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Simple Summary: With the influx of multi-omics profiling, effective integration of these data re-
mains the bottleneck for omics-driven discovery. Thus, we developed DRPPM-EASY, an R Shiny
framework for integrative multi-omics analysis of cancer datasets. Our tool enables the exploration
of multi-omics data by providing a simple user interface that minimizes the need for computational
experience. Furthermore, the interface can be deployed locally or on a webserver to facilitate scientific
collaboration and discovery.

Abstract: High-throughput transcriptomic and proteomic analyses are now routinely applied to
study cancer biology. However, complex omics integration remains challenging and often time-
consuming. Here, we developed DRPPM-EASY, an R Shiny framework for integrative multi-omics
analysis. We applied our application to analyze RNA-seq data generated from a USP7 knockdown in
T-cell acute lymphoblastic leukemia (T-ALL) cell line, which identified upregulated expression of a
TAL1-associated proliferative signature in T-cell acute lymphoblastic leukemia cell lines. Next, we
performed proteomic profiling of the USP7 knockdown samples. Through DRPPM-EASY-Integration,
we performed a concurrent analysis of the transcriptome and proteome and identified consistent
disruption of the protein degradation machinery and spliceosome in samples with USP7 silencing. To
further illustrate the utility of the R Shiny framework, we developed DRPPM-EASY-CCLE, a Shiny
extension preloaded with the Cancer Cell Line Encyclopedia (CCLE) data. The DRPPM-EASY-CCLE
app facilitates the sample querying and phenotype assignment by incorporating meta information,
such as genetic mutation, metastasis status, sex, and collection site. As proof of concept, we verified
the expression of TP53 associated DNA damage signature in TP53 mutated ovary cancer cells.
Altogether, our open-source application provides an easy-to-use framework for omics exploration
and discovery.

Keywords: R Shiny application; RNA-seq; proteomics; multi-omics analysis; T-cell acute lymphoblastic
leukemia; CCLE

1. Introduction

Multi-omics profiling of cancer patient samples and cell lines is becoming a staple of
cancer research [1]. These technologies have a high potential for advancing our understand-
ing of tumor biology and, in turn, reveal novel targets for treatment and diagnosis [2,3]. To
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date, a brief survey of the existing database reveals more than 500K cancer samples from
GEO [4,5] and 90K pre-computed cancer expression data from recount3 [6]. Additionally,
there are close to 4K mass spectrometry profiling of cancer patient samples from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) data [7]. Large consortium projects, such
as the Cancer Cell Line Encyclopedia (CCLE), have also generated many high-throughput
datasets, such as transcript expression, RNA splicing, proteome profiling, drug response,
and genetic screening data [8].

With the influx of multi-omics profiling, effective integration of these data remains the
bottleneck for omics-driven discovery. The development of a simple user interface that min-
imizes the need for computational experience is of high interest to the community [9]. Sev-
eral web-based tools are now available to perform general expression analysis of proteomics
(e.g., POMAShiny [10]) and transcriptome data (e.g., TCC-GUI [11], START App [12], and
GENAVi [13]). Multi-omics approaches for network analysis (e.g., MiBiOmics [14] and
JUMPn [15]) are also available as a Shiny app. Web tools also exist for analyzing large
datasets from the Gene Expression Omnibus (GEO) data (e.g., shinyGEO [16], ImaGEO [17])
and the cancer dependency map (e.g., shinyDepMap [18]). However, these applications
tend to have limited features for analyzing complex heterogeneous phenotypes in cell
lines and patients, such as mutation of genomic drivers, cell line characteristics, sex, or
metastasis status. Additionally, none of these tools provides a streamlined pipeline to assess
similarities and differences between omics datasets, such as transcriptome and proteome
comparisons, or comparisons between mouse and human cancer models.

To address these challenges, we have developed DRPPM-EASY, a Shiny app built with
an open-source R programming language that can be run as a local instance or deployed
online. Here, our app is divided into two major modules: (1) a one-stop expression analysis
for gene expression analysis and (2) an integrative framework for comparing omics data. As
a proof of concept, we further implemented an app for querying and automating extraction
of sample groupings of CCLE data for downstream analysis. The source code of our
application can be downloaded from https://github.com/shawlab-moffitt/DRPPM-EASY-
ExprAnalysisShinY (accessed on 1 February 2022).

