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ABSTRACT

Walking and running are mechanically and energetically different locomotion modes. For selecting one or
another, speed is a parameter of paramount importance. Yet, both are likely controlled by similar low-
dimensional neuronal networks that reflect in patterned muscle activations called muscle synergies. Here, we
challenged human locomotion by having our participants walk and run at a very broad spectrum of submaximal
and maximal speeds. The synergistic activations of lower limb locomotor muscles were obtained through
decomposition of electromyographic data via non-negative matrix factorization. We analyzed the duration and
complexity (via fractal analysis) over time of motor primitives, the temporal components of muscle synergies. We
found that the motor control of high-speed locomotion was so challenging that the neuromotor system was forced
to produce wider and less complex muscle activation patterns. The motor modules, or time-independent co-
efficients, were redistributed as locomotion speed changed. These outcomes show that humans cope with the
challenges of high-speed locomotion by adapting the neuromotor dynamics through a set of strategies that allow
for efficient creation and control of locomotion.

Walk to run transition
Fractal dimension
Complexity

1. Introduction

Humans can locomote at a very broad range of speeds even though
walking and running, the two most common gait modes, are profoundly
different from both a mechanic and energetic point of view [1, 2, 3].
Walking, with its characteristic double support stance phase, typically
implies at least one limb being in contact with the ground, while running
allows for a flight phase [4]. Moreover, the energy cost function of
walking has a peculiar U-shape with a minimum close to each individ-
ual's preferred speed, which lies around 1.4 m/s in the average human
[5]. At lower and higher speeds, walking is relatively costlier but remains
more economical than running until circa 2.4 m/s, speed at which
running becomes more economical than walking [1, 5]. Humans often
decide to switch from walking to running at lower speeds [5], on average
around 2.0 m/s. The cost of running is quasi-linearly correlated with
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speed, at least if the nonlinear contribution of air resistance is neglected
[5, 6, 7]. Yet, despite the profound mechanical and energetic differences,
walking and running seem to be sharing similar neural control [4, 8, 9].

The exceptional amount of degrees of freedom available to verte-
brates for accomplishing any kind of movement is defined by the vast
number of muscles and joints [10]. Nevertheless, the central nervous
system manages to overcome complexity, possibly through the orches-
trated activation of functionally-related muscle groups, rather than
through muscle-specific commands [10, 11]. The generation of rhythmic
and patterned activity such as that needed for locomotion is achieved
through neuronal networks located in the spinal cord that do not require
sensory input to work: the central pattern generators [12, 13, 14, 15].
However, these circuits need supraspinal input to modulate basic loco-
motor functions, such as gait type selection, speed control and pertur-
bation management [16, 17]. The finely coordinated motor output is
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achieved by interconnecting the central pattern generators and the drive
from higher centers with integration of sensory feedback information
[10, 18, 19, 20, 21, 22, 23, 24, 25], ultimately resulting in accurate
activation patterns. Using computational approaches, it has been previ-
ously shown that these patterns, called muscle synergies, are common to
different muscles and are task-specific [26]. Usually extracted from
electromyographic (EMG) data via linear machine learning approaches
such as the non-negative matrix factorization (NMF), muscle synergies
have been increasingly employed in the past two decades for providing
indirect evidence of a simplified, modular control of movement in
humans and other vertebrates [27, 28, 29, 30, 31].
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In this study, we extracted muscle synergies from the EMG activities
of lower limbs during treadmill walking and running at several speeds,
from slow walking to maximal sprinting. Synergies were divided into
time-independent (motor modules) and time-dependent (motor primi-
tives) coefficients. The Higuchi's fractal dimension (HFD) was used to
evaluate the local complexity of motor primitives, taken as self-affine
time series [9, 32, 33, 34, 35]. Defining robustness as the ability to
cope with perturbations [8], it follows that biological systems can
manage to maintain function despite disturbances only through robust
control [36, 37, 38]. Assessing the complexity of control signals could
give us an idea of the strategies adopted by the central nervous system to
cope with disruptions. Recently, we showed that challenging locomotion
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Figure 1. Average electromyographic activity of lower limb muscles. Average EMG activity of the recorded muscles at different speeds in group 1 (G1) and group
2 (G2). The x-axis full scale represents the averaged gait cycle (with stance and swing normalized to the same amount of points and divided by a vertical line) and the
y-axis the amplitude normalized to the maximum. Muscle abbreviations: MA = gluteus maximus, FL = tensor fascice latee, RF = rectus femoris, VM = vastus medialis, VL. =
vastus lateralis, ST = semitendinosus, BF = biceps femoris, TA = tibialis anterior, PL = peroneus longus, GM = gastrocnemius medialis, GL = gastrocnemius lateralis, SO

= soleus.
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conditions (i.e., in the presence of external mechanical perturbations and
in aging) manifest lowered complexity of motor primitives [9]. More-
over, we and others proposed that the width of motor primitives in-
creases to ensure robust control in the presence of internal and external
perturbations [8, 31, 39, 40, 41], suggesting that this might be a
compensatory mechanism adopted by the neuromotor system to cope
with the postural instability of locomotion in health and pathology [39,
40]. We observed the neural strategy of motor primitive widening in
wild-type mice [31] and in humans affected by multiple sclerosis [42] or
healthy adults undergoing external perturbations [8, 9], but not in
genetically modified mice that lacked feedback from proprioceptors
[31]. Due to these observations, we concluded that intact systems use
relatively wider (i.e., of relatively longer duration) and less complex
control signals to regulate motor function through robust control [8, 9,
42].

