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Direct sequencing of single molecules through nanopores allows for accurate
quantification and full-length characterization of native RNA or complementary DNA
(cDNA) without amplification. Both nanopore-based native RNA and cDNA approaches
involve complex transcriptome procedures at a lower cost. However, there are several
differences between the two approaches. In this study, we perform matched native RNA
sequencing and cDNA sequencing to enable relevant comparisons and evaluation. Using
Saccharomyces cerevisiae, a eukaryotic model organism widely used in industrial
biotechnology, two different growing conditions are considered for comparison,
including the poly-A messenger RNA isolated from yeast cells grown in minimum
media under respirofermentative conditions supplemented with glucose (glucose
growth conditions) and from cells that had shifted to ethanol as a carbon source
(ethanol growth conditions). Library preparation for direct RNA sequencing is shorter
than that for direct cDNA sequencing. The sequence characteristics of the two methods
were different, such as sequence yields, quality score of reads, read length distribution,
and mapped on reference ability of reads. However, differential gene expression analyses
derived from the two approaches are comparable. The unique feature of direct RNA
sequencing is RNA modification; we found that the RNA modification at the 5′ end of a
transcript was underestimated due to the 3′ bias behavior of the direct RNA sequencing.
Our comprehensive evaluation from this work could help researchers make informed
choices when selecting an appropriate long-read sequencing method for understanding
gene functions, pathways, and detailed functional characterization.
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INTRODUCTION

The RNA sequencing (RNA-seq) method is now routinely used to explore a collection of all the gene
readouts present in a cell or its transcriptome. Transcriptomic changes are a result of biological
differences, making RNA-seq an exceptional opportunity to explore global regulatory networks in
cells, tissues, organisms, and diseases. The most common RNA-seq methodology currently offered
by next-generation sequencing (NGS) platforms (i.e., Illumina, Ion Torrent, and MGI) produces
hundreds of millions of short-read sequences in the range of 100–600 base pairs. The short-read
RNA-seq power provides not only large data output but also high accuracy in base calling. The short-
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read RNA-seq, therefore, is now a core component of research in
nearly all biological fields (Wang et al., 2009; Ozsolak and Milos,
2011).

Despite dominant position of NGS in transcriptomics, short-
read RNA-seq has been poorly suited for transcriptome assembly,
novel splice isoform discovery, and novel gene detection. Because
most eukaryotic messenger RNA (mRNA) transcripts are 1–2 kb
in length (Harrow et al., 2012), no matter how deeply they are
sequenced, the short-reads have to be computationally assembled
into full-length transcripts. Although this is performed using
powerful algorithms, they often fail to resolve complex transcript
isoforms expressed by the same gene. Because of these limitations,
if the reads are too short, the predicting transcripts have high
false-positive rates. In addition to the problem of isoform
detection, various sources of bias inherent to short-read RNA-
seq have also been identified, such as GC-content (Benjamini and
Speed, 2012), PCR amplification (Hansen et al., 2010), and
transcript quantification (Li et al., 2010).

The rise of long-read technologies now opens the possibility to
overcome those limitations and biases. Long-read RNA-seq
captures a full-length transcript within a single read, thereby
allowing accurate transcript annotation and enabling a
comprehensive view of the transcriptome. Sequencing
prokaryotic transcriptomes using the long-read technology
reveals complex operon structures, which provide an
important resource for functional annotation (Yan et al.,
2018). Currently, the most widely used platforms are Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies
(ONT). With the read lengths achieved with PacBio (~15 kb)
and with ONT (>30 kb), both surpass lengths of most transcripts
(Harrow et al., 2012; Oikonomopoulos et al., 2020; Udaondo
et al., 2021). However, with ONT, if native RNA can be directly
sequenced RNA (dRNA-seq) without PCR amplification, then
amplification biases are eliminated (Workman et al., 2019). The
direct sequencing feature permits detection of RNA base
modifications, such as N6-methyladenine (m6A), which has
been linked to human obesity and cancer (Mortazavi et al.,
2008). In addition, ONT is a more cost-effective method than
PacBio in terms of machine cost and number of bases per 1,000
USD (Byrne et al., 2019).

