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Abstract

Retinal oximetry is an important screening tool for early detection of retinal pathologies due

to changes in the vasculature and also serves as a useful indicator of human-body-wide

vascular abnormalities. We present an automatic technique for the measurement of oxygen

saturation in retinal arterioles and venules using dual-wavelength retinal oximetry images.

The technique is based on segmenting an optic-disc-centered ring-shaped region of interest

and subsequent analysis of the oxygen saturation levels. We show that the two dominant

peaks in the histogram of the oxygen saturation levels correspond to arteriolar and venular

oxygen saturations from which the arterio-venous saturation difference (AVSD) can be cal-

culated. For evaluation, we use a normative database of Asian Indian eyes containing 44

dual-wavelength retinal oximetry images. Validations against expert manual annotations of

arterioles and venules show that the proposed technique results in an average arteriolar

oxygen saturation (SatO2) of 87.48%, venular SatO2 of 57.41%, and AVSD of 30.07% in

comparison with the expert ground-truth average arteriolar SatO2 of 89.41%, venular SatO2

of 56.32%, and AVSD of 33.09%, respectively. The results exhibit high consistency across

the dataset indicating that the automated technique is an accurate alternative to the manual

procedure.

1. Introduction

The retina is a light-sensitive tissue layer at the posterior inside of the eye. Millions of nerve

axons running all over the retina convert the incident light into neural signals, which are car-

ried to the brain by the optic nerve for visual perception. Oxygen is important for normal func-

tionality and metabolism in the retina. The retinal arteries carrying oxygenated hemoglobin

(HbO2) enter the retina, and veins carrying deoxygenated hemoglobin (Hb) leave the retina

through the optic nerve head. In a retinal fundus image, the optic nerve head appears as a disc,

referred to as the optic disc (OD). The retina has the highest metabolic demand than any other

tissue in the body [1]. Inadequate delivery and abnormal utilization of oxygen alter the normal

functioning of the retina and trigger diseases such as diabetic retinopathy, glaucoma, age-
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related macular degeneration, retinal vein occlusions, and retinal detachment, leading to

vision impairment [2–7]. Early detection of the pathological condition followed by suitable

treatment may improve the retinal blood flow and oxygenation and restore vision [3–7].

The retinal fundus image provides a direct view of the vasculature and can be used to com-

pute oxygen saturation levels. The quest for retinal metabolic analysis through measurement

of oxygen saturation resulted in a non-invasive dual-wavelength spectrophotometric retinal

oximeter [8, 9]. The Oxymap T1 (Oxymap, Reykjavik, Iceland) is a non-invasive dual-wave-

length oximeter, which consists of an optical adapter, two high-resolution digital cameras, an

image splitter, and two narrow band-pass filters. An Oxymap T1 mounted on top of a Topcon

TRC-50DX (Topcon Corporation, Tokyo, Japan) fundus camera is shown in Fig 1.

In a dual-wavelength oximeter, retinal fundus images are simultaneously captured with two

wavelengths of light, one at 600 nm, which is sensitive to oxygen saturation, and the other at

570 nm, which is not oxygen sensitive, but is used to calibrate the light intensity. The images

are processed by the Oxymap Analyzer software to detect the blood vessels and estimate the

light absorbance (optical density) at each point along the vessels for each wavelength and gen-

erate a pseudocolor map of the oxygen saturation [8]. The principle of retinal oximetry image

acquisition and a representative image with the pseudocolor map is shown in Fig 1.

Fig 1. [Color online] the Oxymap T1 mounted on top of a Topcon TRC-50DX retinal fundus camera and an illustration of the principle of retinal oximetry [8].

https://doi.org/10.1371/journal.pone.0231677.g001
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1.1 Prior Art