Here, we used the challenges imposed by slow and increasingly high
speeds to perturb the locomotor system. We hypothesized that forcing the
central nervous system to control increasingly higher speeds would
perturb the system to the point of eliciting an increased control's
robustness. We discovered that motor primitives become wider and less
complex as locomotion speed increases, translating into robust control.
Moreover, we found that walking and running shared similar motor
modules that were regulated depending on speed, confirming previous
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results obtained by other authors [4, 43, 44, 45, 46]. These findings
provide further insight into the neuromotor dynamics of challenging
locomotion. A topic with broad implications in human pathology and
performance,  robotics, comparative  biology @ and  other
locomotion-related fields.

2. Results
2.1. Muscle synergies

The EMG activities from which muscle synergies were extracted are
presented in Figure 1 as average of all trials. The average number of
synergies which best accounted for the EMG data variance (i.e., the
factorization rank) of G1 was 4.3 + 0.6 (walking, 0.7 m/s), 4.4 + 0.5
(walking, 1.4 m/s), 4.3 & 0.5 (walking, 2.0 m/s), 4.1 + 0.4 (running, 2.0
m/s), 4.3 + 0.7 (running, 3.0 m/s), and 4.3 &+ 0.6 (running, 3.5 m/s). In
G2, the values were 4.1 + 0.5 (running, 2.8 m/s), 3.9 + 0.6 (running, 4.2
m/s), 3.9 £ 0.5 (running, 5.6 m/s), 3.9 £ 0.5 (running, 6.9 m/s), 4.0 +
0.0 (running, 8.3 m/s), and 4.2 + 0.4 (running, 9.5 m/s). We did not find
a significant effect of speed on the factorization rank (p = 0.797 for G1, p
= 0.320 for G2).

The functional classification (see methods) identified four funda-
mental muscle synergies in both groups (Figures 2 and 3). The first
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Figure 2. Muscle synergies for human walking and running at various speeds. Motor modules and motor primitives of the four fundamental synergies for human
walking and submaximal running (average of all trials recorded in group 1). The motor modules are presented in polar coordinates on a normalized polar axis base.
Each muscle contribution within one synergy can range from 0 to 1 (maximum radius length). Asterisks represent significant effect of speed (results of the post-hoc
analysis, where relevant). For the motor primitives, the x-axis full scale represents the averaged gait cycle (with stance and swing normalized to the same amount of
points and divided by a vertical line) and the y-axis the normalized amplitude. Muscle abbreviations: MA = gluteus maximus, FL = tensor fascie latee, RF = rectus femoris,
VM = vastus medialis, VL. = vastus lateralis, ST = semitendinosus, BF = biceps femoris, TA = tibialis anterior, PL = peroneus longus, GM = gastrocnemius medialis, GL =

gastrocnemius lateralis, SO = soleus.
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Figure 3. Muscle synergies for human running at various speeds. Motor modules and motor primitives of the four fundamental synergies for human submaximal
and maximal running (average of all trials recorded in group 2). The motor modules are presented in polar coordinates on a normalized polar axis base. Each muscle
contribution within one synergy can range from 0 to 1 (maximum radius length). Asterisks represent significant effect of speed (results of the post-hoc analysis, where
relevant). For the motor primitives, the x-axis full scale represents the averaged gait cycle (with stance and swing normalized to the same amount of points and divided
by a vertical line) and the y-axis the normalized amplitude. Muscle abbreviations: MA = gluteus maximus, FL. = tensor fascice latcee, RF = rectus femoris, VM = vastus
medialis, VL = vastus lateralis, ST = semitendinosus, BF = biceps femoris, TA = tibialis anterior, PL = peroneus longus, GM = gastrocnemius medialis, GL. = gastrocnemius
lateralis, SO = soleus.

synergy functionally referred to the body weight acceptance, with a showed the involvement of ankle dorsiflexors and, at high locomotion
major involvement of knee and hip extensors. The second synergy was speeds in both walking and running, of hip flexors. The fourth and last
associated with the propulsion phase, to which the ankle plantarflexors synergy reflected the late swing and the landing preparation, high-
mainly contributed. The third synergy identified the early swing and lighting the relevant influence of knee flexors and ankle dorsiflexors. As

Table 1. Frequency of occurrence of fundamental synergies. Even though the factorization rank was not influenced by locomotion speed, not all the extracted synergies
could be functionally classified as fundamental (i.e., not combined). This table reports the number of participants that showed the relevant fundamental synergies at
each speed for both groups (G1 = walking and submaximal running, G2 = submaximal and maximal running).