Using dRNA-seq (Jenjaroenpun et al., 2018), we recently
showed a transcriptional landscape analysis of the
Saccharomyces cerevisiae strain, CEN.PK113-7D, a yeast strain
that is used extensively in academic and industrial research. We
determined transcriptomic profiling under two different growth
conditions (diauxic growth). Approximately 70% of the reads
corresponded to full-length transcripts. Some full-length
transcripts over 5 kb were also detected and mapped. In
addition, identification of polyadenylated non-coding RNAs
(i.e., ribosomal RNA, telomerase RNA, and long non-coding
RNA) is allowed using this sequencing protocol (Jenjaroenpun
et al., 2018).

After releasing the dRNA-seq approach, a direct cDNA
sequencing (dcDNA-seq) protocol was subsequently released
by ONT. The latter protocol is also PCR-free and carries out
large complex whole-genome analysis at lower cost. However,
there are several differences between the two approaches; notably,

RNA and DNA sequencing speeds are different (typically ~85 bp
per second for RNA (Garalde et al., 2018) vs. 450 bp per second
for DNA (Rang et al., 2018)). Charlotte Soneson et al. applied
matched dRNA-seq and dcDNA-seq to samples from human cell
lines. The study showed the potential advantages that the dRNA-
seq brings over the short-read sequencing and that it could be an
important addition to the mammalian transcriptomic toolbox
(Soneson et al., 2019). In addition to human cells, dRNA-seq was
successfully used to study the transcriptomic characteristics in
insect species, which was characterized by large and repetitive
genomes (Jiang et al., 2019). Therefore, in this proposed work, we
will apply ONT dcDNA-seq to RNA samples extracted from the
Saccharomyces cerevisiae strain, CEN.PK113-7D. Then, we will
perform a detailed comparison of reads from dRNA-seq from the
perspective of RNA modification. Our comprehensive evaluation
from this proposed work will help researchers make informed
choices when selecting an appropriate long-read sequencing
method for understanding gene functions, pathways, and
detailed functional characterization for further development of
yeast biotechnology.

MATERIALS AND METHODS

Cell Culture and RNA Purification
The details of cell growth and RNA purification were previously
described (Jenjaroenpun et al., 2018). In brief, the Saccharomyces
cerevisiae strain CEN.PK113-7D was cultured in glucose-limited
conditions in the defined media with an initial glucose
concentration of 20 g/L. At the mid-log growth on glucose and
oxidative growth on ethanol, the cells were collected and quickly
frozen using liquid nitrogen and stored at −0°C. RNA was then
extracted from the frozen cells using the RNeasy Mini Kit
(Qiagen) following the manufacturer’s protocol.

Library Preparation, dcDNA-Seq, and
dRNA-Seq by ONT
In this work, we started from aliquoted poly-A RNA used in our
previous work (Jenjaroenpun et al., 2018). Briefly, total yeast
RNA (~24 μg) obtained from three biological replicates of each
condition (glucose and ethanol) was previously enriched for poly-
A RNA by means of oligo(dT) beads, collected, and stored at
−80°C. For dcDNA-seq, the starting amount of poly-A RNA of
500 ng was used as the RNA input. The dcDNA library was
produced using the Direct cDNA Sequencing Kit, SQK-DCS108
Kit (ONT). The RNA was converted to double-stranded DNA,
and then strand-switching and adaptor ligation were performed
(Figure 1). The library was loaded onto a flow cell (R9.5/FLO-
MIN107 flow cell) for sequencing using a MinION Mk1B for a
48-h sequencing run.

For dRNA-seq, the SQK-RNA001 Kit was used (ONT), and
Superscript IV Reverse Transcriptase (ThermoFisher) was
applied for the RNA stabilization step by formation of
DNA–RNA hybrids through reverse transcription. After this,
the motor protein was attached specifically to the RNA
strands (Figure 1). Each library was loaded onto a flow cell
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for a 48-h sequencing run. Direct sequencing of the poly-A RNA
(dRNA) was performed on a single R9.5/FLO-MIN107 flow cell.