2. Materials and Methods
2.1. Module 1. DRPPM-EASY APP Implementation

The DRPPM-EASY app is a Shiny web app built with an open-source R programming
language (V.4.1.0). The Shiny framework leverages existing RNA-seq analysis packages to
put together a one-stop analysis framework (Figure 1A) for data exploration (Table 1), dif-
ferential expression analysis (Table 2), and gene set enrichment analysis (Table 3). The data
exploration section allows the user to perform unsupervised and supervised hierarchical
clustering. Clustering can be further evaluated by different types of distance calculations
(i.e., ward, average, complete, centroid) or variable gene ranking strategy (mean absolute
deviation or variance). The relative gene expression can be examined across sample groups
by a boxplot or scatter plot to examine the gene expression of the positive control associated
with the experimental design. Differential gene expression is performed by LIMMA [19]
and can be visualized as a volcano plot and MA-plot. The list of differentially expressed
genes can be further examined by pathway enrichment analysis (Figure 1A). Finally, the
user can perform gene set enrichment analysis (GSEA), which ranks the genes based on
signal-to-noise between the user-selected phenotype to examine enriched genes associated
with a gene set signature (Figure 1A). A complementary strategy to estimate enrichment
scores for individual samples can be performed by single-sample GSEA (ssGSEA) imple-
mented in the GSVA library [20]. Finally, these single-sample enrichment scores can be
downloaded as a tab-delimited table or visualized as a boxplot.

https://github.com/shawlab-moffitt/DRPPM-EASY-ExprAnalysisShinY
https://github.com/shawlab-moffitt/DRPPM-EASY-ExprAnalysisShinY
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Figure 1. DRPPM-EASY expression analysis pipeline. (A) Schematic workflow of DRPPM-EASY. 
The pipeline takes in input files of an expression matrix, a sample meta-file specifying sample 
grouping, and a gene set database for GSEA. A GSEA enriched signature table is generated as a 
preprocessing step, which is used as input to the R Shiny app. The app generates two modes of 
exploring the data: (1) general differential gene expression analysis and (2) gene set enrichment 
analysis. The result from the analysis can be downloaded as output tables. (B) Schematic of the 
integrative analysis with three major features for pathway signature comparison. The app has three 
modes of integrative analysis: (1) scatter plot mode, (2) correlation plot mode, and (3) paired multi-
omics analysis. 

Table 1. Data Exploration Module. 

 App Function Description 

E1 Unsupervised Heatmap 

• Top variable gene selection 
• Expression data is log2 transformed then z-

normalized  
• User-specified clustering method 

E2 Scatter Plot 
• User selects two genes of interest 
• Expression values compared via interactive 

scatter plot (log2 transformation is optional) 

E3  Custom Heatmap 

• Visualize user-selected genes and samples 
• Expression data is log2 transformed and z-

normalized 
• User-specified clustering method 

E4 Box Plot 
• Gene expression in each group are shown 
• Expression values are log2 transformed 
• Comparing groups for statistical differences 

Table 2. Differential Expression Analysis Module. 

 App Function Description 

DEA1 Volcano Plot • User selects comparison groups 

Figure 1. DRPPM-EASY expression analysis pipeline. (A) Schematic workflow of DRPPM-EASY. The
pipeline takes in input files of an expression matrix, a sample meta-file specifying sample grouping,
and a gene set database for GSEA. A GSEA enriched signature table is generated as a preprocessing
step, which is used as input to the R Shiny app. The app generates two modes of exploring the data:
(1) general differential gene expression analysis and (2) gene set enrichment analysis. The result from
the analysis can be downloaded as output tables. (B) Schematic of the integrative analysis with three
major features for pathway signature comparison. The app has three modes of integrative analysis:
(1) scatter plot mode, (2) correlation plot mode, and (3) paired multi-omics analysis.

Table 1. Data Exploration Module.

App Function Description

E1 Unsupervised Heatmap
• Top variable gene selection
• Expression data is log2 transformed then z-normalized
• User-specified clustering method

E2 Scatter Plot
• User selects two genes of interest
• Expression values compared via interactive scatter plot

(log2 transformation is optional)

E3 Custom Heatmap
• Visualize user-selected genes and samples
• Expression data is log2 transformed and z-normalized
• User-specified clustering method

E4 Box Plot
• Gene expression in each group are shown
• Expression values are log2 transformed
• Comparing groups for statistical differences
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Table 2. Differential Expression Analysis Module.