Group Speed [m/s] Synergy
Weight acceptance Propulsion Early swing Late swing
G1 (15 participants) Walking 0.7 10 15 13 6
1.4 13 15 9 15
2.0 13 15 7 15
Running 2.0 15 15 6 11
3.0 15 14 2 14
35 15 15 8 12
G2 (15 participants) Running 2.8 15 13 8 4
4.2 15 15 5 1
5.6 15 15 11 4
6.9 15 14 9 1
8.3 15 12 14 2
9.5 15 9 15 5
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showed in the past for other locomotion conditions [8, 47, 48, 49, 501,
not all the participants exhibited all the four fundamental synergies at all
speeds; in particular, 27% and 30% of the total synergies were classified
as combined in walking and running, respectively. We reported the
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detailed numbers in Approximate position of Table 1. The effect of speed
on motor modules is reported in Figures 2 and 3, where asterisks denote

the outcome of the post-hoc analysis.
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Figure 4. Gait cycle spatiotemporal parameters. Boxplots describing the cadence (in steps per minute), stance and swing times for the two groups (G1 = walking
and submaximal running, G2 = submaximal and maximal running). Boxplots sharing the same letter (a, b, ¢, d, e) are not to be considered significantly different
(results of the post-hoc analysis). Raw data points are presented to the left side of each boxplot. “p-value speed: < 0.001”: when a given parameter presents a significant

speed effect (p < 0.001).
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2.2. Gait cycle parameters

An effect of speed (p < 0.001) was found in both groups for the
cadence and the swing and stance times (Figure 4). When locomotion
speed increased, cadence increased as well, while stance times decreased.
In walking (G1), swing times decreased with increasing speed. In running
(G1), swing times increased between 2.0 and 3.0 m/s, but were not
significantly different at 3.0 and 3.5 m/s. In G2, swing times decreased
with increasing speed after 4.2 m/s. The strike index during running was,
in G1, of 0.23 + 0.26 at 2.0 m/s, 0.22 4 0.25 at 3.0 m/s and 0.24 + 0.26
at 3.5 m/s, all indicating a rearfoot strike pattern. In G2, the strike index
values during running were 0.50 & 0.18 at 2.8 m/s, 0.57 + 0.13 at 4.2 m/
s,0.62 +0.11 at 5.6 m/s, 0.65 £ 0.11 at 6.9 m/s, 0.70 £+ 0.10 at 8.3 m/s
and 0.74 + 0.06 at 9.5 m/s, all indicating a mid/forefoot strike pattern.

2.3. Higuchi's fractal dimension of motor primitives

The HFD of motor primitives is reported in Approximate position of
Figure 5. In both groups, the HFD was affected by speed (p < 0.001), with
a global tendency towards a lower complexity (i.e., lower HFD) of motor
primitives with increasing speed. Specifically, in G1 the highest
complexity was found in walking at 0.7 m/s, with values decreasing
significantly as the speed increased to 1.4 m/s and until 2.0 m/s; running
faster from 2.0 to 3.0 m/s induced decreased HFD (Approximate position
of Figure 5). In G2, the complexity in essence decreased with speed until
9.5 m/s, although with no significant difference between 4.2 and 5.6 m/
s, 6.9 and 8.3 m/s, and 8.3 and 9.5 m/s (Approximate position of
Figure 5).

2.4. Width of motor primitives

The width of motor primitives, measured with the FWHM, was
significantly affected by speed only for the primitives of the stance syn-
ergies (i.e., weight acceptance and propulsion) in both G1 and G2 (p <
0.001). The boxplots depicting the changes in FWHM with speed are
shown in Approximate position of Figure 6. In G1, the weight acceptance
and propulsion primitives were wider in running than in walking, but
speed played little if any role within the same locomotion type. In G2
there was a widening of the weight acceptance synergies after 5.6 m/s,
while the propulsion synergies became wider with increasing speed at
almost all speeds. The primitives of the early and late swing synergies did
not show any change attributable to the different locomotion speed
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(early swing, G1: p = 0.133; late swing, G1: p = 0.029, post-hoc analysis
did not confirm an effect of speed; early swing, G2: p = 0.385; late swing,
G2: p = 0.391).

3. Discussion

In this study, we used a broad range of gait speeds to differentially
challenge the human locomotor system. Our analysis of the modular
organization of muscle activations in adult males showed that increasing
the locomotion speed and transitioning from walking to running forced
the motor system to produce locally less complex (i.e., lower HFD) and
relatively longer (i.e., higher FWHM) basic activation patterns (i.e.,
motor primitives). Moreover, in both walking and running, we found a
speed-dependent redistribution of muscle contributions (i.e., motor
modules) within the muscle synergies. While not generalizable to the
female population due to the male sample, these findings provide evi-
dence that the neuromotor control of locomotion via muscle synergies
was spatially and temporally modulated to withstand the constraints
imposed by high locomotion speeds.

Recently, we used the HFD, a nonlinear measure of local complexity
derived from fractal analysis [32], to show that the motor primitives
extracted from challenging locomotion conditions exhibit lower
complexity than those associated with normal locomotion [9]. Specif-
ically, we showed that older age and external perturbations induce the
locomotor system to lower the complexity of motor primitives [9]. In this
study, we found a similar behavior depending on the speed at which our
participants were walking or running. From the slowest (walking at 0.7
m/s) to the fastest speed (sprinting at 9.5 m/s), complexity of motor
primitives decreased rather smoothly. In addition, primitives proved to
be locally less complex in running than in walking, relative to the
time-normalized gait cycle. This decrease in complexity can be inter-
preted as a strategy adopted by the central nervous system to robustly
cope with the challenges imposed by high locomotion speeds. In fact,
running allows less time for organizing coordinated movements than
walking [51] and a simplification of control could benefit its robustness.
Similarly, one could explain the need for lower complexity of motor
primitives when locomotion speeds approach those of sprinting, with
stance times well below 150 ms, swing times of less than 400 ms and
cadence exceeding 250 steps per minute.

