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Inference in neuroimaging typically occurs at the level of focal brain areas or circuits.
Yet, increasingly, well-powered studies paint a much richer picture of broad-scale effects
distributed throughout the brain, suggesting that many focal reports may only reflect
the tip of the iceberg of underlying effects. How focal versus broad-scale perspectives
influence the inferences we make has not yet been comprehensively evaluated using real
data. Here, we compare sensitivity and specificity across procedures representing multi-
ple levels of inference using an empirical benchmarking procedure that resamples task-
based connectomes from the Human Connectome Project dataset (∼1,000 subjects,
7 tasks, 3 resampling group sizes, 7 inferential procedures). Only broad-scale (network
and whole brain) procedures obtained the traditional 80% statistical power level to
detect an average effect, reflecting >20% more statistical power than focal (edge and
cluster) procedures. Power also increased substantially for false discovery rate– com-
pared with familywise error rate–controlling procedures. The downsides are fairly lim-
ited; the loss in specificity for broad-scale and FDR procedures was relatively modest
compared to the gains in power. Furthermore, the broad-scale methods we introduce
are simple, fast, and easy to use, providing a straightforward starting point for research-
ers. This also points to the promise of more sophisticated broad-scale methods for not
only functional connectivity but also related fields, including task-based activation. Alto-
gether, this work demonstrates that shifting the scale of inference and choosing FDR
control are both immediately attainable and can help remedy the issues with statistical
power plaguing typical studies in the field.
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Functional magnetic resonance imaging (fMRI) is a cornerstone technique for exploring
the living human brain. Most fMRI research is geared toward pinpointing specific brain
areas or circuits (i.e., small “clusters” of neighboring voxels or edges) (1, 2)* associated
with behaviors, traits, and other phenotypic information. While performing inference at
the cluster level accurately reflects some properties of the underlying signal, even decades
ago the designers of this approach remarked that more distributed models may better
capture the underlying biology (1). Recent work examining datasets that are larger—and
deeper—than ever has begun to reveal that task-related activity involves processes occur-
ring in concert throughout the brain (3–5). Large groups of edges across the brain have
also been demonstrated to act in concert (6, 7). Yet, despite the emergence of broader-
scale methods for inference (8–11) and prediction (12, 13), cluster-level inference
remains the primary workhorse for typical fMRI studies.
Given the distributed nature of neural processes, moving to a broader level of infer-

ence that spans widespread brain areas may increase our ability to detect effects
(i.e., “power” or “sensitivity”). This is critical since the field has recently acknowledged
an endemic lack of statistical power in typical fMRI studies (4, 14, 15). Underpowered
studies not only are ill-equipped to detect effects that do exist but also lead to findings
that do not replicate or only uncover a small tip of the iceberg of true effects. Many have
rightly advocated for a variety of approaches to improve power and reproducibility
(e.g., increasing sample sizes, designing tasks that elicit more robust responses). However,
relatively little attention has been paid to how simply redefining the level of inference
may improve power, a step that can be readily adopted by typical researchers.
Using functional connectivity data, we comprehensively explored how power changes

with the spatial scale of inference at the level of edges, clusters, large-scale networks, and
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*When mapping brain areas, researchers typically estimate a statistic at each of the smallest units of the brain scan, called
voxels, and then perform inference by pooling information across clusters of neighboring voxels. This is more powerful
than voxel-level inference when neighboring voxels show sufficient dependence (i.e., share similar properties)—as is the
case in fMRI1—in part because it avoids multiple testing correction across thousands of relatively noisy voxels. Cluster-
based procedures have also been translated for inference in fMRI brain networks or functional connectivity; namely, the
NBS2 is used to perform inference on clusters defined as groups of adjacent edges (i.e., components).
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the whole brain. We simultaneously evaluated key measures of
specificity reflecting the ability to filter out “false positives” and
hone in on real effects and how results changed when varying
the error measure targeted for multiple comparison correction.
Critically, designating a full dataset as the population of interest
enabled us to fully determine “ground truth” effects while preserv-
ing the structure of real data.
Altogether, broader levels of inference provided substantially

greater power to detect known empirical effects. In fact, at our
smallest sample size (n = 40, almost double the typical (15, 16)
sample size of n = 25), the power to detect an average effect at
the edge and cluster levels was nearly half that of the network
and whole-brain levels. Even for the largest sample size measured
here (n = 120), cluster-level inference still missed effects in more
than half of the connectome. We found that the gain in power
for broader-level inference is closely related to the widespread
nature of ground truth effects in a task-based paradigm and that
this comes at a relatively modest loss in specificity. All approaches
further benefited from more permissive targets for multiple test-
ing correction—particularly smaller-scale approaches—and we
argue that the loss in specificity remains reasonable for many typ-
ical studies relative to the gain in power. We finally discuss how
we expect these findings from functional connectivity to general-
ize to the task-based activation context and beyond, including
other fields with similar widespread dependence in their data.