Bioinformatics and Statistical Analysis
Data Processing and Mapping of Reads
The ONT raw data (.fast5 files) generated by MinKnow software,
version 1.7.14 (ONT), were converted to basecalled fastq files
using the local-based software Guppy, version 3.4.5 (ONT). This
step automatically classifies failed and passed reads based on a
specific cut-off for mean quality scores of 7, and only reads of
>200 bases were included. The ONT reads (in standard fastq
format) were aligned to the yeast S288c version R64 reference

sequences, downloaded from SGD database, using Minimap2 (Li,
2018) to generate a BAM file (a binary version of a Sequence
Alignment Map [SAM] file).

Evaluation of mRNA Sequencing Characteristics
The dRNA reads were converted to DNA sequences, and reverse
complement sequences of dcDNA reads were generated before
alignments. For analysis of mapping results of yeast, we used
SAMtools, version 1.6 (Li et al., 2009), to investigate the BAM files
and to classify sequence reads into categories of mapped,
unmapped, chimeric, and other reads based on standard
Concise Idiosyncratic Gapped Alignment Report (CIGAR)

FIGURE 1 | Overall process and time spent on direct RNA sequencing (dRNA-seq) and direct cDNA sequencing (dcDNA-seq) using Oxford Nanopore
Technologies (ONT). Both sequencingmethods are used to prepare any RNAwith a 3′ poly-A tail, such as eukaryotic mRNA or viral RNAwith a poly-A tail. For the dRNA-
seq, the native RNA passes through the nanopore, therefore the read length reflects the length of the RNA molecules, and the identification of RNA modification is
allowed. The dcDNA-seq and poly-A RNA were used to prepare cDNA copies for sequencing, which takes more steps and a longer time for library preparation.
However, the speed of cDNA sequencing is faster than that of RNA sequencing. Thus, the dcDNA-seq usually provides a higher yield (more bases).
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string information (a compressed representation of an
alignment).

Differential Gene Expression Evaluation
We followed the workflow to analyze differential gene expression
of yeast transcripts as previously described (Jenjaroenpun et al.,
2018). In brief, the read count table of individual transcripts for
the dcDNA and dRNA sequences was generated using multicov
from Bedtools version 2 (Quinlan and Hall, 2010). We then used
the DESeq2 package (Love et al., 2014) to calculate adjusted
p-values of individual transcripts between the two compared
growth conditions. We considered that the gene that has
adjusted p-value < 0.001 was differentially expressed.
Consequently, functional gene enrichment analysis based on
Gene Ontology (GO) annotation was performed using the
Platform for Integrative Analysis of Omics data (PIANO)
package (Varemo et al., 2013).

Inferring RNA Modification From Sequencing Error
Profile
We inferred the RNA modifications of dRNA sequences using
our developed epitranscriptional/epigenomical landscape
inferring from glitches of ONT signals (ELIGOS) software
(Nookaew et al., 2020; Jenjaroenpun et al., 2021; Boysen and
Nookaew, 2022) with two approaches. First, profiling of RNA
modifications of the individual growth condition was performed
by comparing the error at specific base (ESB) with the RNA
background error model (rBEM). Second, differential RNA
modification was performed by direct comparison of ESB
between yeast cells grown on glucose and ethanol. As the
study has three biological replicates, we employed
Cochran–Mantel–Haenszel statistical test for comparisons. We
developed an additional function “multi_samples_test” for
Cochran–Mantel–Haenszel statistical test with default
parameters and updated it in the ELIGOS software
(Jenjaroenpun et al., 2021).

RNA Structure Prediction Using ShaKer and
RNAplfold
To examine the secondary structure of RNA, we used a selective
2′-hydroxyl acylation analyzed by primer extension (SHAPE)
prediction using the graph kernel (ShaKer) tool (Mautner et al.,
2019). This in silico approach provides an advantage over other
SHAPE prediction tools, which require manually curated
reference RNA structures. We implemented an in-house
python script using libraries from the ShaKer tool for training
a SHAPEmodel and to predict RNA structure and accessibility. A
general model of SHAPE reactivity was trained on an
experimentally determined SHAPE dataset provided in the
ShaKer repository. Then, the predicted SHAPE model was
used to support the prediction of structure and accessibility on
each nucleotide of a given RNA sequence using RNAplfold
(Lorenz et al., 2016). The score form ShaKer, derived from the
default parameters, was used to determine the correlation with
RNA modification sites based on odds ratios obtained from
ELIGOS (Jenjaroenpun et al., 2021).