Lower complexity indicates lower nonlinearity of the physiological
signal [52]. In this study, we considered motor primitives as the basic
neuromotor entities for the control of walking and running over time. It
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Figure 5. Higuchi's fractal dimension of motor primitives. Boxplots describing the Higuchi's fractal dimension (HFD) of the motor primitives extracted from the
two groups (G1 = walking and submaximal running, G2 = submaximal and maximal running). Boxplots sharing the same letter (a, b, c, d, ) are not to be considered
significantly different (results of the post-hoc analysis). Raw data points are presented to the left side of each boxplot. “p-value speed: < 0.001”: when a given parameter

presents a significant speed effect (p < 0.001).
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has been shown that the complexity of electroencephalographic activity
is reduced by degeneration and dysfunction of neural networks, e.g., due
to aging, neurodegenerative diseases, brain injury and stroke [52].
Associated to our previous finding of a decreased complexity of loco-
motor primitives with aging and external perturbations [9], it is tempting
to link decreased neuromotor complexity with internally- or
externally-imposed constraints to movement. From a neurophysiological
perspective, this could represent a strategy used by vertebrates to create
and control efficient locomotion despite system-related or environmental
disturbances. Under this hypothesis, the ability to modulate complexity
might in fact be a determinant of sprinting performance and/or response
to training or rehabilitation. Based on the present findings, we suggest
that interventions focused on the regulation of motor primitive
complexity could be used to assess and possibly improve the performance
of high-speed locomotion (walking and running). This idea might pave
the way for the establishment of future training intervention protocols
based on walking and running and aimed not only at athletes but possibly

Heliyon 6 (2020) e05377

also at specific groups of patients suffering from neurological diseases or
recovering from injury.

Furthermore, we found a relative widening of motor primitives in the
two synergies relevant for the stance phase (i.e., the weight acceptance
and propulsion synergies) at increasing locomotion speeds. This obser-
vation seems to confirm previous findings that more challenging loco-
motion conditions (in this case maximal as compared to submaximal
running or fast as compared to slow walking) demand more robust motor
control achieved by widening the primitives of the stance phase [8, 9].
Recently we found that, in the presence of perturbations, the central
nervous system of both humans and mice generates wider basic activa-
tion patterns of muscle groups, which makes the motor execution less
prone to the influence of external perturbations [8, 9, 31, 42, 53]. We
concluded that wider (i.e., active for a relatively longer period of time)
primitives indicate more robust control [8, 9, 31, 42, 53]. The overlap of
chronologically-adjacent synergies increased the fuzziness [37, 42, 54] of
temporal boundaries allowing for easier shifts between one synergy (or
gait phase) and another when perturbations were added to locomotion
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[8, 9, 31, 42, 53]. Our conclusion fits the optimal feedback control the-
ory, which postulates that motor systems selectively use feedback in-
formation to optimize an index of performance by combining sensory
signals and motor commands [55, 56, 57]. For the central nervous sys-
tem, this solution must come at the cost of reducing the accuracy or, as
others called it, optimality [37] or efficiency [58].

The relative FWHM increased not only with running speed, but also
when switching from walking to running. One possible reason could lie in
the fact that the motor primitives for the two locomotion types have
different shapes in the weight acceptance and propulsion synergy. Spe-
cifically, walking primitives are skewed to the left in the weight accep-
tance and to the right in the propulsion phase, while running primitives
appear symmetrical. In walking, the leading leg has a bigger angle at
touchdown than in running and this determines the position of the body's
center of mass [59]. This physically constrains the production of forward
forces in walking from the plantarflexors [8, 60, 61, 62, 63, 64], since
only after half stance there can be propulsion, while in running it can
happen earlier [2]. Nonetheless, our outcomes confirm the notion [28,
65] that, in both walking and running, motor primitives are shaped in a
way that ensures the adequate duration of activation at each speed (i.e.,
shorter at higher speeds, longer at slower speeds), even though this
modulation was present only in the stance phase and in different amounts
when comparing the weight acceptance and the propulsion primitives.

The question remains as to why HFD values were lower when the
walking or running speed increased and in walking compared to running.
Due to its definition (Eq. 4), the HFD depends on the signal-to-noise ratio
[66], but some precautions can be taken to reduce the influence of the
signal-to-noise ratio on the outcomes (i.e., minimum subtraction and
normalization to the maximum). Nevertheless, due to the summation
term in Eq. (4), which represents the absolute value of the successive
differences of each motor primitive's ordinates, calculated with lag k (see
methods), curves with relatively greater FWHM will have a lower L(k).
From a physiological point of view this could mean that the central
nervous system deals with the challenge of controlling locomotion at
high speeds by increasing the relative FWHM of control signals, a solu-
tion that results in locally less complex motor primitives (i.e., lower HFD)
relative to the time-normalized gait cycle. Yet, the increased FWHM is
only one amongst the other potential reasons for the decreased HFD and
further investigations are needed to determine the physiological and
numerical implications of this metric [35].