App Function Description

DEA1 Volcano Plot

• User selects comparison groups
• Differential gene expression analysis with LIMMA
• Up- and downregulated differentially expressed genes

determined with user input

DEA2 MA Plot

• User selects comparison groups
• Differential gene expression analysis with LIMMA
• Up- and downregulated differentially expressed genes

determined with user input

DEA4 Pathway Enrichment Analysis
• User selects comparison groups and gene set/pathway
• Differential gene expression analysis with LIMMA
• Pathway enrichment analysis using enrichR

Table 3. Gene Set Enrichment Analysis Module.

App Function Description

GA1 Enrichment Plot
• User selects comparison groups
• Signal-to-noise ranking performed on expression data
• GSEA function performed with chosen gene set

GA2 Gene Expression Heatmap

• User selects comparison groups
• Signal-to-noise ranking performed on expression data
• GSEA function performed with chosen gene set
• Expression data log2 transformed and scaled
• Genes from chosen gene set displayed in the heatmap

GA3 GSEA Summary Table • Displays user pre-generated enriched signatures table

GA4 Generate Summary Table
• GSEA function performed on expression data with

user input GMT file
• Enriched signatures table produced is displayed

GA5 ssGSEA Boxplots
• User-selects gene set and single-sample GSEA method
• Comparing groups for statistical differences

2.2. Module 2. The DRPPM-EASY-Integration App Implementation

The DRPPM-EASY-Integration provides an explorer for the user to upload normalized
RNA expression, proteomic quantification, or ssGSEA scores to evaluate the potential
relationship between these features (Figure 1B). These can be evaluated by either a 1:1
scatter plot or 1:n rank of Spearman correlation rho values (Table 4). The integrative app
also allows the user to perform concurrent differential expression analysis and integration
of two expression matrices, for example, to compare RNA and protein expression matrices.
The fold change can be compared between the two datasets (Table 4), and differentially ex-
pressed genes can be compared by reciprocal GSEA or ssGSEA. Direct overlap between the
differentially expressed genes is shown as a Venn diagram and further compared to existing
gene set databases by Fisher’s exact test, Cohen’s kappa score, and the Jaccard index.
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Table 4. Integrative Analysis.

App Function Description

IA1 Scatter Plot Comparison
• User input features are merged and plotted
• Samples are colored based on metadata type

IA2 Correlation Rank Plot

• Assessing the relationship between ssGSEA score and gene
expression performed

• Correlation can be performed as Spearman, Pearson, or
Kendall

• Correlation values plotted by rank from lowest to highest

IA3 Matrix Comparison File Upload • Upload two expression matrices and two metadata files

IA4 Log2FC Comparison Scatter Plot

• Differential gene expression analysis with LIMMA
performed on both matrices

• Log2 fold change values subset and difference between
matrices calculated

• Expression data displayed as scatter plot

IA5 Reciprocal GSEA

• Differential gene expression analysis with LIMMA
• Four gene sets derived differentially expressed genes (two

upregulated, and two downregulated gene set)
• GSEA performed on the reciprocal data

IA6 Reciprocal ssGSEA

• Differential gene expression analysis with LIMMA
• Four gene sets derived differentially expressed genes (two

upregulated, and two downregulated gene set)
• ssGSEA performed on the reciprocal data

IA7 Venn Diagram

• Differential gene expression analysis with LIMMA
• Overlapping differentially expressed genes
• Perform Fisher’s exact test. Calculate Cohen’s kappa, and

Jaccard index to compare between the two matrix and across
user selected pathways.

2.3. Installation and User Guide

The source code and user guide are available for download on the project’s GitHub
page. The GitHub page includes the list of individual R packages and their version along
with an installation script for all package dependencies.

2.4. RNA Sequencing Analysis

USP7 samples were prepared as described in Shaw et al. [21]. Briefly, human T-ALL
cell lines Jurkat (ATCC) cells were transduced with USP7 shRNA lentivirus and sorted for
GFP positive cells or selected by puromycin. RNA samples were isolated using RNeasy
Mini Kit (QIAGEN) and subjected to paired-end 2 × 151 base-pair RNA-seq sequencing
(Illumina), 10 Jurkat samples—of which 6 were treated with shRNA and 4 were treated with
a scramble RNA—were profiled by RNA-seq. RNA-seq data were processed by a custom
pipeline (WRAP, https://github.com/gatechatl/DRPPM_Example_Input_Output/tree/
master/WRAP:Wrapper-for-my-RNAseq-Analysis-Pipeline (accessed on 1 August 2021.
RNA-seq reads were aligned using the STAR 2.7.1a aligner [22] in the two-pass mode to
the human hg38 genome build using gene annotations provided by the Gencode v31 gene
models. Read count for each gene was obtained with HT-seq [23]. Reads were normalized
to fragments per kilobase million (FPKM) for each gene.