Genomic Locations of Loci and Transcript
Comparison
The relative location of considered loci with reference to gene
position was compared using Bedtools version 2 (Quinlan and
Hall, 2010).

The parameters and commands used are summarized in
Supplementary Note S1.

RESULTS

Library Preparation and Sequencing of
dcDNA-Seq and dRNA-Seq
To compare dcDNA-seq vs. dRNA-seq, the poly-A mRNA
isolated from yeast cells grown in minimum media
supplemented with glucose and from cells that had switched
to ethanol as a carbon source were aliquoted and used as the input
of the two sequencing strategies to rescued batch effect. For each
condition, three biological replicates were analyzed. The
sequencing workflow of the two sequencing strategies is
summarized in Figure 1. The processing time of dRNA-seq is
approximately 135 min, which is about half of the dcDNA-seq
time, due to the minimal manipulation of the mRNA molecules,
and results in only a four-step procedure of library preparations.
The dcDNA-seq library preparation requires approximately
305 min for seven steps for the first and second strands of
cDNA synthesis before sequencing. The sequencing for the
two strategies was performed with the same time of 48 h.

Sequence Characteristics of dcDNA-Seq
and dRNA-Seq
The differences in read characteristics obtained from dcDNA-seq
and dRNA-seq for the two transcriptomes are summarized in
Figure 2. The sequence yield obtained per hour on the ONT flow
cells (Figure 2A) was higher for dcDNA than for dRNA due to
the different motor proteins that control the rate of molecules
passing through the nanopores [450 bases per second (b/s) for
DNA and 80 b/s for RNA sequencing]. The average percent
identities of both dcDNA and dRNA reads were comparable,
around 88% (violin plot, Figure 2A). The base-calling step using
Guppy software automatically classifies reads to pass or fail based
on a specific cut-off. As seen in Figure 2B, on average 85% of the
total dRNA reads, but only 50% of dcDNA reads, passed the
default threshold of 7. The length of all reads combined (passed
plus failed) indicated that the dcDNA reads were slightly longer
than the obtained dRNA reads (Figure 2C).

To explain the surprisingly high fraction of failed reads obtained
with dcDNA, we re-evaluated the quality of total reads (passed plus
failed) by aligning both dcDNA and dRNA reads onto a reference
genome. As presented in Figure 2D, 61–67% of the dcDNA reads
could be mapped, while 80–86% of the dRNA reads mapped to the
reference genome. Of note was the relatively high fraction of
chimeras in dcDNA (15–20%), while the fraction of unmapped
reads (~15%) did not significantly differ (p-value > 0.05) between
dcDNA and dRNA sequences. Furthermore, the read quality score
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distribution of total reads differed between dcDNA and dRNA reads
(Figure 2E), with higher scores obtained for dRNA reads. Typically,
we get no strand bias from ONT DNA sequencing; however, we
found that the dcDNA sequencing result had strong one-strand bias
of reads derived from first-strand synthesis (Supplementary Figure
S1). This indicated low yield of second-strand synthesis when
construct cDNA by a strand-switch reaction in yeast influenced
the quality of dcDNA sequences. When the read length distribution
was compared after removal of chimeric sequences from the dcDNA
reads, this resulted in a comparable read length distribution for both
sequencing strategies (Figure 2F).

