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Abstract: Tooling, especially for prototyping or small series, may prove to be very costly. Further, pro-
totyping of fiber reinforced thermoplastic shell structures may rely on time-consuming manual efforts.
This perspective paper discusses the idea of fabricating tools at reduced time and cost compared to
conventional machining-based methods. The targeted tools are manufactured out of sand using the
Binder Jetting process. These molds should fulfill the demands regarding flexural and compressive
behavior while allowing for vacuum thermoforming of fiber reinforced thermoplastic sheets. The
paper discusses the requirements and the challenges and presents a perspective study addressing
this innovative idea. The authors present the idea for discussion in the additive manufacturing and
FRP producing communities.
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1. Introduction

A main industrial focus today lies in energy-efficient and resource-saving manufactur-
ing. This is one way to meet relevant ecological and economic targets as well as to ensure
the competitiveness of products in the long term. As a result, lightweight components of
high mechanical performance are increasingly attracting attention. Thus, fiber reinforced
polymers (FRP), especially involving carbon fibers, are currently in the spotlight of develop-
ments. Related manufacturing processes, equipment and tools must be adapted to the new
material and functionality requirements. A significant amount of time in the optimization
process of a component lies in the creation of initial prototypes. The production of small
series often proves to be particularly cost-intensive. These are primarily manufactured
in manual processes. Depending on part complexity, costly and time-consuming tool
manufacturing might be necessary.

Additive manufacturing provides a good solution regarding the rapid fabrication of
tools. Next to functional integration, additively manufactured molds can combine complex-
ity and lightweight. As an example, additive manufacturing makes it possible to realize
complex cooling channels within the tool without the need of parting the mold. Some
additive manufacturing techniques, such as the Binder Jetting process have a high volume
throughput compared to the established CNC machining, thus allowing for lower manu-
facturing time and energy consumption. Further, additive manufacturing contributes to
the conservation of material resources, since it relies on generating the final structure layer
by layer as opposed to the material removal concept in established machining processes.
For processing FRPs, both tools for low temperature applications (such as hand layup or
Resin Transfer Molding) as well as high temperature applications (such as autoclave curing
or compression molding) are relevant. Generally, tools do not require high strength [1,2].
In high pressure processes, as in the case of autoclave curing, compression molding or
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vacuum-assisted processes, loads are primarily compressive. In fact, these loads are often
more favorable for additively manufactured parts, as compared to tensile loads [2].

Several studies have been concerned with the fabrication of tools by additive man-
ufacturing from different materials. Brotan et al. [3] fabricated innovative tools out of
Marlok C1650 steel powder in a Powder Bed Fusion (PBF) process to realize complex gra-
dient structures to increase the thermal fatigue resistance and allow for a defined thermal
management of the tools. The target applications of these low weight tools are injection
molding and die casting. Similarly, Fette et al. [4] compared common additive manufactur-
ing techniques—Additive Layer Manufacturing (ALM), Electron Beam Melting (EBM) and
Selective Laser Melting (SLM)—with conventional methods to manufacture metal tooling.
The authors claim that the use of integrated heating channels close to the mold surface
allows the even dissipation of heat.

Warden [5] studied the application of Fused Deposition Modeling (FDM) to manufac-
ture tools for compression molding thermoplastic multiaxial prepreg systems. The author
proposed a low-temperature curing cycle in order to reduce the thermal degradation of
the FDM tooling. Further, Bere et al. [6] processed Carbon Fiber Reinforced Polymers
(CFRP) through vacuum bagging and oven curing using an FDM polylactic acid (PLA)
versus acrylonitrile butadiene styrene (ABS) mold. The PLA mold was treated with a layer
of epoxy that contains aluminum powder to enhance the bonding with a subsequently
applied polyester gel coat, which further acts as a release agent and facilitates demolding.
Hassen et al. [7] proposed the use of the extrusion-based Big Area Additive Manufacturing
(BAAM) process to fabricate CFRP tools for further molding purposes. The main advantage
lies in the increased throughput (~16,400 cm3/h) and the possibility to flexibly process
material from granule form [8,9].

Further attempts have been made to reduce tooling costs for the thermoforming of
non-reinforced plastics by additive manufacturing. Laser-sintered metal parts can be
excluded due to their high costs. Although manufacturing costs can be reduced to as low
as 14% compared to conventional tooling methods (milling), although this is offset by the
high metal powder costs of 167% [10]. For the medical field, additive manufacturing of
molds from calcium sulfate and gypsum powders was successfully demonstrated and even
implemented for thermoforming of plastic structures [11,12]. In addition, Junk et al. [10]
reported the application of the inkjet technology for thermoforming mold fabrication out
of polymer gypsum. This was tested for a case study, in which a fairing made of ABS
for an unmanned aerial vehicle was produced. Among other things, this study aimed
to integrate vacuum channels in the manufacturing step without the need for additional
post-processing (e.g., drilling). The study also explained the specific technical challenges,
such as the demolding of undercuts or the separation of the tool. Results showed that the
tool had sufficient strength for the subsequent thermoforming process. Another advantage
of additive manufacturing is the design flexibility of both the overall geometry and the
internal structure to influence strength and other physical properties for optimized vacuum
guidance [11,13].