Not only the temporal components of muscle synergies are important
for coordinated, robust control of fast locomotion: the recruitment of the
appropriate muscle groups, as described by motor modules, is of critical
importance too. To this extent, our results show that biarticular muscles
have a speed-dependent function in both walking and running. In the
weight acceptance phase, the knee extensors aid the deceleration and
support of the body mass [67]. In the early swing phase, the iliacus and
psoas are major hip flexors [68, 69, 70, 71, 72]. At high walking and
running speeds, the biarticular RF shifts its contribution from the weight
acceptance synergy (working as knee extensor) to the early swing syn-
ergy (working as hip flexor [73, 74] and as knee extensor [70, 71]). A
similar behavior is evident in the relative contribution of the FL muscle to
the motor modules of the weight acceptance and early swing synergies, in
both walking and running. Another outcome related to motor modules
was the different contribution of the GM muscle for the participants of G1
and G2. In G1 (recreational long-distance runners) the GM and GL were
crucial contributors to the propulsion synergy, as found in the past [8, 9,
42, 47, 48, 49, 50]. However, in G2 (national level sprinters) the main
contribution of the GM was in the weight acceptance phase: a possible
indication that these muscles share little common drive when indepen-
dent control is needed for secondary tasks, such as the stabilization of the
ankle joint [75]. During running, the participants included in G1 adopted
a different foot strike pattern than those of G2 even at similar speeds
(rearfoot for G1, mid/forefoot for G2). Since rearfoot strikers need to
dorsiflex the foot more than mid/forefoot strikers before touchdown
[48], it is not surprising that the TA contribution to the late swing
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synergy was considerable in G1 (average motor module value excluding
running at 2.0 m/s: 0.57 + 0.39), but reduced in G2 (average motor
module value: 0.29 + 0.30). Similarly, it was evident in G2 that the
biarticular ST and BF were used both in the propulsion synergy and in the
late swing synergy, a feature that is not visible in G1, where the ST and BF
are exclusively contributing to the late swing. This confirms previous
findings showing that the EMG activity of ST and BF relatively increases
more during stance than during swing as the speed rises [73, 76].

In conclusion, our results show that wider, less complex muscle
activation patterns are needed to cope with the challenges imposed by
increased locomotion speeds. The width, complexity and modularity of
muscle synergies can be regulated to ensure robust locomotion control
even at very high speeds. This stands for both walking and running, with
running showing generally less complex, wider motor primitives than
walking.

4. Materials and methods

This study was reviewed and approved by the Ethics Committees of
the Humboldt-Universitat zu Berlin and Osaka University of Health and
Sport Sciences. All the participants gave written informed consent for the
experimental procedure, in accordance with the Declaration of Helsinki.

4.1. Experimental protocols

For the two experimental protocols we recruited 30 healthy male
volunteers and divided them into two groups. The first group of 15 rec-
reational long-distance runners (henceforth G1, height 178 + 6 cm, body
mass 71 + 6 kg, age 33 + 6 years, 43 + 21 km/week running volume,
personal best mark over 10 km 37.4 + 3.2 min, means =+ standard de-
viation) was assigned to the first experimental protocol conducted at the
Humboldt-Universitat zu Berlin (Germany). The second group of 15
sprint athletes (G2, height 172 + 4 cm, body mass 65 + 3 kg, age 21 + 2
years, personal best mark over 100 m 10.74 + 0.23 s) was assigned to the
second experimental protocol conducted at the Osaka University of
Health and Sport Sciences (Japan). Participants in G2 were younger,
shorter and lighter than those of G1 (p < 0.001, p = 0.009, p = 0.004,
respectively; independent samples, two-tailed Welch's t-test). All the
participants completed a self-selected warm-up running on a treadmill,
typically lasting between 3 and 5 min [49, 77]. After being instructed
about the protocol, they completed a different set of measurements,
depending on the protocol they were assigned to.

The experimental protocol of G1 consisted of walking (at 0.7, 1.4, and
2.0 m/s) and submaximal running (at 2.0, 3.0, and 3.5 m/s) on a single-
belt treadmill (mercury, H-p-cosmos Sports & Medical GmbH, Nussdorf,
Germany) equipped with a pressure plate recording the plantar pressure
distribution at 120 Hz (FDM- THM-S, zebris Medical GmbH, Isny im
Allgau, Germany). The speeds were chosen as follows: walking at 1.4 m/s
and running at 3.0 m/s are the commonly reported average comfortable
locomotion speeds [47, 771; 2.0 m/s is the typical walk-to-run transition
speed [78, 79]; the other two speeds were chosen to extend the range of
investigation.

The experimental protocol of G2 consisted of running (at 2.8, 4.2, 5.6,
6.9, 8.3, and 9.5 m/s) on a single-belt treadmill (Fully Instrumented
Treadmill, Bertec co., Columbus, OH, USA) modified to reach the
maximum speed of 9.5 m/s and equipped with force sensors to record the
3D ground reaction forces at 1 kHz. The highest sprinting speed was
chosen to match the average pace used by the participants to run 100 m
close to their personal best time.