Hickam et al. [10, 11] were the first to propose non-invasive retinal oximetry using special fil-

ters. The objective of their study was to investigate retinal blood circulation and metabolism in

humans. They developed techniques for the measurement of diameter changes in retinal ves-

sels for various stimuli and also oxygen saturation of retinal venous blood using fundus

images. Several authors have contributed to the analysis of retinal oxygen saturation under

healthy and diseased conditions of the retina and also development of the multi-wavelength

oximetry system. Dalori et al. [12] proposed a noninvasive spectrophotometric technique and

determined the oxygen saturation after compensating for the effect of light scattering by the

red blood cells. Sebag et al. [13] studied the effect of optic atrophy on retinal blood flow and

oxygen saturation in humans. Denninghoff et al. [14] reported the oxygen saturation in retinal

vessels during hypoxia. Tiedeman et al. [15] studied the retinal oxygen consumption in

patients with diabetes. Beach et al. [16] proposed a method for noninvasive measurement of

oxygen saturation using digital imaging techniques. They recorded images at 600 nm and 569

nm (oxygen-sensitive and oxygen-insensitive wavelengths, respectively) by using a modified

fundus camera with an image splitter coupled to an 18-bit digital camera. Schweitzer et al. [17]

considered wavelengths between 510 nm and 586 nm. They used the experimentally deter-

mined transmission spectra and the spectra of the internal reflection of saturated blood at a

large number of wavelengths to calculate the oxygen saturation. Crittin et al. [18] developed a

reflectance oximeter and showed that the optical density ratio could be used for relative oxygen

saturation measurements. Harris et al. [19] reviewed the literature on the advancements in ret-

inal oximetry methods until the year 2003. Hardarson et al. showed the reliability of retinal

oximeter [20] and also analyzed the oxygen saturation under retinal vein occlusion [29] and

diabetic retinopathy conditions [34]. Michelson et al. [21] and Olafsdottir et al. [22] examined

the oxygen saturation in retinal arterioles and venules simultaneously by imaging spectrometry

and measured the oxygen saturation in patients with glaucoma. Schweitzer et al. [23] showed

that healthy subjects and diabetics in the early stages of diabetic retinopathy exhibit compara-

ble changes of oxygen saturation during breathing of 100% oxygen. Kagemann et al. [24] pro-

posed Fourier-domain optical coherence tomography to assess spectral oximetry. Three-

dimensional disc-centered retinal tissue volumes were assessed in healthy subjects. In this

study, a two-wavelength optical density ratio approach was employed. Johnson et al. [25] pre-

sented a snapshot imaging spectrometer that acquires a complete spatial-spectral image cube

in approximately 3 ms from 450 nm to 700 nm with 50 bands. The setup coupled to a fundus

camera gave a true color retinal image. Hammer et al. [26] used a fundus camera equipped

with a special dual-wavelength transmission filter and a color charge-coupled device camera.

Two monochromatic fundus images recorded at 548 nm and 610 nm were used for the analy-

sis. Ramella-Roman et al. [27] introduced a multi-aperture camera system based on a lenslet

array architecture and captured images in six spectral bands. They reported in vivo testing on

healthy volunteers.

Hammer et al. [28] showed increased retinal venous oxygen saturation in diabetic retinopa-

thy patients. Denninghoff et al. [30] reported the first noninvasive in vivo application of blue-

green oximetry to retinal vessels using a modified confocal scanning laser ophthalmoscope. Li

et al. [31] used an adaptive optics-based confocal scanning laser ophthalmoscope to measure

oxygen saturation in small retinal vessels. Images with a diameter smaller than 50 microns

were recorded at 680 nm (oxygen-sensitive) and 796 nm (oxygen-insensitive) wavelengths.

They showed that the oxygen saturation in the artery is higher than that in the vein and also

that the oxygen saturation in small vessels can be affected by the metabolic activity in the ret-

ina. Mordant et al. [32, 33] used images obtained at wavelengths 500 nm and 650 nm (oxygen-

PLOS ONE Automatic analysis of normative retinal oximetry images

PLOS ONE | https://doi.org/10.1371/journal.pone.0231677 May 18, 2020 3 / 15

https://doi.org/10.1371/journal.pone.0231677


sensitive and oxygen-insensitive, respectively) acquired from a hyper-spectral fundus camera

and analyzed them with an oximetry model to measure oxygen saturation.