Little work has been carried out so far to elicit the advantages of using silica sand for
tooling purposes. In this perspective, the authors claim that sand structures may prove
to be efficient for tooling in general and for vacuum thermoforming processes in specific.
Sand structures are thought to be cost-effective. Rough calculations evidenced a tooling
cost of EUR 600 to 1000 for an aluminum or steel omega shaped tool compared to less than
EUR 100 for a sand tool; the outer tool dimensions are 300 mm × 260 mm × 60 mm. In
addition, their low thermal conductivity is favorable for the thermoforming process. First,
maintaining the tool at constant temperature allows uniform manufacturing conditions
for all parts that are to be formed. Second, when forming thermoplastics, the sheets need
to be heated above their glass transition (for amorphous polymers) and slightly below
their melting point (for semi-crystalline polymers). Within the process, it is necessary to
ensure that forming is completed before the sheet temperature falls below these levels.
Achieving that through low heat conduction through the tool may assist in allowing an
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energy-efficient thermoforming process. In the case of thermoforming, vacuum channels
may be directly printed, eliminating the necessity of subsequent drilling steps. In addition,
bonding of individual particles allows a porous structure, which might be advantageous
for vacuum drawing.

This manuscript presents a novel idea and gives an insight regarding current and
planned research activities targeting the use of sand molds for vacuum thermoforming
of FRPs. The targeted manufacturing process for the mold is Binder Jetting. Further, the
approach for mold modification for the anticipated application is presented. In addition, the
challenges regarding the vacuum thermoforming of FRPs are discussed and a systematic
procedure is followed to address them.

2. Thermoforming of Fiber Reinforced Composites

One of the established methods in the automotive sector to fabricate FRP thin-walled
structures is the Resin Transfer Molding (RTM) process. This involves the layup of multi-
axial textiles into stacks, followed by draping into a 3-dimensional shape by matched tool
pressing and finally resin infusion. This process is mostly limited to thermosets due to their
low viscosity (below 1000 mPa·s) compared to thermoplastics (beyond 100,000 mPa·s) and
is able to fulfill the demands for good surface quality. A drawback lies in the long cycle
times needed for part curing (standard RTM processes may require several hours or days
for curing; enhanced RTM processes 2–10 min) [14], thus limiting the use of thermosets for
mass production. In contrast, the use of thermoplastic matrices makes short cycle times
(60–140 s) [15] more feasible. Thermoplastics further have the advantages of providing
improved toughness behavior and allow for recyclability. For fiber reinforced thermo-
plastics the thermoforming process is applicable. The process, as illustrated in Figure 1,
implies forming a flat laminate into a 3D geometry under the influence of temperature.
For heating IR lamps or convection ovens are often used [16]. The transfer time to the
press has to be kept short in order to avoid extensive laminate cooling, which would
prohibit adequate forming. For 3D forming of FRPs, both matched-die forming as well as
deformable die forming is applicable. During shaping, the laminate is held in place using a
support frame or a blank holder. This is crucial in order to keep the laminate under tension
and accordingly prevent the creation of wrinkles. Further, the mold is kept closed during
deformation to avoid heat loss and to maintain high pressures (10–40 bar), targeting proper
compaction and full consolidation [17]. The final part is then left to cool within the mold,
until it reaches a temperature below the glass transition temperature of the matrix.
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Figure 1. Schematic illustration of the thermoforming process.

Schug [17] summarized the main influencing parameters on the forming behavior and
part quality. The author claims that the tool temperature has a major impact on the cooling
time and morphology of the material. Further, the forming speed should be selected in such
a way that allows a compromise between timely shaping and shear thickening response
of the thermoplastic melt. The press load, where a high pressure favors consolidation
on the one hand but may lead to dry spots and matrix flow on the other hand, mainly
governs the surface quality. Further typical defects are fiber undulations, gap formation,
out-of-plane wrinkles and folds [18,19]. Insufficient contact between mold surface and
laminate at the end of the forming process may be the reason for rough surface areas. In
the case of extensive tension of the laminate within the support frame, a fiber breakage and
thus drastic losses in mechanical performance can be expected.

In the case of single and double diaphragm forming, pneumatic pressure is applied.
The function of the diaphragm is to transfer the mechanical loads to the laminate and
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keeping a biaxial tension for wrinkle and undulation prevention. In single diaphragm
forming, the laminate is placed over the mold having the diaphragm on top. The vacuum is
applied and the laminate is forced against the tooling to take its shape. In double diaphragm
forming the laminate is sandwiched between two flexible membranes and compacted by
vacuum. Further vacuum is applied to press the sandwiched stack against the mold. This
technique allows a greater degree of double curvature than single diaphragm forming [20].
For more intricate geometries and smaller fillets the hydroforming can be adopted. Here,
a fluid pressure is applied to a rubber diaphragm to force the laminate stack to the mold.
Hydroforming and diaphragm forming eliminate the need of mutual conforming tools and
hence, the tooling cost is lowered [20].

