35(4):553-565.

SUPPORTING INFORMATION
Figures A1.1-A1.4 and Tables A1.1-A1.3 can be found in Appendix 1. The R-code is provided in Appendix 2.
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Kipourou D-K, Charvat H, Rachet B, Belot A. Estimation of the adjusted cause-specific
cumulative probability using flexible regression models for the cause-specific hazards. Statistics in Medicine.
2019;38:3896–3910. https://doi.org/10.1002/sim.8209

cran.r-project.org/web/packages/survival/vignettes/adjcurve.pdf
cran.r-project.org/web/packages/survival/vignettes/adjcurve.pdf
https://doi.org/10.1002/sim.8209
https://doi.org/10.1002/sim.8209

	Estimation of the adjusted cause-specific cumulative probability using flexible regression models for the cause-specific hazards
	Abstract
	INTRODUCTION
	METHODS
	Flexible hazard-based regression model
	Cause-specific hazard model
	Likelihood function

	Estimation of the cumulative probabilities of death from each cause
	Individual-level prediction of the probability of death from a given cause
	Point estimates
	Variance

	Population-level prediction of the probability of death from a given cause
	Point estimates
	Variance

	Adjusted cumulative probability of death from cause jand their difference

	Implementation

	SIMULATION STUDY
	Data generation and simulation design
	Analysis of simulated data
	Results

	ILLUSTRATIVE EXAMPLE
	DISCUSSION
	REFERENCES