There have been a few manual attempts to measure retinal oximetry values from fundus

images [17, 20]. According to the study by Schweitzer et al. [17], the mean oxygen saturation

levels for retinal arterioles and venules in healthy individuals are 92.2% and 57.9%, respec-

tively. Oximetry analysis revealed that the oxygenation levels change in many retinal patholo-

gies such as glaucoma [21, 22], diabetic retinopathy [23, 28, 34], retinal vein occlusions [5, 29],

and systemic hypoxemia [35]. Jani et al. [36], Geirsdottir et al. [9], and Mohan et al. [2] have

established normative databases using the Oxymap T1 retinal oximeter. Their study on the

variability of oxygen saturation in healthy individuals revealed that the age, vessel diameter,

and ocular perfusion pressure are significant factors that influence the saturation. The findings

were based on manual marking of the arterioles and venules in the OD-centered ring-shaped

region of interest on the dual-wavelength retinal oximetry images [2, 9].

The current practice to calculate oxygen saturation from the fundus image requires consid-

erable manual effort. To start with, one must manually outline the OD and segment a ring-

shaped region of interest that is concentric with the OD. Subsequently, the arterioles and

venules have to be identified, and the oxygen saturation level and arterio-venous saturation

difference (AVSD) has to be estimated. This procedure is not only tedious but also introduces

subjectivity. Hence, there is a need for an automated and consistent analysis methodology. To

the best of our knowledge, a computer-aided technique for solving the problem has not been

reported in the literature although there is a pressing clinical need. The objective of this paper

is to fill this gap.

2. Methods

We have created a normative retinal oximetry image database of Asian Indian population

using the Oxymap-Topcon duo [2]. We propose a fully automated technique for performing

retinal arteriolar and venular oxygen saturation measurements as an efficient and robust alter-

native to manual assessment [2,9]. The reliability and accuracy of the proposed technique are

also measured considering manual assessment as the baseline.

2.1 Automated segmentation of the region of interest

We segment the region of interest based on the active-disc method [37] introduced recently for

the segmentation of optic disc and cup and subsequent measurement of glaucoma specific

parameters such as the cup-to-disc ratio and the rim-to-disc ratio [38]. The active-disc method

is motivated by the techniques developed by Pediredla et al. [39] and Thévenaz et al. [40]. The

method is iterative and performs shape-constrained segmentation. In our analysis, the shape is

constrained to be a circle. The initialization is automatic and is based on normalized cross-cor-

relation. The parameters are the coordinates of the center of the disc and the radius, which are

optimized to minimize a locally computed energy function. The optimization is carried out

efficiently using gradient-descent technique [41] and Green’s theorem [42].

The active-disc comprises two concentric circles centered at the origin and parameterized

as follows:

xiðtÞ
yiðtÞ

� �

¼
ri cos t
ri sin t

� �

; ð1Þ

for i = 1,2, and 8t2(0,2π], where r1 and r2 denote the radii of the outer and inner circles,

respectively, which are set to 1 and 1/
p

2, respectively. An example of such a template is shown
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in Fig 2(A). The concentric circles with isotropic scaling and translation are given by

Xi

Yi

� �

¼ R
xi
yi

� �

þ
xc
yc

� �

; ð2Þ

where i = 1,2, and (X1,Y1), and (X2,Y2) denote the outer and inner boundaries, respectively; R
represents the scale parameter, and (xc,yc) are the translational parameters, amounting to a

total of three degrees of freedom. For brevity of notation, we drop the variable t and replace

(xi(t),yi(t)) and (Xi(t),Yi(t)) with (xi,yi) and (Xi,Yi), respectively. The active disc is illustrated

pictorially in Fig 2(B). The active-disc energy is a normalized contrast function, which consid-

ers the area inside the inner disc as the foreground and the annular region as the background.

For an image f, let R1 and R2 denote the regions enclosed by the outer and inner discs, respec-

tively. The active-disc energy is chosen to be

E ¼
1

R2

ZZ

R1nR2

f ðX;YÞdXdY �
ZZ

R2

f ðX;YÞdXdY
0

@

1

A;

¼
1

R2

 ZZ

R1

f ðX;YÞdXdY � 2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E1

ZZ

R2

f ðX;YÞdXdY

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
E2

!