Harrison et al. [21] investigated the use of springs instead of friction-based blank-
holders to induce in-plane tension in the laminate in order to prevent the formation
of wrinkles. This technique was evaluated as being flexible, easy to use and naturally
facilitating heat transfer into the laminate prior to forming. However, the authors report
that the focused application of tension might lead to in-plane buckling and localized zones
of high shear.

The use of vacuum thermoforming for pure plastic sheets is a widespread process. In
2018, the market size for vacuum forming was estimated at USD 11.69 billion [22]. Various
plastics (e.g., PA, PE, PP, PC or PET) are often applied. The basic process (Figure 2a) implies
forming a sheet into a 3D geometry by heating it to a formable state, pressing it against
a mold and holding it in that position until the sheet is cooled below the glass transition
temperature. Finally, the part is trimmed to final shape [23]. In most cases, the processing
temperatures are below the melting temperature and above the glass transition temperature
(e.g., around 240–250 ◦C for PA6) [24,25]. Heating is mostly carried out by radiation, for
example by using IR-heaters. Accordingly, bringing the plastic sheet to a viscoelastic state
depends on the polymer’s ability to absorb the long infrared wavelength energy. Plastics
with low crystallinity are said to have better formability [25] since the crystals hinder the
flow behavior of the viscous fluid.
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Figure 2. (a) Basic vacuum thermoforming process, (b) vacuum thermoforming with pre-stretching
via inflation of a bubble, (c) vacuum thermoforming using a plug-assist.

Despite its high process flexibility and good suitability for prototype and series pro-
duction, thermoforming is associated with some challenges. When using single-sided tools,
the component thickness can vary significantly, due to varying stretching according to
the geometry. Sheet areas first touching the mold are hindered in their biaxial motion by
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friction and thus remain thicker than other areas that continue to witness stretching. This is
also associated with faster cooling by heat conduction from the touching area to the mold.
This uneven deformation and cooling behavior can lead to residual stresses in the final
component [23]. As a remedy, a pre-stretching step may be introduced after the heating
step. In that case a clamping tool fixes the edges of the sheet and air pressure is applied
to inflate the sheet into a bubble (Figure 2b) [26]. In the next step, forming is achieved by
vacuum pressure. Nevertheless, the thickness distribution in the final components largely
depends on the viscoelastic properties of the polymer materials.

In plug-assisted (Figure 2c) thermoforming, the heated sheet is pre-stretched through
a mechanical plug. Next, actual forming is completed through the application of vacuum
pressure [27]. Chen et al. [28] observed that thickness at the sidewalls increased with
increasing mold temperature, preheating temperature, plug depth and holding time, but
decreased with increasing plug speed. At a thermoforming temperature above the glass
transition the sheet material becomes sticky and thus unable to slip over the plug surface
due to increased friction [27,29,30].

3. Binder Jetting of Sand Tools

Conventional tool manufacturing relies on subtractive (machining) process starting
from a material block. Such tools are often metallic (e.g., tool steel type AISI-SAE 1045 [31])
or in some cases made from polymers (e.g., RAKU®Tool [32]) (RAMPF Tooling Solutions
GmbH & Co. KG, Grafenberg, Germany) and foams. Considering material costs and
machining time, the fabrication of tools may prove to be extensively time consuming and
costly [31].

In contrast to the subtractive manufacturing, additive manufacturing builds the struc-
ture in a layer-by-layer technique, applying material only there where it is needed. Figure 3
illustrates the Binder Jetting process according to ASTM [33]. Here, the following process
steps are repeated until the desired component is created: A build platform is lowered by a
layer thickness of ranging between 10 µm to 400 µm. The hereby-created free space is then
filled with powdered material using a re-coater. In the third step, a binder is selectively
deposited using an inkjet print head to bond the individual particles together. This creates
a bond within the layer and with the layer below. In the case of Binder Jetting of sand, sand
grains are used as the building material.
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Figure 3. Schematic illustration of the steps characterizing the Binder Jetting process: First—lower
platform, Second—recoat layer, Third—jet binder.