Comparison of Differential Gene Expression
by dcDNA-Seq and dRNA-Seq
The read counts of individual transcripts derived from the two
different templates (DNA andRNA)were compared by scatter plots,
and a correlation matrix was constructed (Figure 4A). Within the

same template, replicate experiments produced satisfying correlation
coefficients (r = 0.96 on average, range: 0.94–0.98), while on average,
r = 0.92 (range: 0.90–0.94) was obtained when dcDNA and dRNA
sequences were compared for the same growth conduction. We
recently demonstrated that the negative binomial statistic is a valid
approach to analyze dRNA-seq data (Jenjaroenpun et al., 2018);
here, we applied that method to compare the adjusted p-values
(Figure 3B) and the observed mean log2fold changes (Figure 3C).
Even though the sequencing depth across the biological replicates
varied, the results of both sequencing methods strongly correlated
for transcriptomes that were obtained from cells grown under the
same condition. Furthermore, biological functional enrichment was
analyzed using GO based on the dcDNA-seq and dRNA-seq data;
the results were found to be highly consistent, as 332 GO terms were
identified in both datasets, and only 48 GO terms were uniquely
present in dcDNA-seq and 40 GO terms in dRNA-seq data
(Figure 3D). The previously published conclusions on differential
gene expression between the two compared culture conditions

FIGURE 2 |Comparison of read characteristics for six datasets of yeast RNA sequenced as dcDNA or dRNA. (A) Sequence yields per hour and violin boxplot of %
read identity; (B) numbers of reads that passed (green) or failed (black) the quality score of 7 by Guppy software; (C) read length distribution of all reads combined
(passed plus failed); (D) numbers of all reads that could be mapped to a reference genome; (E) quality score distribution of mapped and unmapped reads; and (F) read
length distribution of the reads after removal of chimeric sequences. Data are shown for glucose-grown cells (glu) and for glucose-deprived cells (eth).
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(Jenjaroenpun et al., 2018) did not change for the transcriptome
sequencing data obtained from either dcDNA-seq or dRNA-seq.

Inferred RNA Modifications From Native
RNA Sequences
We performed the RNA modification profiling using ELIGOS
software by comparing the ESB of dRNA sequences with
rBEM. Based on the three biological replicates of yeast
grown on glucose and ethanol, we identified 134,980 sites of
putative RNAmodification with glucose and 192,240 sites with
ethanol using the cut-off of odd ratios ≥ 3 and adjPval < 1e-50.
The distribution of the identified sites on the individual
transcripts is shown in Figure 4A. The distribution of
putative RNA modification sites per transcript of the yeast
growth was quite similar, with a median of 17 sites per
transcript with glucose and 20 with ethanol.

We further evaluated whether the identified putative RNA
modification sites between the two conditions are common or
not. We calculated Jaccard’s index between the two conditions of
the identified sites of each individual transcript. We found that
the distribution of Jaccard’s index is close to uniform distribution
as shown in Figure 4B, indicating a random correlation.
Interestingly, the highest frequency (642 sites in growth on
ethanol) of putative RNA modifications sites was found on the
transcript of a very important gene, encoding acetyl-CoA
carboxylase (ACC1), which is the rate-limiting step enzyme of
fatty acid biosynthesis. We further investigated the transcript in
detail through the Integrative Genomics Viewer (IGV) browser
(Figure 4C). The number of identified putative RNA
modification sites of growth on glucose was 333, which is
almost half of that grown on ethanol. It is clearly seen that
there is no identified site that passed the statistical cut-off toward
the 5′ end of the transcript (Figure 4C, track ii). The expression

FIGURE 3 | Comparison of transcript abundances based on dcDNA-seq and dRNA-seq. (A) Combined scatter plot and correlation matrix. (B,C) Scatter plots
showing the correlation of statistical values between all individual transcripts combined as identified by dcDNA and dRNA based on adjusted p-values (B) and on
observed mean log2fold changes (C) derived from three biological replicates. (D) Venn diagram of GO terms identified in dcDNA and dRNA datasets.
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level of ACC1 in ethanol growth condition is much higher than
glucose growth as shown in the read coverage plots (Figure 4C,
tracks iii and iv). The strong 3′ bias of dRNA reads was clearly
observed, which could explain the missed identification of
putative RNA modification near the 5′ end of the transcript,
which has much fewer dRNA reads that were aligned, resulting in
higher adjPval than the cut-off. Next, we created a scatter plot to
compare the calculated odd ratios of theACC1 transcript between
the two growth conditions, as shown in Figure 4D, and found a
strong linear relationship. This indicated that the low sequencing
depth on the 5′ end of dRNA sequencing will impact the
confidence level of RNA modification identification

(Figure 4D, gray dots), indicating an odds ratio that is too
low in yeast grown in glucose.