;

¼
1

R2
E1 � 2E2ð Þ;

ð3Þ

where E1 and E2 are the image energies in the regions R1 and R2, respectively. Minimizing the

active-disc energy gives a tight fit contour of the optic disc. Fig 2(C) and 2(D) show an example

of the OD in a dual-wavelength oximetry image and the optimal active disc fit to the OD

boundary, respectively.

We perform optimization using gradient-descent technique [41], which is a first-order

approach. One starts with an initial guess P0, where P is a generic variable that is used to

denote the parameters R,xc, and yc, and updates P as follows:

Pnþ1 ¼ Pn � gnrE½Pn�;

where E[P0]�E[P1]�E[P2]. . ., andr denotes the gradient. The parameter γn>0 is the step-

size parameter.

The gradient-descent technique requires partial derivatives of the energy function. Since

the integrals are two-dimensional and the contours are closed, one could compute the partial

Fig 2. [Color online] (a) A circular template; (b) Circular active disc; (c) Optic disc image in dual-wavelength oximetry; and (d) Optimal active disc fit to the optic disc.

https://doi.org/10.1371/journal.pone.0231677.g002
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derivatives efficiently using Green’s theorem [42]. In our optimization, we need partial deriva-

tives of the energy function with respect to the parameters R,xc, and yc. We show the calcula-

tions for one of the parameters. Applying Green’s theorem to E2 gives

E2 ¼

I

R2

f XdY ¼ �
I

R2

f YdX; ð4Þ

where f XðX;YÞ ¼
R X
� 1

f ðz;YÞdz and f YðX;YÞ ¼
R Y
� 1

f ðX; zÞdz. E2 is a function of (X,Y),

which are functions of the parameters of the disc. The partial derivative of E2 with respect to R
is given by

@E2

@R
¼
@E2

@X
@X
@R
þ
@E2

@Y
@Y
@R

: ð5Þ

Substituting (4) in (5) and simplifying gives

@E2

@R
¼

I

R2

@f X

@X
@X
@R

dY �
I

R2

@f Y

@Y
@Y
@R

dX;

¼
R
2

Z2p

t¼0

f X2;Y2ð Þdt:

ð6Þ

The partial derivative of the energy E1 with respect to R can be found similarly:

@E1

@R
¼

I

R1

@f X

@X
@X
@R

dY �
I

R1

@f Y

@Y
@Y
@R

dX;

¼ R
Z2p

t¼0

f ðX1;Y1Þdt:

ð7Þ

The partial derivative of the energy E with respect to R can be obtained as follows:

@E
@R
¼

1

R2

@

@R
ðE1 � 2E2Þ

� �

�
2

R3
E1 � 2E2ð Þ: ð8Þ

Substituting (6) and (7) in (8) and simplifying, we get

@E
@R
¼

1

R

Z2p

t¼0

f ðX1;Y1Þdt �
Z2p

t¼0

f ðX2;Y2Þdt � 2E

0

B
@

1

C
A: ð9Þ

The partial derivatives of the energy E with respect to the coordinates of the center of the disc

can be found as follows:

@E
@xc
¼

1

R2

Z2p

t¼0

ð
ffiffiffi
2
p

f ðX1;Y1Þdt � 2f ðX2;Y2ÞÞcost dt

0

B
@

1

C
A; ð10Þ

@E
@yc
¼

1

R2

Z2p

t¼0

ð
ffiffiffi
2
p

f ðX1;Y1Þdt � 2f ðX2;Y2ÞÞ sint dt

0

B
@

1

C
A: ð11Þ
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After accurate localization and segmentation of the OD, we follow the protocol adopted by

Mohan et al. [2] and Geirsdottir et al. [9] for segmenting the OD-centered ring-shaped region

of interest and subsequent oxygen saturation analysis. The region consisting of the annulus

between two circles of radius (50 + R) pixels and 2(50 +R) pixels (1 pixel = 9 microns) concen-

tric with the OD is selected for computing the oxygen saturation. The region is partitioned

into supero-temporal (ST), supero-nasal (SN), infero-nasal (IN), and infero-temporal (IT)

quadrants. Fig 3 illustrates the complete procedure.