This setup makes Binder Jetting systems particularly easy to scale in terms of per-
formance. The number of nozzles correlates with the overall performance [34]. Likewise,
several layers can be applied simultaneously. This feature cannot be achieved with laser-
based systems using beam deflection. Such unique arrangement leads to extraordinary
build rates and, consequently, to special cost-effectiveness. Binder Jetting currently achieves
a maximum build-up rate of approximately 400 L/h (Datasheet ExerialTM 3D) (ExOne,
Gersthofen, Germany) printer and costs significantly less than 10 €/l. The basis of the
Binder Jetting can be various particle materials. Plastic particles, metal powders or inor-
ganic materials such as sand or ceramics can be used. The particles are adapted to the
layer thickness to be achieved, and the spectrum of average particle sizes ranges from
d50 = 20 µm to d50 = 400 µm. Silica sand is particularly cost-effective for use as tools. Here,
the raw material costs are often less than 100 €/t.
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The components manufactured by Binder Jetting can be used either directly or with
post-treatment as a tool. Post-treatment usually increases the strength and wear resistance
of the product. Used directly, sand binder systems achieve a maximum tensile strength of
about 10 MPa (identified by preliminary examinations and further referred to as the base
material). The strength can be significantly increased, for example, by infiltration with an
epoxy resin. The sand or the underlying particle material can be sintered or an impression
can be made with a higher-strength material (e.g., with a polymer cement) when even
higher strengths are required.

The strength of the base material is affected by different aspects related to material
and process, such as the strength of a sand grain, the density of the sand, the binder
adhesion and cohesion as well as the amount of binder. The sand grains are packed
more or less densely during the coating process, depending on the technique [35]. This
results in a volume ratio of air to sand of about 50%. Depending on the binder system,
approximately 2–5 wt% binder penetrates into the loose sand during the deposition of the
binder. The capillary action causes liquid to accumulate at the contact points of the sand
grains (Figure 4), which solidify by drying or polymerization, depending on the binder
system. The cavity that now remains can be filled by infiltration with another material
system, thus raising the strength due to the higher amount of binder compared to the
base material.
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Figure 4. SEM-Micrograph of the connection between two grains.

The properties of printed sand molds can be used especially in applications where
low strength is of secondary importance or even helpful. For example, a casting core needs
to be as strong as necessary for safe handling but, after the casting process, has to be easily
removed out of the cavity. Also relevant here are cores for hollow structures that have to
be removed after the lamination process (washouts) [36].

Tools for casting purposes are also manufactured using tools fabricated by Binder
Jetting. Very different casting materials can be used in this process. For example, concrete
can be molded to produce structures in the construction industry (Figure 5) [37,38]. The
molds must be pre-treated for casting by sealing the surface to prevent the ingress of mixing
water. After the concrete has set, the mold is opened and removed from the structural
member. Depending on whether the structure is undercut, the molds can be used once or
several times. This is also the case, with laminating molds where the mold is used only for
a few impressions in prototyping applications.

Sand molds are further widely spread in the foundry industry for the production of
metal castings. Here, individual parts with small and large dimensions are often realized
with printed molds. In particular, parts that conventionally require the storage of large
molds over long periods can be produced economically using Binder Jetting [39]. On the
other hand, large series in engine construction can nowadays also be realized with sand
molds from 3D printers [40].
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Figure 5. Concrete part formed on a Binder-Jetted tool [38].

Various sand types have been qualified for the usage in Binder Jetting of sand molds
and cores [41]. Silica sand is most commonly used in foundries to make molds (amongst
other methods also through additive manufacturing), due to its cost effectiveness. The
sand morphology and particle size (Figure 6) distribution are known to strongly affect
the resulting packing density [35] and surface properties [42]. The packing density influ-
ences both mechanical strength and permeability. In general, by choosing a sand with a
smaller d50 medium grain size than a reference one, a higher casting surface quality can
be expected [43]. However, this grain size implies low permeability to air and gases. The
shape of the sand grain also has a decisive influence. Sharp edged grains, on the one hand,
have the least contact with each other in a compacted structure and thus make the sand
highly permeable to gases. On the other hand, they cannot be packed to the optimum
extent during Binder Jetting and structures made from them have low strength [44].
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Figure 6. SEM-Micrographs of different qualities of sand suitable for the Binder Jetting of tools:
(a) Silica Sand type GS14 RP by Strobel Quarzsand GmbH Freihung, Germany, and (b) Bauxitsand
by Hüttenes Albertus GmbH Düsseldorf, Germany.

Current binder systems in combination with sand as a molding material are inexpen-
sive epoxy, furan or phenolic resin–based systems that bring sufficient thermal stability.
Environmentally friendly inorganic binders are nowadays the subject of research and are
preferred within this study [43,44].

For 3D printing of tools, the mechanical properties of the 3D-printed part prior to
infiltration might be of minor importance. Thus, a sufficient strength for secure handling
during the infiltration process is expected to be acceptable considering the overall process.
The permeability, however, is essential to ensure a sufficient infiltration depth and thus
to provide the basis for infiltrated sand tools of enhanced mechanical properties. Sand
qualities that will be investigated within this study are silica sands obtained from natural
reservoirs of varying powder size distributions as well as artificial sands produced by
sintering. In contrast to natural sands, artificially produced sands typically show regular,
round shapes and narrow particle size distributions.
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4. Sand Tools for Vacuum Forming of FRP

The main target of the investigations is to develop an innovative process chain for the
rapid and cost-effective production of large-area thermoplastic-based shell structures made
of fiber reinforced plastics—especially during the product development phase, or where
small part numbers are needed. In the solution approach, the advantages of additively
manufactured sand molds are combined with the possibilities of a fast thermoforming
process. This results in synergy effects that significantly advance prototype and small
series production. In the following the main requirements regarding sand tools for vacuum
thermoforming applications are given:

• Compression strength exceeding 20 MPa in order to stand the specific process loads;
• Acceptable wear resistance to withstand at least ten forming cycles;
• Surface finish with arithmetic mean roughness Ra < 20 µm to minimize indentations

on visible surfaces;
• Porous structure to ensure a safe application of vacuum;
• Temperature resistance up to 280 ◦C;
• Cost-effective in terms of engineering and production comparable with state-of-the-

art tools.