Results

Drawing upon recent computational frameworks for benchmark-
ing fMRI statistical procedures in large, real datasets (3, 17),
including our previous work in the task-based activation context
(4), we empirically estimated power across levels of inference by
resampling functional connectomes derived from the Human
Connectome Project (HCP) S1200 dataset (methods summary in
Fig. 1; Methods for details). Seven procedures were used to perform
inference at each level, as follows: “edge,” “edge false discovery rate
(FDR),” “cluster size,” “cluster threshold-free cluster enhancement
(TFCE),” “network,” “network (FDR),” and “whole brain.” Pro-
cedures controlled either the chance of at least one false positive
(i.e., familywise error rate [FWER]) or the expected proportion of
false positives relative to all positives (i.e., FDR). At each resam-
pling repetition, differences between task and rest connectivity
were estimated for a paired sample and compared with the full
sample ground truth dataset. “True positives” were defined as
detections (i.e., significant edges, clusters, etc.) in the direction
matching the ground truth effect sign (akin to refs. 4, 11), and
false positives were defined as detections in the opposite direction
as the ground truth or during a “fake task contrast” (i.e., REST1
versus REST2, shuffled). Note that the distinction between true
and false positives rests on the ground truth effect sign, which is
treated as exactly determined here for the purpose of benchmark-
ing. While sign errors may occur in the full dataset particularly
for small magnitude effects, the fact that most effects are found
to be significant based on the full dataset mitigates this concern
(SI Appendix, SI Results 1. Limitations in generalizability of ground
truth and performance measures, for further discussion of this and
other issues of generalizability). True and false positives were then
used to calculate several measures of performance (SI Appendix,
Fig. 1). Benchmarking experiments were conducted for each of
the seven task scans available in the dataset, and three group sizes
were chosen for resampling to span from high typical to moder-
ate sample sizes for this field (n = 40, 80, 120) (15, 16).
Overall, the average power to detect a ground truth effect

(Fig. 2A) was substantially larger for broader levels of inference

and FDR control (Fig. 2B and SI Appendix, Fig. 2A). Only net-
work- and whole-brain-level approaches attained or surpassed
“adequate” power, defined here as the commonly targeted
β = 80% power level. The whole-brain-level procedure in partic-
ular detected all effects even at the smallest sample size. The
other approaches ranged from 10% (edge, n = 40) to 65%
(edge FDR, n = 120) average power. The difference between
procedures was particularly evident in the smallest group measured
(n = 40), which is a sample size yet above average for the field.
The gap between approaches decreased with larger samples,
although a sample larger than the largest measured here (n = 120)
would be needed to achieve adequate power to detect the average
effect for edge- and cluster-level procedures. However, the choice
of error rate under control also plays a role; the gain in power for
FDR-controlling procedures relative to FWER-controlling proce-
dures was substantial enough that edge-level FDR control resulted
in greater power than cluster-level FWER-controlling procedures.
A similar pattern of results but lower power overall was observed
for weaker and sparser ground truth maps (SI Appendix, Fig. 10).

We also examined the proportion of effects that were ade-
quately powered (Fig. 2C and SI Appendix, Fig. 2B). At the
more typical sample size (n = 40), adequate power was obtained
for a quarter or fewer of edges when using edge- and cluster-
level procedures. While this represents a substantial number of
edges—a quarter of the connectome is nearly 9,000 edges—it
also implies that three-quarters or more of the connectome can-
not be detected at desirable rates. In contrast, adequate power
was obtained for more than half of the network-level effects at
n = 40, and again, all whole-brain effects were consistently
detected. Although the gap between approaches decreased with
sample size, the more focal approaches remained inadequately pow-
ered for over half the connectome with even the largest sample size.