The secondary structure of RNA plays important roles in the
function of RNA molecules (Kertesz et al., 2010), and can be
accurately probed by the SHAPE method (Wilkinson et al., 2006;
Poulsen et al., 2015). Recently, a developed bioinformatic
software, ShaKer, provided an accurate prediction of SHAPE
using a graph kernel approach (Mautner et al., 2019). The
accessible sites of the RNA molecule, such as on the loop,
which has a high SHAPE score (Busan et al., 2019), are the
frequently targeted sites for RNA modification of transfer RNA
molecules (Han and Phizicky, 2018). We then compared the

FIGURE 4 | Capturing mRNAmodification inferred from dRNA sequences. (A)Histogram plot shows putative modification site per transcript identified by ELIGOS.
Dashed lines show the mean value. (B) Histogram plot shows Jaccard’s indexes representing degree of commonality of putative modification sites of individual
transcripts between yeast grown in glucose and ethanol. Dashed line shows the mean value. (C) IGV snapshot of ACC1 contains the highest number of putative
modification sites and shows the comparison of identified putative modification sites of yeast grown in ethanol (i) and glucose (ii) with sequencing depth coverage
along the transcript length (ethanol (iii) and glucose (iv)). The ACC1 transcript region is shown in lane (v). (D) Scatter plot comparing odd ratios indicates the probability of
RNA modifications along the ACC1 transcript between yeast growth on glucose and ethanol. The black dots show the odd ratios that can be computed in both
conditions. The gray dots show the odds ratios that can be computed only in ethanol growth. Red dashed line is a diagonal line. (E) Histogram plot showing Pearson’s
correlation coefficient between odds ratios and the predicted SHAPE score. Dashed lines show the mean value. (F) Summary of differential modification sites per
transcript between yeast growth on ethanol and glucose. The significant modification sites of ethanol and glucose growth are shown in magenta and cyan, respectively.
The non-significant sites are shown in gray. (G) Summary of differential RNA modification in the central metabolic pathway that is known to be transcriptionally regulated
between growth on glucose and ethanol. All y-axes of histogram plots are square-root scale. All magenta and cyan colors represent results of ethanol and glucose,
respectively.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 8422997

Wongsurawat et al. Direct-RNA and Direct-cDNA Sequencing Comparison

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


SHAPE scores obtained from ShaKer and the calculated odds
ratios obtained from ELIGOS of individual transcripts using
Pearson’s correlation, which is summarized in the histogram
plot shown in Figure 4E, and found low correlation in most of the
transcripts.

Next, we performed differential RNA modification analysis of
transcriptomes between ethanol and glucose growth using
ELIGOS software. Based on the cut-off of odds ratios of ≥ 1.5
and adjPval< 0.01, from 349,015 sites in total, we identified
36,471 sites for respirofermentative (glucose-limited) growth and
3,817 sites differential sites for oxidative (ethanol) growth. The
higher number of differential sites in the glucose-limited
condition is along the line with the study of Tardu et al.
(2019), who reported higher modified nucleotide fractions of
yeast grown in glucose depravation conditions and lower
modified nucleotide fractions of yeast grown in oxidative
stress conditions by mass spectrometry analysis of yeast
mRNA. The distribution of the identified differential sites per
individual transcript is summarized in the histogram plot shown
in Figure 4F. We observed that some known key metabolic genes,
such as ACC1, FAS2, ACS2, HMG1, PYC1, and PFK1, have
differential sites > 100 (see Supplementary Table S1).
Zooming in at the central metabolic pathway shown in
Figure 4G, we mapped relevant transcripts and their
differential RNA modification sites to simultaneously assess
the effect of transcriptional and posttranscriptional regulation
during metabolic reprogramming required for the diauxic shift.
The presented global overview shows the well-known adaptations
(DeRisi et al., 1997) of yeast cells as they switch from glucose to
ethanol by changing the gene expression of a number of key
enzymes. In addition to transcriptional regulation, we found
many transcripts that had undergone changes in base
modifications under these conditions.