2.5. Whole Proteomics Mass Spectrometry and Data Analysis

The 10-plex TMT labeled mass spectrometry experiment was performed with a pre-
viously published protocol with slight modification [24,25] (See Supplementary Method,

https://github.com/gatechatl/DRPPM_Example_Input_Output/tree/master/WRAP:Wrapper-for-my-RNAseq-Analysis-Pipeline
https://github.com/gatechatl/DRPPM_Example_Input_Output/tree/master/WRAP:Wrapper-for-my-RNAseq-Analysis-Pipeline
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Supplementary Figure S3 for the experimental design). Protein for each sample was di-
gested by trypsin (Promega). The TMT labeled samples were mixed equally, desalted, and
fractionated on an offline HPLC (Agilent 1220) using basic pH reverse-phase liquid chro-
matography (pH 8.0, XBridge C18 column, 4.6 mm × 25 cm, 3.5 µm particle size, Waters).
In total, 20 fractions were derived, and the eluted peptides were ionized by electrospray
ionization and detected by an inline Orbitrap Fusion mass spectrometer (Thermo Scientific.
Waltham, MA, USA). The MS/MS raw files were processed by a tag-based hybrid search
engine JUMP [26]. The data were searched against the UniProt human concatenated with a
reversed decoy database for evaluating false discovery rate. Searches were performed using
a 25 ppm mass tolerance for precursor ions and 25 ppm mass tolerance for fragment ions,
fully tryptic restriction with two maximal missed cleavages, three maximal modification
sites, and the assignment of a, b, and y ions. TMT tags on lysine residues and N-termini
(+229.162932 Da) were used for static modifications, and Met oxidation (+15.99492 Da) was
considered as a dynamic modification. MS/MS spectra were filtered by mass accuracy and
matching scores to reduce the protein false discovery rate to approximately 1%. Proteins
were quantified by summing up reporter ion counts across all matched PSMs using the
JUMP software suite [25,26].

2.6. Pre-Processing of the GSEA Analysis

To optimize the user experience, we provided a script to pre-generate a GSEA result
table (Supplementary Figure S1). The GitHub page contains “Getting Started Scripts”,
which allows the user to pre-process GSEA results for downstream table visualization.
Enriched signature tables can take a long time to process depending on the number of
samples or the size of the GMT file provided by the user. At the top of the script, there are
key input parameters, such as file path and name to the expression matrix, metadata, and
gene set file, as well as the preferred output file path of the output table(s). Additionally,
the getting started scripts include a script to generate an R Data list of the ssGSEA analysis.
Large gene sets may require several minutes, so pre-computing can facilitate a better
user experience.

3. Results
3.1. DRPPM-EASY Analysis of RNA-seq and Proteomics Data Use Case 1

We previously identified that USP7 knockdown in T-ALL reduces the activity of
E-proteins in a TAL1 dependent manner [21]. To highlight the functions of the DRPPM-
EASY application, we re-examined the RNA sequencing profiling data of Jurkat cells
after USP7 shRNA silencing. RNA-seq sample grouping was assessed by unsupervised
hierarchical clustering (Figure 2A). Notably, altering the clustering methods and the number
of (selected) top variables did not change the clustering result, suggesting robust grouping
of our data (Supplementary Figure S2). Differential gene expression was then performed by
LIMMA and visualized as a Volcano and MA plot. As expected, differential gene expression
analysis found downregulated USP7 expression after silencing (Figure 2B,C). Notably, MYC,
NOTCH1, TRIB2, and EOMES were upregulated after USP7 knockdown (Figure 2B). In the
pathway analysis view, enriched pathways can be examined with preloaded gene sets from
MsigDB, cell marker, and L1000 drug response. By GSEA and single-sample GSEA, we
found USP7 knockdown upregulated with MYC and TAL1 associated targets (Figure 2D,E)
and found downregulated apoptotic gene signature from the Hallmark database (Figure 2F).
Overall, the RNA-seq analysis supports our previous finding that USP7 is implicated in the
negative regulation of TAL1-dependent leukemia growth [21].
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USP7 knockdown are shown in blue (USP7-associated targets). (C) Boxplot showing the USP7 ex-
pression in log2 FPKM. (D) Gene set enrichment analysis of MYC targets. (E) Boxplot showing the 
single sample GSVA analysis of the TAL1 gene set. (F) Boxplot showing the single sample GSVA 
analysis of the Hallmark Apoptosis gene set. 