How the Spatial Extent of Ground Truth Effects Influences
Power. Several factors contribute to the ability to detect effects.
The most important of these is the degree to which the spatial
extent of ground truth effects matches the inferential procedure
used. We estimated nonzero effects for all edges in the connec-
tome, which correspond with the broadest scale of inference.
To evaluate this decision, we examined the evidence against the
null hypothesis across the connectome. On average across tasks,
the majority of edges (87%, controlling FDR; 66%, controlling
FWER) and networks (97%, FDR; 82%, FWER) showed sig-
nificant differences between task and rest with a simple univari-
ate contrast (P < 0.05, two-sided t test; average task effect sizes
in Fig. 3A and SI Appendix, Fig. 3 A and C; effect size by task in
Fig. 3C). Furthermore, clusters spanned the whole brain; only a
single positive cluster and single negative cluster were found
when using cluster-determining thresholds up to a large effect
size (i.e., thresholds of jdj > 0.2, jdj > 0.5, and jdj > 0.8 each
resulted in only two clusters; Fig. 3A and SI Appendix, Fig. 3B);
only using a very large threshold (jdj > 1.0) produced more than
two clusters in a very sparse graph (m = 2 positive clusters and
m = 3 negative clusters). Pooling within networks or across the
whole connectome increased effect sizes (Fig. 3B and SI Appendix,
Fig. 3D), suggesting coordinated activity across widespread brain
areas (58% of networks showed medium or larger effect sizes
compared with 23% of edges). Importantly, the fact that the
majority of effects estimated in the full sample are significant
implies that estimated ground truth effect signs are meaningful,
thus supporting the validity of their use for benchmarking power.

However, we do not expect simple dependence across the
whole connectome; networks also contributed unique informa-
tion. The original Shen268 networks were significantly more
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heterogeneous than when randomly shuffling nodes across
communities, suggesting that some information may be shared
within each network that is not shared across all networks (Fig.
3D). Despite notable differences between within- and between-
community effects, within-community edges were not inter-
changeable and neither were between-community edges; the
original within- and between-community networks were more
heterogeneous than when shuffling within- or between-
community edges, respectively (Fig. 3D). The Shen268 parti-
tion also showed a fair amount of overlap with a partition
defined in the HCP with the Louvain method (SI Appendix,
Fig. 4). Thus, although pooling within the Shen268 networks
is a fairly simple way to account for widespread dependence
that is not refined by the structure of the data at hand, it cap-
tures some meaningful network-level structure in the indepen-
dent HCP data (SI Appendix, SI Results 2. Generalizability of
the Shen268 partition to the HCP data for details).

How the Error Rate under Control (FDR vs. FWER) Influences
Power. As expected, power varied not only with scale of inference
but also with the error rate under control, favoring FDR
(although, also see Cost in terms of specificity: False positives and
localizing power). Exploring this further, FDR-controlling proce-
dures were more likely to detect an effect of a given size compared
with FWER-controlling procedures (Fig. 2D and SI Appendix,
Fig. 2C). In fact, controlling FDR instead of FWER was like hav-
ing twice the subjects to detect the same sized effect—for exam-
ple, for a medium-sized network-level effect, power with FDR
control at 40 subjects was approximately equal to that of FWER
control with 80 subjects (βnetwork_FDR,jdj = 0.5, n = 40 = 85%;
βnetwork, jdj = 0.5, n = 80 = 84%). Of note, FDR-controlling

procedures offered similar power for the same effect size regardless
of level of inference. For example, edge (FDR) and network
(FDR) approaches both had similar power to detect a medium-
sized effect at n = 40 (i.e., for jdj = 0.5, n = 40: βedge_FDR, jdj =
0.5, n = 40 = 80%; βnetwork_FDR, jdj = 0.5, n = 40 = 85%); yet, at
the same time, there are far fewer medium-sized effects at the
edge level than the network level (Fig. 3B). In contrast, there were
clear differences between FWER-controlling procedures with an
intermediate scale of inference actually showing the greatest benefit;
cluster-level procedures offered the best power for a given effect size
(especially cluster TFCE), whereas the edge-level procedure showed
a disproportionately low power for the same effect size (e.g., for
jdj = 0.5, n= 40: βcluster_TFCE, jd j = 0.5, n = 40= 62%; βcluster, jd j = 0.

5, n = 40= 53% compared with βedge, jdj = 0.5, n = 40= 3%).

Spatial Bias in Effect Size and Power. The spatial distribution
of effects was strikingly consistent across tasks, with decreasing
connectivity (toward zero) within-community and between
motor and visual communities during task compared with rest
(Fig. 3 A and C and SI Appendix, Figs. 5 and 6). These effects
are therefore expected to be among the most readily detected
during benchmarking. The consistency across task contrasts is
primarily because, despite high similarity between task and rest
connectomes, rest was distinct from each task in a consistent
way. Differences between task and rest were further enhanced
by the longer resting scan duration (SI Appendix, SI Results 3.
Differences between task and rest, and effect of unbalanced
scan durations).