In order to address the aforementioned requirements, a segmented approach is applied
(Figure 7). In the first stage, the focus is laid on the sand mold, where materials and process
parameters will be defined. After 3D printing by Binder Jetting, a mockup tool is further
treated to fulfill the requirements regarding mechanical properties and surface quality.
In parallel, the feasibility of vacuum thermoforming is studied, addressing the main
challenges such as the applicable clamping mechanism for FRP laminate to ensure vacuum
pressure on the one hand and draping of the laminate under tension on the other hand.
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4.1. Initial Approaches and Results in Binder Jetting of Sand Tools

For preliminary tests, the silica sand GS14 (Strobel Quarzsand GmbH, Freihung,
Germany) in combination with an inorganic binder system (IOB by voxeljet AG, Friedberg,
Germany) was selected. The 3D printing tests were carried out using increased binder
weight contents (150%, 200% and 300% with respect to conventionally used binder amount)
in order to investigate the feasible limits and their effects on the mechanical properties
considered relevant for sand tool fabrication for vacuum forming of FRP. Further, during
3D printing, the binder content is to be increased globally on the one hand and selectively
varied locally on the one hand. Local variation (further referred to as the skin-core setup)
implies the fabrication of a skin layer of 5 mm thickness with high binder content relative
to the core segment. This allows for superior mechanical properties at the mold surface.
In contrast, in the case of global binder application at high binder content, the entire sand
structure is printed at the aforementioned increased values. Two sets of specimens were
produced: bars with a cross-section of 22.4 × 22.4 mm for 3-point flexure tests and cylinders
D50 × 50 mm for compression tests and density evaluation. Five specimens were tested
for every parameter set. Figures 8–10 show the results of the preliminary investigations,
indicating that the increase of binder content can be directly correlated with an increase in
density, compressive strength and bending strength for globally increased binder contents
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(a) and skin–core settings (b). The specimens’ densities printed using the skin-core strategy
were found to be higher than those of the respective specimens with overall increased
binder contents (Figure 8). This effect was attributed to the fact that the printed binder of
the underlying layer and its residual moisture impedes the deposition of new powder and
its compressibility. The compressive strengths of the specimens was significantly reduced
by the skin–core setting (Figure 9), while the bending strength slightly increased (Figure 10).
This was related to the maximum bending stress, which increases indirectly proportional to
the geometrical moment of inertia of the cross-section that is smaller for hollow rectangular
cross-sections compared to filled rectangular areas.
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Especially the dimensional accuracy in building direction decreased significantly with
increasing binder contents. While the specimens’ dimensions (measured by a Vernier
caliper) in building direction roughly comply with targeted dimensions for moderately
increased binder contents (mean deviations of +0.83% for 150% binder content and +1.56%
for 200% binder content), the dimensions for 300% binder content deviated extremely
from the targeted values (mean deviation of +3.91). The upper application limit of binder
content was therefore identified to be 200% for the observed sand–binder combination.
Especially the print strategy (e.g., the local density of the jetted binder), were found to play
an important role and will be further investigated.

4.2. Initial Approaches and Results in Infiltration of Sand Tools

The requirements regarding the mechanical properties cannot be achieved with the
basic material system. A conflict of targets exists regarding strength, penetrability and final
permeability. This conflict can only be solved by considering the process, i.e., including
printing and infiltration. Therefore, the 3D-printed sand structures were subsequently
impregnated with various resins. In a preliminary test, first promising results were gained
by infiltrating two D15 × 20 mm specimens. The samples were Binder-Jetted using GS14
sand and furan resin (VX-2C by voxeljet AG, Friedberg, Germany). The Epoxy resin
(IH16 by Ebalta Kunststoff GmbH, Rothenburg ob der Tauber, Germany) was applied
as the infiltration medium. Infiltration was carried out manually at room temperature
using a brush. Figure 11a shows two infiltrated specimens: at the top of the figure, a
radial cut shows the full impregnation of the sand specimen; at the bottom, the second
specimen, previously tested for compression strength, is shown. The fully infiltrated
specimen reached a compressive strength of ~70 MPa, thus exceeding the targeted value
of 20 MPa. However, when altering the specimen dimensions to D50 × 50 mm, it was
observed that only a comparably limited penetration depth could be achieved. Figure 11b
demonstrates that such samples witnessed a spalling effect during compression testing.
This was accompanied by a reduced mean compression strength of 5.9 MPa at a standard
deviation of 0.3 MPa. When doubling the amount of infiltration medium for another
five specimens of D50 × 50 mm, spalling could still be observed, while the compression
strength increased to a mean compression strength of 12.1 MPa at a standard deviation
of 3.1 MPa. These first experiments were intended to show the potential and challenges
associated with the infiltration of 3D-printed sand structures. Further examinations with
a larger quantity of specimens including a broader variety of materials are planned for
future investigations.
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A rough evaluation of the surface quality achievable by grinding the epoxy-infiltrated
structure showed Ra of 7 µm, fulfilling the requirements stated above. However, hand-
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grinding using sand 120-grit paper shows a low level of automation. Thus, alternative
methods are also scope of the future investigations.