Next, tandem-mass-tagged proteomics profiling was performed on the same set of 
samples with RNA-seq profiling (Figure 3A; Supplementary Figure S3). A joint analysis 
of the transcriptome and proteome data was carried out by the DRPPM-EASY-Integration 
pipeline, identifying genes with altered protein abundance and unaltered mRNA levels, 
such as TRIM27, NOTCH2, UBR3, and USP22 (Figure 3B). Consistent with our previous 
observation, TRIM27, a known target of USP7 [27], observed decreased protein abundance 
in T-ALL cell lines with a haploinsufficient USP7 [21]. The altered abundance of UBR3 
and USP22 suggests an altered ubiquitin ligase network. Furthermore, our result suggests 
that USP7 loss-of-function alters NOTCH2 protein abundance. Of note, NOTCH1 [28] pro-

Figure 2. Expression analysis example of RNA-seq data USP7 silenced Jurkat cells. (A) Unsupervised
clustering of the RNA sequencing data using the top 100 genes ranked based on mean absolute
deviation (MAD). (B) Differential gene expression analysis comparing USP7 knockdown and scramble.
Genes upregulated after USP7 knockdown are shown in red and genes downregulated after USP7
knockdown are shown in blue (USP7-associated targets). (C) Boxplot showing the USP7 expression
in log2 FPKM. (D) Gene set enrichment analysis of MYC targets. (E) Boxplot showing the single
sample GSVA analysis of the TAL1 gene set. (F) Boxplot showing the single sample GSVA analysis of
the Hallmark Apoptosis gene set.

Next, tandem-mass-tagged proteomics profiling was performed on the same set of
samples with RNA-seq profiling (Figure 3A; Supplementary Figure S3). A joint analysis of
the transcriptome and proteome data was carried out by the DRPPM-EASY-Integration
pipeline, identifying genes with altered protein abundance and unaltered mRNA levels,
such as TRIM27, NOTCH2, UBR3, and USP22 (Figure 3B). Consistent with our previous
observation, TRIM27, a known target of USP7 [27], observed decreased protein abundance
in T-ALL cell lines with a haploinsufficient USP7 [21]. The altered abundance of UBR3
and USP22 suggests an altered ubiquitin ligase network. Furthermore, our result suggests
that USP7 loss-of-function alters NOTCH2 protein abundance. Of note, NOTCH1 [28]
protein abundance was unaltered after USP7 knockdown (Figure 3B). Thus, the precise
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mechanism of USP7 to drive the NOTCH association leukemia signature will need to be
carefully examined in future studies.
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Figure 3. Integrated analysis example of proteomics and transcriptomics USP7 silenced Jurkat cells.
(A) Jurkat samples treated with USP7 shRNA and scramble were profiled by RNA sequencing and
TMT mass spectrometry. (B) The log2 fold change from the differential expression analyses is plotted.
Positive log2FC indicates upregulated expression after USP7 silencing. Negative log2FC indicates
downregulated expression after USP7 knockdown. Dotted line indicates the −1 and 1 log2FC cutoff.
(C) Upregulated and downregulated gene signatures derived from differentially expressed mRNAs.
(D) Venn diagram of genes differentially upregulated (top panel) and downregulated (bottom panel)
in the transcriptome (left) and proteome (right). (E) Up-regulated and downregulated gene signatures
derived from differentially expressed proteins. (F,G) Reciprocal GSEA of differentially expressed
genes derived from the transcriptome and examined in the proteomics data (F). Similarly, differentially
expressed proteins were first derived then examined in the transcriptome data by GSEA (G).
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The DRPPM-EASY-Integration includes features assessing the consistency between
two datasets. Using the RNA-seq and proteomic data as proof of concept, DRPPM-EASY-
Integration found 987 genes consistently upregulated, and 622 genes consistently down-
regulated in both datasets (Figure 3C–E). A connectivity map-inspired strategy [29,30]
was applied to compare the consistency between the two datasets using reciprocal en-
richment. Specifically, differential expressed genes in one dataset was used to derive a
gene signature for GSEA to test in the other dataset. For example, differentially expressed
proteins (Figure 3F) were applied as a GSEA gene set and tested for enrichment in the
transcriptome data (Figure 3G). Similarly, gene sets derived from differentially expressed
transcripts (Figure 3C) were tested for enrichment in the proteome data (Figure 3H). We
then compared the significance of the overlapping differentially expressed genes against
other pathway databases, such as Hallmark and KEGG. The overlap was evaluated by
Fisher’s exact test, Cohen’s kappa, and Jaccard index. Consistently, the RNA and protein
were most significantly overlapped compared to other gene sets. Moreover, the spliceo-
some and ubiquitin-mediated proteolysis pathways from KEGG and the unfolded protein
response and MYC pathway from Hallmark were consistently enriched in both datasets
(Supplementary Figure S3B,C; Supplementary Tables S1 and S2).