4.2. EMG recordings

The muscle activity of the following 12 ipsilateral (right side) muscles
was recorded in both groups: gluteus maximus (MA), tensor fascice late
(FL), rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), sem-
itendinosus (ST), biceps femoris (long head, BF), tibialis anterior (TA),
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peroneus longus (PL), gastrocnemius medialis (GM), gastrocnemius lateralis
(GL) and soleus (SO). The electrodes were positioned as extensively re-
ported previously [31, 49]. After around 60 s habituation [8] in G1 or
after a mild acceleration of the belt in G2 (lasting 5-10 s depending on
the speed), we recorded one trial for each participant with an acquisition
frequency of 2 kHz by means of a 16-channel wireless bipolar EMG
system (Wave Plus wireless EMG, Cometa srl, Bareggio, Italy). For the
EMG recordings, we used foam-hydrogel electrodes with snap connector
(H124SG, Medtronic plc, Dublin, Ireland). The first 30 gait cycles of the
recorded trial were considered for subsequent analysis [49]. Exceptions
(13 out of 15 participants of G2) to this rule were applied if the partici-
pants could not sustain the imposed speed for a sufficient number of gait
cycles (an event occurring only at the higher sprinting speed). All the
recordings can be downloaded from the supplementary data set, which is
accessible at Zenodo (https://doi.org/10.5281/zenodo.3764760).

4.3. Gait cycle parameters

The gait cycle breakdown (foot touchdown and lift-off timing) was
obtained by the elaboration of the data acquired by the pressure (G1) and
force (G2) plates with validated algorithms that were reported previously
[77]. Other calculated gait spatiotemporal parameters were: cadence
(i.e., number of steps per minute), stance and swing times and the strike
index, calculated as the distance from the heel to the center of pressure at
impact relative to total foot length [77]. Strike index values range from
0 to 1, denoting the most posterior and the most anterior point of the
shoe, respectively [48]. Values from 0.00 to 0.33 are indication of a
rearfoot strike pattern, while values from 0.34 to 1.00 represent a
mid/forefoot strike pattern [77].

4.4. Muscle synergies extraction

Muscle synergies data were extracted from the recorded EMG activity
through a custom script (R v3.6.3, R Core Team, 2020, R Foundation for
Statistical Computing, Vienna, Austria) using the classical Gaussian NMF
algorithm [8, 47, 49, 80]. The raw EMG signals were band-pass filtered
within the acquisition device (cut-off frequencies 10 and 500 Hz). Then
the signals were high-pass filtered, full-wave rectified and lastly low-pass
filtered using a 4™ order IIR Butterworth zero-phase filter with cut-off
frequencies 50 Hz (high-pass) and 20 Hz (low-pass for creating the
linear envelope of the signal) as previously described [8]. After sub-
tracting the minimum, the amplitude of the EMG recordings obtained
from the single trials was normalized to the maximum activation recor-
ded for every individual muscle (i.e., every EMG channel was normalized
to its maximum in every trial) [31, 49]. Each gait cycle was then
time-normalized to 200 points, assigning 100 points to the stance and
100 points to the swing phase [8, 31, 48, 49]. The reason for this choice is
twofold [49]. First, dividing the gait cycle into two macro-phases helps
the reader understanding the temporal contribution of the different
synergies, diversifying between stance and swing. Second, normalizing
the duration of stance and swing to the same number of points for all
participants (and for all the recorded gait cycles of each participant)
makes the interpretation of the results independent of the absolute
duration of the gait events. Synergies were then extracted through NMF
as previously described [8, 49]. The 12 muscles listed above were
considered for the analysis, (MA, FL, RF, VM, VL, ST, BF, TA, PL, GM, GL
and SO). The m = 12 time-dependent muscle activity vectors were
grouped in a matrix V with dimensions m x n (m rows and n columns).
The dimension n represented the number of normalized time points (i.e.,
200*number of gait cycles). The matrix V was factorized using NMF so
that V &~ Vg = WH. The new matrix Vg, reconstructed multiplying the two
matrices W and H, approximates the original matrix V. The motor
primitives [47, 81] matrix H contained the time-dependent coefficients
of the factorization with dimensions r x n, where the number of rows r
represents the minimum number of synergies necessary to satisfactorily
reconstruct the original set of signals V. The motor modules [47, 82]
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matrix W, with dimensions m x r, contained the time-invariant muscle
weightings, which describe the relative contribution of single muscles
within a specific synergy (a weight was assigned to each muscle for every
synergy). H and W described the synergies necessary to accomplish the
required task (i.e., walking or running). The update rules for W and H are
presented in Equation (Eq 1) and Equation (Eq 2).

WV
Hyy = Him 1)
V(Hi)"
Wiy = Wz(%ﬂ)r (2)
WiH; 1 (Hip1)

The quality of reconstruction was assessed by measuring the coeffi-
cient of determination R? between the original and the reconstructed
data (V and Vg, respectively). The limit of convergence for each synergy
was reached when a change in the calculated R? was smaller than the
0.01% in the last 20 iterations [47] meaning that, with that amount of
synergies, the signal could not be reconstructed any better. This opera-
tion was first completed by setting the number of synergies to 1. Then, it
was repeated by increasing the number of synergies each time, until a
maximum of 9 synergies. The number 9 was chosen to be lower than the
number of muscles, since extracting a number of synergies equal to the
number of measured EMG activities would not reduce the dimensionality
of the data. Specifically, 9 is the rounded 75% of 12, which is the number
of considered muscles [31]. For each synergy, the factorization was
repeated 10 times, each time creating new randomized initial matrices W
and H, in order to avoid local minima [83]. The solution with the highest
R? was then selected for each of the 9 synergies. To choose the minimum
number of synergies required to represent the original signals, the curve
of R? values versus synergies was fitted using a simple linear regression
model, using all 9 synergies. The mean squared error [84] between the
curve and the linear interpolation was then calculated. Afterwards, the
first point in the R2-vs.-synergies curve was removed and the error be-
tween this new curve and its new linear interpolation was calculated. The
operation was repeated until only two points were left on the curve or
until the mean squared error fell below 10~*. This was done to search for
the most linear part of the R%-versus-synergies curve, assuming that in
this section the reconstruction quality could not increase considerably
when adding more synergies to the model.