It is already known that edges with larger effects tend to
show greater power; we further explored whether some areas
showed greater power independent of effect size by examining
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the residuals of the effect size-power curves (SI Appendix, Fig. 7).
This revealed a spatial bias in power independent of effect size—
that is, for the same effect size, effects were more likely to be
detected in certain areas compared to others. Specifically, edge
(FDR)- and cluster-level approaches were slightly more likely to
detect effects in subcortical and cerebellar networks at small sam-
ple sizes, but this small bias decreased with the larger sample
sizes.

Cost in Terms of Specificity: False Positives and Localizing
Power. Researchers strive to detect as many effects as possible
while simultaneously preventing the emergence of “too many”
false positives. While how many is too many remains subjective,
very few false positives (i.e., detections in the wrong direction)
were observed relative to true positives. For each procedure, less

than 0.5% of the connectome exhibited false positives (i.e.,
<179 edges; Fig. 4A), which constituted less than 1% of all
detected effects (Fig. 4B). That is, one false positive was observed
for at least every 100 true positives. As expected, FDR-
controlling approaches were most permissive in this sense;
FWER-controlling procedures had a much smaller FDR (below
0.25%). This same pattern was found for the weaker and sparser
effect size ground truth maps but, as expected, more false posi-
tives were found for the sparser conditions (SI Appendix, Fig.
11). The sparsest condition showed the most false positives
(up to 3.1% of the connectome), which is expected because it
likely treats many nonneglible effects as null (in this condition,
anything below a small effect size of d = 0.2 is null).

Another form of specificity important for researchers is spatial
specificity—the ability to spatially pinpoint effects. By definition,
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broader scales of inference permit less certainty in localizing
effects. In practice, we can estimate how much spatial precision is
sacrificed by examining the extent to which detections overlap
with true edge-level effects. Only edge- and cluster-level results
showed perfect or near-perfect overlap with underlying edge-level
effects (Fig. 4C). Yet, network-level procedures were not unrea-
sonably imprecise—on average across repetitions, ∼70% of edges
across all detected networks reflected true effects. Note that preci-
sion is not shown for the whole-brain procedure as it alone is
based on a test of inequality as opposed to a one-sided test. Since
all edges are nonzero in the ground truth, any significant result
for the whole-brain procedure will necessarily have full spatial pre-
cision, but this is not directly comparable with the other proce-
dures (cf SI Appendix, Supplemental Method 4.5. Spatial Precision).
A similar pattern was observed for the weaker and sparser ground
truth maps except that sparsity reduced spatial precision for all
approaches, affecting the network-level FDR approach the most
and the edge-level and cluster-level (Network-Based Statistic
[NBS]) FWER approaches the least (SI Appendix, Fig. 11).

Finally, it is critical that all inferential procedures achieve the
expected control of false positives. FWER-controlling proce-
dures are designed to limit weak- and strong-sense FWER (i.e.,
when the null is true everywhere and not, respectively), whereas
FDR-controlling procedures are designed to limit FDR (and, as
a corollary, weak-sense FWER (18)). All procedures achieved
valid control (Fig. 4 B and D), and no bias in the spatial distri-
bution of false positives was observed (SI Appendix, Fig. 8). For
the weaker and sparser conditions, only the sparsest experiment
did not attain valid control for edge- and network-level
approaches (SI Appendix, Fig. 11), which is again expected
because it likely treats many nonneglible effects as null. There
may be some room for improvement in edge- and cluster-level
approaches, which appeared overconservative in controlling
errors. Yet, the better power for broader scale inference was not
solely due to relatively greater permissiveness; while network-
level approaches permitted more errors, no false positives were
observed for the whole-brain inferential approach despite its
100% power. No clear relationship was observed between