3.2. DRPPM-EASY-CCLE Use Case 2

To further illustrate the DRPPM-EASY functionality, we developed DRRPM-EASY-
CCLE, an extended app with features to select samples from the Cancer Cell Line Encyclo-
pedia (CCLE) data. The app is preloaded with 1379 CCLE samples spanning 37 lineages,
96 lineage sub-types, and 33 diseases. For the genetic characterization, 299 cancer drivers [31]
were selected and further divided based on the damaging and non-damaging variant status
from DepMap [32] (see Supplementary Table S3 for the complete phenotype categories).
As an example, we extracted ovary cancer cell lines and performed expression analysis
comparing TP53 mutation status to its wild-type counterpart (Figure 4A). In TP53 mutated
ovary cancer cells, we found a decreased DNA damage response gene signature (Figure 4B),
thereby solidifying the role of TP53 loss-of-function for regulating DNA damage in these
ovarian cancer cells.

Previously, KRAS was found to be frequently mutated in non-small cell lung cancer
(NSCLC) and is associated with drug resistance [33]. Thus, we analyzed NSCLC cell lines
and compared KRAS mutation status to its wild-type counterpart (Figure 4C). By pathway
analysis, the MsigDB defined KRAS signature was consistently upregulated in our KRAS
mutated samples (Supplementary Figure S4A). Interestingly, top pathways enriched in the
KRAS mutated samples are associated with an anti-apoptosis signature (Supplementary
Figure S4B). By ssGSEA, amplified expression in KRAS mutated NSCLC cells were enriched
with genes that negatively regulate apoptosis (Figure 4D) and upregulating genes that
associated with stress granule assembly and disassembly (Figure 4E), which is a dynamic
process fundamental to surviving under stress [34]. Interestingly, oncogenic KRAS-driven
stress granules were previously identified in pancreatic and colorectal adenocarcinoma [35];
thus, our result suggests a similar stress response in NSCLC cells.

To further expand our functionality for exploring these large project data, we have
also implemented features that enable users to upload their own expression matrix to
perform an integrative analysis in CCLE and lung squamous cell carcinoma CPTAC datasets
https://github.com/shawlab-moffitt/DRPPM-EASY-LargeProject-Integration (accessed
on 1 February 2022) (Supplementary Figures S5A–C). Altogether, our framework provides
a user-friendly environment to categorize the samples for downstream analysis with a high
potential for novel discovery.

https://github.com/shawlab-moffitt/DRPPM-EASY-LargeProject-Integration
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from the Gene Ontology database (GOBP). Analyzed samples were selected from the drop-down 
menu from (C). 

Previously, KRAS was found to be frequently mutated in non-small cell lung cancer 
(NSCLC) and is associated with drug resistance [33]. Thus, we analyzed NSCLC cell lines 
and compared KRAS mutation status to its wild-type counterpart (Figure 4C). By pathway 
analysis, the MsigDB defined KRAS signature was consistently upregulated in our KRAS 
mutated samples (Supplementary Figure S4A). Interestingly, top pathways enriched in 
the KRAS mutated samples are associated with an anti-apoptosis signature (Supplemen-
tary Figure S4B). By ssGSEA, amplified expression in KRAS mutated NSCLC cells were 
enriched with genes that negatively regulate apoptosis (Figure 4D) and upregulating 
genes that associated with stress granule assembly and disassembly (Figure 4E), which is 