4.3. Intended Future Investigations Regarding Sand Tool Fabrication

The results of the first investigations showed that the requirements regarding the tools
can in principle be met. The preliminary tests have to be refined in order to prove the
feasibility of the production of suitable tools.

The planned study implies the evaluation of the mechanical performance, dimensional
accuracy, density, permeability and surface quality of the sand structures with respect to
the targeted requirements. Table 1 presents the applied test methods for evaluation.

Table 1. Materials testing methods for further investigations.

Material Testing Method Standard

3-point flexure test VDG P71
Compression test DIN EN ISO 126

Dimensional accuracy DIN 862
Permeability test VDG P41

Density determination DIN 862, DIN 8128-1
Roughness measurement ISO 4288

Various sands are to be considered for the future study in order to investigate the effect
of particle size and shape on density, strength, roughness, penetrability and permeability.
Three different particle size distributions of natural silica sand will be investigated (GS14,
GS19 and GS25 by Strobel Quarzsand GmbH, Freihung, Germany 3D) as well as one
synthetic sand composed of aluminium silicate (Cerabeads ES650 by Hüttenes-Albertus
Chemische Werke GmbH, Düsseldorf, Germany). Printing will be carried out using two dif-
ferent binder systems: a furan resin (VX-2C by voxeljet AG, Friedberg, Germany) that is
the most frequently used for Binder Jetting of sand molds and an inorganic binder system
(IOB by voxeljet AG, Friedberg, Germany), which is gaining increased attention due to
its low emissions during casting. Further, a graded structure that allows for a controlled
permeability for subsequent impregnation and the final vacuum forming purposes may be
applicable in sand tools. Therefore, the binder content and the printing strategy will be
further investigated in accordance with the preliminary tests. In addition, the lower limit
regarding binder content will be identified. This is expected to result in lower densities,
which may enhance the penetrability of the 3D-printed sand structure by the infiltration
media. Figure 12 sums up the planned investigations with the various material systems
and 3D printing parameters.
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Figure 12. Planned variations regarding 3D printing of sand tools.

Further investigations target the enhancement of the penetration depth using alterna-
tive resins of higher penetrating capacity in addition to tailoring the permeability of the
3D-printed structure by locally altering the binder content. Figure 13 shows the suggested
specimen geometry designed for investigating the depth of penetration. The sample is
cylindrical with a central hole making an indentation of 5 ml volume. Accordingly, a
pre-metered amount of infiltration media is to be applied into the indentation, which will
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allow a comparability of the impregnation efficiency with varying infiltration media at
varying temperatures and printing material systems (involving powder and binder) and pa-
rameters. The penetration depth will be examined microscopically across the cross-section.
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Further investigations will include surface modifications, as smooth surfaces will not
only enhance the surface quality of the FRP part but also are expected to reduce forces
when demolding. Investigations will concern known application methods like grinding
and coating of the infiltrated tools as well as the modification of the impregnation media.

4.4. Thermoforming of Organosheets

The implementation of vacuum thermoforming for FRPs requires a step-by-step
approach to overcome the first obvious challenges. These mainly lie in the lack of ductility
of the fibers in contrast to the surrounding thermoplastic matrix. Heating the organosheet
above the melting point of the matrix allows the matrix to flow and thus to be formed.
During this stage, the matrix is stretched within the blank holder or the support frame. In
the case of endless fibers, these are tensed but remain unable to stretch. This leads to the
withdrawal of the organosheet from the support frame or excessive folds. Accordingly,
a flexible holder is necessary; this should allow the sheet to flow and feed new material
necessary to envelope the 3D mold geometry.

A further challenge lies in the load available for deformation. It can be expected that
the vacuum pressure alone is insufficient for deforming FRP sheets. Although the main
target of the study is to keep the process as simple as possible, it is kept in mind that
an application of a diaphragm might prove to be inevitable. Other than in the case of
conventional thermoforming with unreinforced polymer sheets, it is assumed that heat
must be applied to both surfaces of the sheet in order to achieve a homogeneous melt
of the matrix throughout the thickness. This implies that the setup of a thermoforming
unit must be adapted to allow heating both sheet surfaces in addition to the mold surface
in order to avoid rapid cooling of the sheet during deformation. Figure 14 shows the
envisaged machine setup. An IR-heating unit is moved into the thermoforming unit, to
simultaneously heat both sides of the sheet and the mold surface. The heating unit is then
wheeled out and the thermoforming process takes place.
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Figure 14. Preliminary concept of the heating and thermoforming unit.