A

C

D

B

Fig. 3. Spatial extent of effects in the full ground truth dataset. (A) Edge-, cluster-, and network-level effects. The average effect size and average number of signifi-
cant effects across the seven tasks (task-rest) are shown for the edge and network level (P < 0.05, two-sided t test, FDR corrected via Storey). For the cluster level,
the average task-rest effect size is used to determine clusters; all edges surviving a cluster-determining threshold of jdj = 0.8 (i.e., edges with d > 0.8 and d < �0.8)
are shown, and separate clusters of contiguous edges are counted. Likewise, all thresholds below jdj = 0.8 yielded only two clusters. Within-community connectivity,
generally lower during task than rest, is highlighted by the yellow dotted rectangle. (B) Histogram of effect sizes at the edge level (40 bins), network level (20 bins),
and whole-brain level (i.e., pooled across all edges; 2 bins). (C) Edge- and network-level effects by task. WM, working memory. (D) Variability between networks. Box-
plots show the median (red line), interquartile range (IQR; blue box), and outliers (red whiskers; beyond 1.5 × IQR) of edges within each network. F-statistics quantify
between- versus within-network variance, and significance is estimated by 1) shuffling node-community memberships (black), and 2) shuffling edges while keeping
within- and between-community structure (green and orange). The vertical line separates within- from between-community networks, and the horizontal line indi-
cates 0.
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Fig. 4. Specificity across levels of inference. Results from the following measures are shown at n = 80 averaged across all 7 tasks except as noted,
alongside definitions and toy example maps (all sample sizes in SI Appendix, Fig. 9). (A) Spatial extent of false positives, defined as the proportion of the
connectome showing false positives. (B) FDR, defined as the proportion of detections that are true positives. (C) Spatial precision, defined as the propor-
tion of detections that overlap with ground truth effects in the same direction. (D) FWER, strong sense (Top) and weak sense (Bottom; obtained using the
fake task contrast), defined as the percent of repetitions with at least one false positive. The expected 95% CI for FWER is highlighted in gray, and valid
control is defined as falling below the upper bound. (E) Example false positive maps from the first repetition of emotion vs. rest shown via matrix, circle
plot, and glass brain (no sparsification). Toy examples show results only for a single toy repetition and count only unique edges (e.g., lower triangle
only). An abridged list of definitions for key terms and notation is provided at the bottom of the figure; for details, see SI Appendix, Fig. 1 and
Supplemental Method 4.
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sample size and FWER, although cluster- and network-level
approaches were most conservative at the lowest sample sizes.
Finally, the tradeoff between FDR and FWER control is readily
apparent when examining strong-sense FWER results; at the
edge level in particular, controlling FDR resulted in at least one
false positive at every repetition, but this could be as small as
one out of tens of thousands of edges.

Discussion

Despite the popularity of focal inferential procedures, the present
work empirically demonstrates that simple procedures that
account for broad-scale dependence better reflect the spatial
extent of effects and thus substantially improve power. Together
with recent work in large and deep task-based activation datasets
(3–5), these results indicate that cluster-based inference may
only reveal the tip of the iceberg of true widespread effects in
typically sized task-based studies. The present findings suggest
that leveling up may be an optimal path forward for many typi-
cal studies that need to prioritize statistical power at the cost of a
relatively modest decrease in specificity.

Implications for the Scale of Functional Connectivity Inference.
Shifting to a broader level scope stands in contrast with the
conventional focus on localization as the main priority. In fact,
some have suggested that users consider employing more strin-
gent cluster-determining thresholds to obtain even more focal
inferences (19). However, the present results challenge the util-
ity and meaningfulness of standard goals of focal inference.
Broader scale procedures were better equipped to detect effects
because they better matched the underlying widespread distri-
bution of effects across a wide variety of tasks. This is consistent
with the intuition and evidence that an organ as complex as the
brain is unlikely to have areas wholly uninvolved in many stud-
ied cognitive processes (5, 20). In fact, increasing evidence sug-
gests that key observable facets of brain processes operate in a
low dimensional space (21). At the neuronal level, complex
interactions between brain areas underlie emergent population-
level properties that cannot be captured at the level of individ-
ual neurons; similar observations are becoming prevalent in
neuroimaging (22). Notably, this substantial low dimensional
structure is expected to account for the unmatched perfor-
mance of the sole multivariate method tested here and in
related recent work (14).
That said, there are certainly limitations to more diffuse

approaches. While we found them to be beneficial across a vari-
ety of task-based contexts, they can gloss over unique informa-
tion occurring in individual areas. In particular, approaches that
combine information widely (most notably, the whole-brain pro-
cedure) can obscure the detection of truly focal effects in some
contexts (e.g., pathology originating in a specific area) or hinder
the discovery of focal targets for intervention (e.g., brain stimula-
tion). Furthermore, broader scale procedures suffered a loss in
spatial precision even when effects were widespread. However,
the decrease in spatial precision seemed relatively modest com-
pared with the gain in power, especially for typically sized studies
using typical task paradigms. For example, given a sample size of
40 in a task-based study, which of the following would be pref-
erable for a researcher: only 10% power but 100% spatial preci-
sion (as in edge FWER); quadruple the power (40%) and equal
spatial precision but now controlling FDR instead of FWER to
5% (as in edge FDR); nearly double that power (75%) but with
a modest loss in spatial precision (70%) (as in network FDR);
or, finally, 100% power with a multivariate procedure but no

localization to individual brain areas (as in whole brain)? This
question is particularly poignant for typically sized studies, which
may not be sensitive to focal effects even if they do occur in a
study. Altogether, we believe that network-level inference, which
balances aggregating widespread effects for power with retaining
unique network-specific information for specificity, may be a
step in the right direction for many typical studies.