Figure 4. Use case analysis example of CCLE Expression data. (A) Drop-down menu selection
of sample cohort and sample phenotype characteristic. CCLE ovary samples and TP53 mutation
status were selected from the drop-down menu option. (B) Single-sample GSEA analysis of genes
defining the DNA damage response by Amundson et al. Analyzed samples were selected from the
drop-down menu from (A). (C) Drop-down menu selection of sample cohort and sample phenotype
characteristic. CCLE non-small cell lung cancer samples and phenotype associated with the KRAS
mutation status were selected from the drop-down menu option. (D) Single sample GSEA analysis of
genes negatively regulating the DNA damage response. (E) Single sample GSEA of genes defining
the stress granule assembly and disassembly. Gene sets were compiled from Biological Pathways
from the Gene Ontology database (GOBP). Analyzed samples were selected from the drop-down
menu from (C).

4. Discussion

An effective method for visualization and data analysis is key to the analysis of multi-
omics data that captures the molecular processes of cancer initiation and progression.
Several Shiny apps have been published to date and can be categorized into the following
three categories: (1) tools that focus on pairwise differential expression and biomarker
discovery (e.g., POMAShiny 10], TCC-GUI [11], and START App [12]), (2) tools that
perform pathway and network analysis (e.g., iOmics [14] and JUMPn [15]), and (3) tools
that facilitate the query of large datasets, such as from public repositories or consortium
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deposited datasets and deposited expression data (e.g., shinyGEO [16], ImaGEO [17], and
GENAVi [13]). While numerous web tools have been developed thus far, there is a lack
of tools that directly address challenges associated with multi-data integration, such as
evaluating the consistency between omics datasets.

Here, we developed an interactive software tool, DRPPM-EASY, that allows users to
perform complex omics data integration in both small (pairwise comparison) and large
(consortium) projects. DRPPM-EASY puts together an interactive flexible interface that
enables the exploration of biomarkers and enriched pathways across multiple datasets.
DRPPM-EASY can perform routine gene analysis, such as hierarchical clustering, differen-
tial gene expression, pathway analysis, GSEA, and ssGSEA. Additionally, DRPPM-EASY
can perform a joint analysis of two expression datasets. As an example, we have highlighted
the application’s ability to evaluate the consistency between transcriptome and protein
datasets. This is made possible by deriving a gene set feature in one dataset (i.e., tran-
scriptomics), which is applied in the GSEA analysis of the other dataset (i.e., proteomics).
DRPPM-EASY can be easily adapted for large consortium data, which we highlight as an
example in CCLE cancer cell lines and lung squamous cell carcinoma CPTAC proteome
data. Finally, to further expand the utility of our tool, the user can upload their own expres-
sion data and use it to compare against CCLE cell lines and lung squamous cell carcinoma
proteome data. One major limitation of our application requires the user to normalize their
gene expression matrix prior to using our application. Existing pipelines are available to
streamline the normalization procedure, such as Shiny-Seq [36]. A normalization procedure
will be included in future updates of our application.

Finally, the ability to run the application with a user interface on a local desktop reduces
the need for computational domain knowledge of expression analysis. The DRPPM-EASY
application can be set up on the server in real-time, enabling collaborative discussion
on potential hypotheses derived from the high-throughput data. Our tool also ensures
reproducibility of the data analysis, which is one of the most significant issues in omics re-
search [37]. While the current application is highlighted to work in RNA-seq and proteomics
data, our framework could easily be adapted to incorporate drug response, genetic screen-
ing, or splicing associated features in future versions of our application. Thus, we believe
DRPPM-EASY will be a useful and valuable tool for the biomedical research community.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biology11020260/s1, Supplementary Method. Supplementary Table S1.
KEGG Pathways Jointly Enriched in the Transcriptome and Proteome. Supplementary Table S2.
Hallmark Pathways Jointly Enriched in the Transcriptome and Proteome. Supplementary Table S3.
CCLE Sample Meta-Information. Supplementary Figure S1. Schematic of the GSEA pre-processing.
Supplementary Figure S2. Unsupervised hierarchical clustering of Jurkat samples after USP7 knock-
down. Supplementary Figure S3. Experimental design of the total proteome profiling of the USP7
knockdown experiment. Supplementary Figure S4. Pathway enrichment analysis of genes differentially
upregulated in KRAS mutated samples in NSCLC. Supplementary Figure S5. Screen shot showing the
user option to upload user data in the DRPPM-Large Project Integration.
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