4.5. Higuchi's fractal dimension of motor primitives

To assess the local complexity [85] of motor primitives, we calculated
the HFD assuming that these time series exhibit self-affinity properties
[9, 31, 32, 33, 52, 86, 87]. Following the procedure first described by
Higuchi [32], for each motor primitive H(t)[H(1), H(2), ... H(n)], k sets
of new time series must be constructed, where k is an integer interval
time and 2 < k < kg

1 . n — I
HY : H(to), H(to + k), H(ty +2k), ...,H[z(,+mz( - °)k] 3

where ty is the first sample at initial time. The non-Euclidean length of
each curve was defined as

im(@)k
L2 SN (4 i) — Hi + (- DK @

L, (k) = % @ i=1

k

and for every considered k step the length of the motor primitive was
defined as the average of the k sets of lengths as

k
LR =5 Y Lo(k) ®)
=1

If L(k) o K , then the curve is fractal with dimension HFD and this
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should lead the plot of log(L(k)) versus log(1/k) to fall on a straight line
with slope -HFD. The values of the HFD range from 1 (e.g., for a smooth
linear time series) to 2 (e.g., for random white noise) and are indepen-
dent on the amplitude of the signal, since the curve log(L(k)) versus
log(1/k) changes intercept but not slope if the same signal is multiplied
or divided [52, 87]. For each trial, the HFD of the primitives obtained by
NMF was calculated separately and then averaged, so that each trial ul-
timately consisted of one HFD value [9]. Following suggestions from
previous studies, kyq, was chosen as the most linear part of the log-log
plot, which in our data led us to choose kj;q,, = 10 [31, 88].

4.6. Width of motor primitives

We compared motor primitives by evaluating the full width at half
maximum (FWHM), a metric useful to describe the duration of activation
patterns [4, 8, 31, 39]. The FWHM was calculated cycle-by-cycle after
subtracting the cycle's minimum as the number of points exceeding each
cycle's half maximum, and then averaged [39]. The FWHM (and just this
parameter) was calculated only for the motor primitives relative to
fundamental synergies. A fundamental synergy can be defined as an
activation pattern whose motor primitive shows a single main peak of
activation [8]. When two or more fundamental synergies are blended
into one, a combined synergy appears. Combined synergies usually
constitute, in our locomotion data, 10-30% of the total extracted syn-
ergies. While fundamental synergies can be compared given their similar
function (i.e., motor primitives and motor modules are comparable since
they serve a specific task within the step cycle), combined synergies often
differ from one another making their classification impossible. Due to the
lack of consensus in the literature on how to interpret them, we excluded
the combined synergies from the FWHM (but not the HFD) analysis.

4.7. Functional classification of muscle synergies

The recognition of fundamental synergies was carried out by clus-
tering similar motor primitives through NMF, using the same algorithm
employed for synergy extraction with the maximum number of synergies
set to the maximum factorization rank plus one. The obtained “principal
shapes” (four for G1 walking, G1 running and G2 running) were then
compared to the motor primitives in order to cluster similar shapes. A
primitive was considered similar to one of the principal shapes if the NMF
weight was equal at least to the average of all weights. Of all the prim-
itives that satisfied this condition, we then calculated the R? with the
relevant principal shape. If the R? was at least the 25% (or four times if
the R? was negative) of the average R? obtained by comparing all the
remaining primitives with their own principal shape, we confirmed the
synergy as fundamental and classified it based on function. Primitives
that were not clustered, were labelled as combined.

4.8. Statistics

To investigate the effect of locomotion speed on the factorization
rank, gait parameters, HFD and FWHM of motor primitives, and motor
modules we fitted the data using a generalized linear model with
Gaussian error distribution. The homogeneity of variances was tested
using the Levene's test. If the residuals were normally distributed, we
carried out a one-way repeated measures ANOVA with type II sum of
squares for the dependent variables factorization rank, cadence, stance
and swing time, HFD and FWHM, the independent variable being the
locomotion speed. If the normality assumptions on the residuals were not
met, we used the non-parametric Kruskal-Wallis test. For the motor
modules, we carried out a two-way repeated measures ANOVA with type
II sum of squares, the independent variables being the speed and the
muscles. If the normality assumptions on the residuals were not met, we
used a robust (rank-based) ANOVA from the R package Rfit (function
“raov”) [89, 90]. We then performed a least significant difference post--
hoc analysis with false discovery rate adjustment of the o level.
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Otherwise, all the significance levels were set to « = 0.05 and the sta-
tistical analyses were conducted using R v3.6.3.

4.9. Data availability

In the supplementary data set accessible at Zenodo (https://doi.
org/10.5281/zenodo.3764760) we made available: a) the metadata
with anonymized participant information, b) the raw EMG, c) the
touchdown and lift-off timings of the recorded limb, d) the filtered and
time-normalized EMG, e) the muscle synergies extracted via NMF and f)
the code to process the data, including the scripts to calculate the HFD of
motor primitives. In total, 180 trials from 30 participants are included in
the supplementary data set.