Matching Inferential Procedures to Spatially Extended and
Multivariate Signals. Many approaches can be used to capture
distributed effects. One of the simplest options is to pool data
within predefined areas in a mass univariate fashion, as in the
Constrained NBC (cNBS) (11) approach used here. Simple pool-
ing may be helpful if one expects pooled variables to be random
realizations of a shared underlying effect (i.e., redundant) and
noise to be relatively independent across variables within the pool
(and thus averaged out). This can even be conducted more sim-
ply than the procedure presented here; if one is comfortable with
the assumptions, one can eschew the nonparametric estimation of
P values for a simpler parametric process involving averaging
within edge groups, running a standard parametric test to esti-
mate P values, and performing multiple comparison correction.
Beyond this, there are many degrees of freedom, from the choice
of the atlas and partition to the data aggregation strategy and
more. A major concern is how to balance leveraging large datasets
to inform smaller studies while also respecting the unique proper-
ties of the study at hand (e.g., study-specific network configura-
tions (23)). Smaller studies stand to benefit the most from a priori
partitions since they are most at risk for underestimating the spa-
tial extent of effects. It can be challenging to choose from the
many available resting-state network definitions to define this par-
tition, but evidence suggests core components of these networks
are fairly robust (24), so many definitions may be appropriate
(one can also compare with the universal taxonomy in ref. 24).
One can also remove networks from evaluation in a hypothesis-
driven fashion to improve power; between-community networks
may be good candidates for removal since more tests are conducted
between- than within-community networks.

While mass univariate pooling within predefined areas has the
advantage of simplicity and can be readily incorporated into
research workflows, dependence in brain data is unlikely to be so
simple. This may account for the lower performance in machine
learning approaches that employ constrained pooling (25); such
approaches likely combine complex multivariate information
more effectively than pooling (although broader scale pooling
(25) and summarization (26) can improve test–retest reliability
for predictive models). One might choose to explicitly model
dependence across the brain based on a priori expectations using
a more principled approach (e.g., structural equation modeling,
Bayesian analysis) or to estimate the dependence from the data
itself and use it in a nested or (principled) circular (27) proce-
dure. Note that broader scale inference does not preclude finer-
grained analysis. In fact, the designers of cluster-level inference
recommended that exploratory studies start with set-level infer-
ence and employ a step-down approach that should not increase
FWER (1); this has recently been formalized with the All Reso-
lutions Inference framework (28). Broader scale findings can also
be used as a starting point to subsequently collect more data for
more refined localization. It may also be valuable to explicitly
incorporate information occurring at different levels simulta-
neously (20, 29). One may alternatively eschew localization
altogether and leverage one of the many statistical and machine-
learning approaches designed to capture the low dimensional,
multivariate nature of the signal (e.g., manifold learning (22)).
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Finally, as alluded to above, evidence increasingly points
toward the trivial nature of a mass null hypothesis in the context
of widespread, multivariate effects. One compelling option is to
rethink traditional frequentist approaches and eschew estimates
regarding the zero null in favor of those regarding effect size, as
is done by the confidence sets approach (this also has the advan-
tage of providing spatial extent estimates) (30). Alternatively, it
may be useful to adopt a Bayesian approach for characterizing
the full distribution of effects based on prior evidence (31, 32).
Large openly available datasets may offer some insights for
building these priors; more about the nature, structure, and lim-
itations of the effects estimated here is discussed in SI Appendix,
SI Results 1. Limitations in generalizability of ground truth and
performance measures. Overall, the present results are just a dem-
onstration and a starting point and merely scratch the surface of
what possible inferential procedures can be used to account for
dependence and combine information across the brain.

Choosing FDR over FWER Control. FDR-controlling procedures
offered substantially greater power than FWER-controlling pro-
cedures, such that more focal inference when used with FDR
actually outperformed broader scale inference when used with
FWER. Neuroimaging researchers have been taught to prioritize
the control of false positives and with good reason—as Richard
Feynman famously said, “the first principle is that you must not
fool yourself and you are the easiest person to fool.” Indeed,
issues with the adequate control of false positives have haunted
the field for quite some time, especially due to the need to cor-
rect for the large number of tests across the space of an fMRI
image (17, 33). However, researchers pay relatively little atten-
tion to the fact that a more stringent control of false positives
comes at the cost of greater false negatives (i.e., less power and
true positives). Both types of error can meaningfully impair sci-
entific discovery (34), and it may be prudent to instead prioritize
a tradeoff between the two. FDR control is beneficial when one
is willing to admit more false positives to obtain more true posi-
tives and should control FWER when the null is true everywhere
(18). The resulting decrease in spatial specificity may be a reason-
able sacrifice in the context of distributed fMRI effects in the
present study.
The field has highlighted the potential power gains for FDR