In order to tackle these challenges, first, the focus was set on the development of the
sand mold for vacuum thermoforming applications in general. Hence, the first tools devel-
oped in the above-mentioned stage were tested for their feasibility for pure thermoplastic
sheets. In that stage, an ABS fender was vacuum thermoformed. The sand mold, illustrated
in Figure 15a, is binder-jetted as a hollow structure in order to save weight (final weight
30 kg) and equipped with vacuum channels. The mold was further impregnated using an
epoxy resin to increase the stability of the surface layer. For improved surface finish, the
mold was ground using sandpaper (grit size 120). The process proved to be feasible and
the surface quality, as presented in Figure 15b,c, was found acceptable.
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Figure 15. (a) Binder-jetted sand mold for thermoforming thermoplastic fenders, (b) thermoformed
fender made from ABS, (c) application of the ABS fender.

In the next phase, the processing ability of FRPs is studied using metallic molds
equipped with conventional vacuum channels. Here, issues like vacuum pressure, heating
temperature, heating time and setup are examined. The difficulty level is increased by
first considering randomly oriented short fiber reinforced sheets. Then, the fiber length
and the orientation are altered step by step. When considering endless fibers, the behavior
of woven textiles will be observed in contrast to multi-axial fabrics. These experiments
are to be carried out on different levels of geometrical complexities. Figure 16 shows the
envisaged geometries of the mold.
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Figure 16. Targeted designs of mockup molds to tackle the challenges in various complexity levels.

As mentioned above, the support frame has to fulfill several functions and resembles
one of the key factors for successful thermoforming. First, the frame has to seal the forming
area to ensure vacuum build-up. Further, it should act as a blank holder that has to provide
enough degrees of freedom to allow for feeding sufficient sheet material to compensate the
desired 3D shape. Only if both features are provided by the clamping mechanism a good
molding process and part quality can be expected.

In order to be able to identify the necessary clamping force, preliminary evaluation
of the frictional forces between the above-mentioned materials and the anticipated frame
materials were conducted. The investigations were performed using a self-constructed test
rig, as depicted in Figure 17. The rig consists of a carriage for material A and a further
fixture for material B. Material A is cut to the dimensions 180 mm × 50 mm and is clamped
at both ends into the carriage. Material B is prepared to the dimensions 110 mm × 50 mm.
The test setup involves sandwiching two layers of material A between two single layers of
material B on each side (Figure 17 magnification). Hence, a contact area of 50 mm × 50 mm
is created. The normal (press) force is controlled by weights. For the measurements, the
test rig is mounted into a universal testing machine. The pulling rope is attached to the
crosshead and translates the vertical movement into a horizontal movement between
material A and B through the idler pulleys. When the carriage is moved back and forth, a
friction between A and B can be measured.
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Figure 17. Test rig for measurement of frictional forces between FRP sheet and clamp materials.

The candidate materials for the support frame in direct contact with the sheets were
selected to be polytetrafluoroethylene (PTFE) and aluminum. Regarding the anticipated
sheet materials, a unidirectional carbon fiber and another short-recycled carbon fiber
reinforced polyamide tape were investigated. The material combinations examined are
summarized in Table 2. For this test campaign, the universal test machine ZwickRoell
Z100 in combination with a KMD 5 KN load cell was used. For creating a specific press
force between materials A and B, a 1 kg mass was applied on the materials. The crosshead
was moved with a constant speed of 100 mm/min and stopped after a displacement of
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80 mm. All tests were performed at room temperature. The load-displacement data were
recorded for three replicates, where only material A was replaced by a new one after each
examination. To calculate the friction coefficients, two forces were evaluated from the
load-displacement curves. The static and dynamic coefficients of friction were calculated
according to Equation (1), where µPT is the coefficient of friction, F is the recorded force,
FN is the applied normal force, m is the mass and g the gravitational acceleration.

Table 2. Overview of the material combinations, the measured forces and calculated friction values.

Material Combination Average
Max.

Force [N]

Average
Sliding

Force [N]

µPTs
(Static

Friction)

µPTd
(Dynamic
Friction)Material A Material B

UD CF-PA Teflon 4.78 3.06 0.243 0.156
UD CF-PA Aluminium 6.91 5.08 0.352 0.259
UD CF-PA UD CF-PA 4.68 3.7 0.238 0.189

Teflon Aluminium 8.71 6.3 0.444 0.321
rCF_PA Teflon 5.89 4.35 0.300 0.222
rCF_PA Aluminium 12.37 7.02 0.624 0.358

In the case of the static friction coefficient µPTs, the force F is identified at the beginning
of motion as the maximum force value between 0 and 10 mm displacement, whereas for
the dynamic friction coefficient µPTd F is given by the average force value, between 10 and
60 mm displacement. The calculated values are presented in Table 2.