Genes under regulation to switch from glycolysis to ethanol
utilization produce a very important metabolite acetyl-CoA,
which as acetyl-CoA synthase has two isozymes, ACS1 and
ACS2. The main gene ACS1 was transcriptionally upregulated

in ethanol (indicated by a thick red box in Figure 4G); on the other
hand, ACS2 downregulated posttranscriptional modification
(indicated by filled cyan color in Figure 4G). The
posttranscriptional modification downregulation was also
observed on key genes regulating the TCA cycle activity (ACO1,
ADH1, CIT, PYC1, and PYC2), fatty acid biosynthesis (ACC1,
FAS1, FAS2, and HMG1), and a gene involved in
glycogen–trehalose homeostasis (TPS1). These results indicate
that there exists a complex association between
posttranscriptional modifications and metabolic reprogramming.

DISCUSSION

To study transcriptomes without application bias using ONT, we
can perform either native or cDNA sequencing. Library
preparations of native RNA sequencing has fewer steps,
enabling a rapid characterization of RNA molecules as
demonstrated in many studies (Jiang et al., 2019; Soneson
et al., 2019; Wongsurawat et al., 2019; Radukic et al., 2020).
However, direct sequencing of cDNA provides higher throughput
data due to the faster chemistry speed, which is almost six times
that of motor proteins. In our study, we encountered the problem
of second-strand synthesis. This crucial step resulted in cDNA
sequences with a high chimeric due to sequencing on single-
strand DNA instead of double-strand, which is the optimized
chemistry of ONT sequencing of DNA molecules.

The differential gene expression, which is a key result to study
transcriptomes, derived from dRNA-seq and dcDNA-seq, is quite
consistent at both the gene level and functional analysis level.
Therefore, either method can be used to identify key
transcriptionally regulated transcripts. Native RNA sequences
provide opportunities to study posttranscriptional regulation,
such as RNA methylations (Mendel et al., 2021; Yeager et al.,
2021), leading to many efforts in the development of
bioinformatics analysis to uncover accurate RNA
modifications, as summarized in a review article by Furlan

TABLE 1 | Comparison of dRNA-seq and dcDNA-seq.

dRNA-seq dcDNA-seq

Unique advantage Retain the information
of RNA modification

dcDNA reads were
slightly longer

Accuracy of transcript Not suitable because of modification signals leading to error Higher accuracy

Input
recommendations

500 ng (poly-A RNA) 250 ng (poly-A RNA)

Prep time ~140 min ~300 min

Cost Less expensive than dcDNA-seq More expensive because many enzymatic processes are
required

Simple to perform Yes No

Limitations/difficulties 1. Require higher amount of poly-A RNA input 1. The problem of second-strand synthesis, possibly derived
from an unsuccessful reaction

2. Both hybridization and ligation of DNA adaptor and poly-A RNA are needed to
continue to downstream library preparation steps (i.e., reverse transcription)

2. High fraction of chimeras leads to unmapped read

3. Length of transcript sequence could be limited based on
reserve transcriptase enzyme
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et al. (2021). However, dRNAseq has 3′ bias because the library
preparations rely on the 3′ end adaptor ligation at the poly-A tail,
leading to missed ligation of the broken pieces of RNA toward the
5′ end. This resulted in an incomplete picture of RNA
modification throughout the transcript length, especially on
the 5′ end of the transcript. Therefore, we need to improve
the sample preparation, such as the 5′ race enrichment
sequencing by ligating designed adaptors that are sequenced
along with the transcript (Jiang et al., 2019; Ibrahim et al., 2021).

The RNA ribonucleotide modifications are known to be
critical regulators of a wide range of biologically relevant
processes. One of the unique advantages of dRNA-seq, which
we have looked into here, is the ability to detect RNA
ribonucleotide modifications directly, which cannot be
accomplished by dcDNA-seq. However, the reads generated by
dRNA-seq could contain higher error rates that are derived from
modified bases. The summary of comparison between the two
library preparation approaches is shown in Table 1.

In summary, our study showed the advantages and
disadvantages of using dRNA-seq or dcDNA-seq to study
transcriptomes in yeast. This will be useful information for
research studies to select a method for transcriptional
characterization in various research interests.
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