over FWER (35) (relatedly, see ref. 3), and recently, when the
field reckoned with invalid FWER control for popular paramet-
ric cluster-level inferential procedures, a follow-up study sug-
gested that results would still hold if studies had controlled FDR
(36). Whether the lagging popularity of FDR is due to conven-
tion, the accessibility of tools, or other reasons, the present
results underscore an opportunity for more FDR-based tools.

Task Effects on Connectivity and (Limited) Generalizability to
Other Contexts. How the brain functionally reorganizes during
task and rest is a major topic of study. As has been shown before
(37), we observed that rest and task connectivity were highly simi-
lar. However, whereas paired differences between tasks were rela-
tively unique, rest was distinct from each task in a consistent way;
task connectivity was generally lower within communities and
between motor and visual communities. Previous reports have
also showed that integration is greater during task than rest
(38, 39) and increases with cognitive demand (40), suggesting
that more cognitively complex tasks require more collaboration
across systems performing unique functions. These results together
illustrate the divide between cognitively demanding task states and
less demanding rest, which adds nuance to the common notion
that rest explores the full repertoire of task-relevant states.

Since contrasting task with rest may reflect general demand-
specific rather than cognition-specific effects, investigations may
benefit from a more task-relevant reference—perhaps a task with
similar cognitive demands, or an estimate of intrinsic connectiv-
ity that includes task (e.g., (41)). Importantly, task–rest differ-
ences were enhanced by the longer resting scan duration, and
care should be taken to account for differences in the scan dura-
tion that can bias contrasts toward the longer (typically rest)
scan. Besides being potentially misleading for drawing task-
specific conclusions, rest data have also been shown to be subop-
timal for predicting behavior compared with task data (42). As
such, the role of rest in functional connectivity analysis bears
careful consideration.

More generally, the spatial distribution and magnitude of
effects are expected to vary substantially with study design, statisti-
cal models, covariates, and more. We aimed to test the robustness
of the benchmarking results by not only including a variety of
tasks but also evaluating weaker effect sizes and a sparser map.
Yet, there are innumerable additional variations on the present
study. Scan duration and trial number in particular are known to
influence test–retest reliability (43, 44) and efficiency (45). The
influence of these factors on study power remains to be deter-
mined. Brain–behavior associations in particular appear to be an
order of magnitude smaller than the present task-based effects;
perhaps due to weaker or more heterogeneous effects, differences
between edge- and network-level results were not apparent for
such associations (14). Thus, while we expect results to generalize
to reasonably similar study designs, the spatial extent of effects
and optimal level of inference for study designs that differ substan-
tially are open questions (SI Appendix, SI Results 1. Limitations in
generalizability of ground truth and performance measures).

Implications for Data beyond Functional Connectivity. This
study is motivated in part by observations from task-based acti-
vation mapping; therefore, it is only fitting that we expect impli-
cations for that context as well. While many typically sized
activation-based studies demonstrate results in localized blobs,
larger and deeper studies show widespread activations across the
brain (3–5). As such, a larger scale inference is expected to bene-
fit activation-based studies as well. Yet, the best strategy for com-
bining complex multivariate information in that context remains
to be determined. Assigning areas to resting state communities
may be a start, although this depends on the extent to which
coactivation occurs within the bounds of these communities.
Traditional dimension reduction procedures like independent
component analysis may better reflect the coactivation patterns
in the data at hand (46). While the methods that best capture
this widespread signal remain an open question, there is growing
appreciation in the community that localized processes are an
artifact of small sample sizes and historical inferential procedures
and only reflect the tip of the iceberg of true effects (3–5, 30).
The present work adds indirect support to this perspective.