µPT =
F

2 ∗ FN
; FN = m ∗ g = 1 kg ∗ 9.81 m/sˆ2 = 9.81 N (1)

A simple model for the calculation of the clamping force was developed based on
the coefficients of friction µPT, the achievable vacuum pressure and the required forming
geometry. The model is presented in more detail in the Appendix A. Through the known
pressure difference ∆p (between vacuum and ambient pressure) and the surface area A of
the sheet, the resulting force Fvac can be calculated. With this force and the assumption that
the tape behaves like a rope (inelastic material, unable to transfer moments), the clamping
force Fs can be estimated. Accordingly, Figure 18 gives a simplified estimation of the
forming process at its initial state, where the pliable sheet is not yet in contact with any of
the mold surfaces except the top surface (indicated by the plate in Figure 18).
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Figure 18. Side view of the test stand and acting forces and top view of the test stand.

The test rig is further illustrated in Figure 19. Knowing the inclination angles and
dimensions of the test rig, the surface area of a clamped foil can be calculated. Further,
the vacuum force Fvac applied to the foil can be determined and can be decomposed in



Materials 2021, 14, 4639 16 of 20

its horizontal and vertical force components, for each area segments (A1–A4 in Figure 18).
Based on the assumption that the tape behaves like a rope and that the tape does not
transport any momentum in addition to the boundary condition, that Fs × µPTs < FFoil
(where FFoil is the tangential tensile force in the foil), the parameters for all area segments
can be calculated.
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Figure 19. Test setup for the validation of the developed model.

To validate the model and calculations, a test (Figure 19) was performed, using the
aforementioned setup, while integrating a load cell in an exact copy of the described model
(Figure 18). A PA6 foil (commonly used in vacuum infusion processes) was used. A vacuum
cleaner (Wieland IS-46h) was used to create the desired pressure difference of 270 mbar.
After assembling the test stand and clamping the foil in the frame the load cell is tared, and
the vacuum was applied. A nominal force of 0.91 kN was generated and was further used
to validate the model. The first trials indicated that with the vacuum cleaner and the test
stand the expected pressure difference of 270 mbar could not be achieved. However, the
pressure difference was not measured, and it remains unclear what the absolute achieved
vacuum pressure would lead to, regarding the pressure difference between ambient and
vacuum. This difference is vital for the calculations. Hence, in the next step, a pressure
sensor is integrated into the test stand to raise the necessary data for validation.

Once the theoretical model is validated, it can be applied to construct the support
frame and to define the necessary clamping forces. These aspects will further be considered
for a prototype vacuum thermoforming stand. The products, produced with the prototype
machine, are to be evaluated regarding their dimensional accuracy, the fiber distribution
and local fiber volume content.

First experimental trials have proved the above-mentioned challenges. Trials with
endless fiber reinforced thermoplastic sheets (Figure 20a) confirmed the demand for a new
clamping concept and a two-sided heating system with short transportation routes from
the heating unit to the forming unit. Further, the trials have shown, that the short fiber
material can be challenging, as it tends to loft (Figure 20b) and thus generate voids in the
process, which in turn negatively affect the generation of the required vacuum pressure.
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4.5. Summary of Technical Challenges

Preliminary investigations showed that 3D-printed sand specimens meet the require-
ments for the application of FRP vacuum forming tools regarding strength and surface
quality on laboratory scale. It was shown that it is possible to customize density and
strength by adapting the 3D printing parameters and through post-processing by infiltra-
tion, while varying impregnation parameters and media.

Technical challenges in developing 3D-printed sand tools for vacuum forming of FRP
derive in particular from increased mechanical and thermal loads when forming FRP sheets.
Process related mechanical peak loads are expected to occur during forming and ejecting of
the formed part resulting in multi-axial stresses on the tool. Thus, a geometry-dependent
stability of the tool material is needed. However, a residual permeability is expected to be
advantageous for the vacuum-forming process. Especially the homogeneity of the material
properties within the tool, strongly influenced by the infiltration process, are expected to
play an important role for the long-term stability of the tools.

Moreover, temperature increases in the tool arise along with an increased number
of production cycles as the sheets solidify in direct contact with the tool surface. How-
ever, using 3D printing offers extensive possibilities to overcome constraints by including
enhanced functionalities, such as undercut cooling and vacuum channels.

Regarding the vacuum forming of FRPs, the main challenges lie in the construction
of a suitable sheet holder that allows material feed to compensate its draping over the
mold and that provides enough tension to prohibit wrinkles in the sheet. In addition,
rapid cooling against the mold has to be prevented up to the point, where the geometry
is accurately mapped. Further, the forming process itself, the dynamic process and the
reproducibility of the material feeding behavior will be the key challenges for successful
vacuum forming.
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In view of the transfer to an industrial application, the central key challenge is defining
an economically, sustainable and preferably automatable process for the production of
tools of consistent quality.
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