The file “metadata.dat” is available in ASCII and RData format and
contains:

e Code: the participant's code

e Group: the experimental group in which the participant was involved

(G1 = walking and submaximal running; G2 = submaximal and

maximal running)

Sex: the participant's sex (M or F)

e Speeds: the type of locomotion (W for walking or R for running) and
speed at which the recordings were conducted in 10*[m/s]

e Age: the participant's age in years

o Height: the participant's height in [cm]

e Mass: the participant's body mass in [kg]

e PB: 100 m-personal best time (for G2).

The files containing the gait cycle breakdown are available in RData
format, in the file named “CYCLE_TIMES.RData”. The files are structured
as data frames with as many rows as the available number of gait cycles
and two columns. The first column named “touchdown” contains the
touchdown incremental times in seconds. The second column named
“stance” contains the duration of each stance phase of the right foot in
seconds. Each trial is saved as an element of a single R list. Trials are
named like “CYCLE_TIMES_P20_R_20,” where the characters “CYCLE_-
TIMES” indicate that the trial contains the gait cycle breakdown times,
the characters “P20” indicate the participant number (in this example the
20™), the character “R” indicate the locomotion type (W = walking, R =
running), and the numbers “20” indicate the locomotion speed in 10*m/s
(in this case the speed is 2.0 m/s). Please note that the following trials
include less than 30 gait cycles (the actual number shown between pa-
rentheses): P16_R_83 (20), P16_R_95 (25), P17_R_28 (28), P17_R_83 (24),
P17_R 95 (13), P18_R 95 (23), P19 R 95 (18), P20_R_28 (25), P20 R _42
(27), P20_R 95 (25), P22 R 28 (23), P23 R 28 (29), P24 R 28 (28),
P24 R 42 (29), P25 R 28 (29), P25 R 95 (28), P26 _R 28 (29), P26 R 95
(28), P27 R 28 (28), P27 R 42 (29), P27 R 95 (24), P28_R_28 (29),
P29 R 95 (17).

The files containing the raw, filtered and the normalized EMG data
are available in RData format, in the files named “RAW_EMG.RData” and
“FILT_EMG.RData”. The raw EMG files are structured as data frames with
as many rows as the amount of recorded data points and 13 columns. The
first column named “time” contains the incremental time in seconds. The
remaining 12 columns contain the raw EMG data, named with muscle
abbreviations that follow those reported above. Each trial is saved as an
element of a single R list. Trials are named like “RAW_EMG_P03_R_30",
where the characters “RAW_EMG” indicate that the trial contains raw
emg data, the characters “P03” indicate the participant number (in this
example the 3"%), the character “R” indicate the locomotion type (see
above), and the numbers “30” indicate the locomotion speed (see above).
The filtered and time-normalized emg data is named, following the same
rules, like “FILT EMG_P03_R_30".

The files containing the muscle synergies extracted from the filtered
and normalized EMG data are available in RData format, in the file
named “SYNS.RData”. Each element of this R list represents one trial and
contains the factorization rank (list element named “synsR2”), the motor
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modules (list element named “W”), the motor primitives (list element
named “H”), the reconstructed EMG (list element named “Vr”), the
number of iterations needed by the NMF algorithm to converge (list
element named “iterations”), and the reconstruction quality measured as
the coefficient of determination (list element named “R2”). The motor
modules and motor primitives are presented as direct output of the
factorization and not in any functional order. Motor modules are data
frames with 12 rows (number of recorded muscles) and a number of
columns equal to the number of synergies (which might differ from trial
to trial). The rows, named with muscle abbreviations that follow those
reported above, contain the time-independent coefficients (motor mod-
ules M), one for each synergy and for each muscle. Motor primitives are
data frames with 6000 rows and a number of columns equal to the
number of synergies (which might differ from trial to trial) plus one. The
rows contain the time-dependent coefficients (motor primitives P), one
column for each synergy plus the time points (columns are named e.g.,
“time, Synl, Syn2, Syn3”, where “Syn” is the abbreviation for “synergy”).
Each gait cycle contains 200 data points, 100 for the stance and 100 for
the swing phase which, multiplied by the 30 recorded cycles, result in
6000 data points distributed in as many rows. This output is transposed
as compared to the one discussed in the methods section to improve user
readability. Trials are named like “SYNS_ P12 W_07”, where the char-
acters “SYNS” indicate that the trial contains muscle synergy data, the
characters “P12” indicate the participant number (in this example the
12th), the character “W” indicate the locomotion type (see above), and
the numbers “07” indicate the speed (see above). Given the nature of the
NMF algorithm for the extraction of muscle synergies, the supplementary
data set might show non-significant differences as compared to the one
used for obtaining the results of this paper.

The files containing the HFD calculated from motor primitives are
available in RData format, in the file named “HFD.RData”. HFD results
are presented in a list of lists containing, for each trial, 1) the HFD, and 2)
the time interval kjq, used for the calculations. HFDs are presented as
one number (mean HFD of the primitives for that trial), as are the time
intervals. Trials are named like “HFD_P01_R_95”, where the characters
“HFD” indicate that the trial contains HFD data, the characters “P01”
indicate the participant number (in this example the 1%, the character
“R” indicates the locomotion type (see above), and the numbers “95”
indicate the speed (see above).

All the code used for the pre-processing of EMG data, the extraction of
muscle synergies and the calculation of HFD is available in R format.
Explanatory comments are profusely present throughout the script
“muscle_synergies.R”.
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