Outside of neuroimaging, much of biomedical research also
struggles with maintaining power given high-dimensional, depen-
dent data with small univariate effect sizes. Many other modalities
in neuroscience are now being used to simultaneously record many
signals (e.g., electroencephalography, optical imaging) and thus
also reckon with spatially dependent observations. Genetic meth-
odologists are also exploring approaches that capture widespread
effects (47, 48) and translating methods to neuroimaging (12).
Since we all face similar issues, it may be fruitful for neuroimaging
to examine methods for evaluating and capturing dependence in
other fields, and perhaps methods developed in neuroimaging may
in turn have relevance to those contexts.
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Conclusion

Cluster-level inference enabled many important discoveries when
the field was first exploring tailored procedures for more power-
ful inference beyond the voxel level. Today, larger-than-ever
datasets and computational resources have facilitated the evolu-
tion of statistical procedures based on a more complete under-
standing of their accuracy and the nature of the signal. Here, we
highlighted one important avenue toward continued improve-
ment, as follows: the use of procedures designed to capture the
widespread spatial effects across the brain, which provide a des-
perately needed boost in power for typically sized studies. More
generally, the impressive rise in openly available datasets in the
field presents an opportunity to better characterize elements of
the signal to inform inference for more typical studies. As we
learn more from the data, we grow better equipped to build tools
tailored to the underlying signal, which, in turn, leads us closer
to more robust and reproducible findings in neuroimaging.

Methods

Functional connectivity data derived from the HCP S1200 release were used to
estimate power and FWER. Minimally preprocessed data provided by the HCP
were further processed to regress artifact and obtain connectivity matrices of the
z-scored Pearson correlations between the 268 nodes of the Shen268 atlas (49).

A total of 168 experiments were used for benchmarking, encompassing 7
inferential procedures, 8 task contrasts, and 3 group sizes (n = 40, 80, 120). For
each experiment, paired sample tests were used for 7 real task contrasts with
rest (tasks = emotion, gambling, language, motor, relational, social, working
memory; n = 1,021 to 1,058) or one fake task contrast (contrast between two
resting runs, shuffled for each subject). At each of R = 500 repetitions, groups
were resampled followed by inference.

The seven procedures used to perform inference at each of the four levels
(edge, network, cluster, whole brain) included the following:

1) edge: a parametric procedure for FWER correction (Bonferroni procedure
(50)), wherein a significant edge implies an effect at that edge,

2) edge (FDR): a parametric procedure for FDR correction (Storey procedure
(51)), wherein a significant edge implies an effect at that edge,

3) cluster: the NBS method for cluster-level inference in the connectome with
permutation-based FWER correction (2), wherein a significant cluster implies
an effect for at least one edge within that cluster,

4) cluster (TFCE): threshold-free NBS, a threshold-free method for cluster-level
inference with permutation-based FWER correction (52), wherein a significant
edge implies an effect for at least one edge in all clusters associated with the
significant edge,

5) network: the cNBS method we recently introduced for network-level infer-
ence (11) with permutation-based estimation of network-level nulls followed
by parametric FWER correction (Bonferroni procedure), wherein a significant
network implies an effect for the pooled network (but not for any edges in
particular within that network),

6) network (FDR): the cNBS method with FDR correction (Simes procedure
(53)), wherein a significant network implies an effect for the pooled network
(but not for any edges in particular within that network), and

7) whole brain: the multivariate cNBS statistic (mv-cNBS) we introduce here for
whole-brain multivariate inference based on cNBS, wherein a significant test
implies a multivariate effect based on pooled networks.

This included both a standard procedure and a procedure expected to be
more powerful for each level except the whole brain, for which a single proce-
dure was used. Null distributions were estimated nonparametrically (i.e., with
permutation) for all but the edge-level procedures, which used parametric
approaches for feasibility (SI Appendix, SI Results 4. Nonparametric edge-level
FDR inference implemented in the NBS toolbox). One-sided tests were used for
all but the whole-brain procedure, which relied on a single multivariate statistic.
The Shen268 atlas was also used to define 10 node communities (cf ref. 54) for
partitioning the graph for cNBS and mv-cNBS. All inferential procedures have
been implemented as extensions to the Matlab NBS toolbox (except the NBS
procedure, for which we used the original procedure implemented in the tool-
box). The toolbox was extended for use in the Matlab command line.

For each resampling repetition, true positives were defined as effects
detected during resampling for the real task contrast found in the same direction
as the ground truth effect from the full sample, analogous to one-sided tests con-
ducted in the correct direction. False positives were defined as effects found in
the opposite direction as the ground truth effect for the real task contrast or any
effects found during the fake task contrast. Six measures of accuracy were then
estimated to explore the balance between true and false positives, as follows:
power, spatial extent of false positives, false discovery rate, spatial precision,
strong-sense FWER, and weak-sense FWER (i.e., when the null is true every-
where; this is the only measure that used the fake task contrast).

Data Availability. All code for inference, benchmarking, and summarization
used here is available at: https://github.com/SNeuroble/NBS_benchmarking
(55). See SI Appendix, Supplemental Methods for details. Publicly available data
were used for this work (56).
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