2.2 Algorithm for measurement of oxygen saturation

The oxygenated blood enters the eye through the central retinal arteriole and gets divided into

four main branches, which are the major vessels and have thick walls. The blood then flows

through the smaller arterioles and the capillary bed where oxygen exchange takes place. The

blood then enters the smaller venules and finally the central retinal venule through the four

larger venules. These larger venules much like the arterioles, have done oxygen exchange due

to the thick walls and as a result, the oxygen saturation would be relatively stable in the larger

vessels where fundus oximetry measurements are made.

Oxygen saturation (SatO2) is the percentage of hemoglobin that is bound to oxygen [12]

and is measured as follows:

SatO2 ¼
HbO2

HbO2 þHb
� 100:

Fig 3. Illustration of OD-centered ring-shaped region-of-interest segmentation for oximetry analysis on the right eye (first row) and left eye (second row). (a1)-

(a2): Detection (green +) and segmentation of the optic disc (white circle); (b1)-(b2): Delineation of the ring-shaped region of interest (white concentric circles); (c1)-

(c2): Segmentation of the ring-shaped region of interest and partitioning into supero-temporal (ST), supero-nasal (SN), infero-nasal (IN), and infero-temporal (IT)

quadrants.

https://doi.org/10.1371/journal.pone.0231677.g003
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Since about 98.5% of the oxygen carried in blood is bound to hemoglobin, SatO2 is an accurate

measure of the amount of oxygen in blood [43–45]. The principle of retinal oximetry is based

on differential light absorption of HbO2 and Hb [45]. Fully oxygenated blood appears as bright

red and deoxygenated blood reflects in the green to violet color bands. Various oxygen satura-

tion levels correspond to different colors from red to the violet band of the spectrum [45]. The

mean oxygen saturation for retinal arterioles and venules in healthy individuals is 92.2% and

57.9%, respectively [17] (cf. Fig 4). The pseudocolor maps could be used to assess the satura-

tion values. The resulting saturation values have a bimodal distribution, one corresponding to

the arterioles and the other corresponding to the venules.

The relationship between SatO2 and the respective red/green/blue component for pixel

intensity is shown in Fig 4 and can be specified by the following:

Fig 4. [Color online] Interpretation of the pseudocolor map for SatO2 in retinal arterioles and venules together with their mean values in healthy individuals

according to the clinical study reported in [17]. The relationship between oxygen saturation and the corresponding red/green/blue component contribution for pixel

color is also shown.

https://doi.org/10.1371/journal.pone.0231677.g004
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Condition-1:

if r ¼ 255; g 6¼ 255; b ¼ 0; then SatO2 ¼ 100 � 0:1� g; and

if r 6¼ 255; g ¼ 255; b ¼ 0; then SatO2 ¼ 50þ 0:1� r:

Condition-2:

if r ¼ 0; g 6¼ 0; b 6¼ 0; then SatO2 ¼ 25þ 0:1� g:

Condition-3:

if r 6¼ 0; g ¼ 0; b 6¼ 0; then Sat02 ¼ 25 � 0:2� r:

A histogram of oxygen saturation levels for an example oximetry image is shown in Fig 5.

The histogram has a bimodal distribution with peaks very close to the SatO2 in the venules and

arterioles. The bimodal peaks are identified using a least-squares polynomial fit of order

twelve. The two dominant peaks represent the SatO2 in the venules and arterioles, respectively.

We follow the same procedure for the ST, SN, IN, and IT quadrant-based oxygen saturation

analysis.

3. Results and discussion

We have created a normative database [2] of retinal oximetry in Asian Indian eyes for validat-

ing the proposed technique. The ground truth has been obtained by manually marking all the

vessels in the region of interest that are above the cut-off of 8 pixels (equivalently, 72 microns)

in diameter. The manual method accounts for the values in all the pixels in a selected vessel

Fig 5. [Color online] A histogram representing oxygen saturation in the region of interest and a bimodal curve fit to it.

https://doi.org/10.1371/journal.pone.0231677.g005

PLOS ONE Automatic analysis of normative retinal oximetry images

PLOS ONE | https://doi.org/10.1371/journal.pone.0231677 May 18, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0231677.g005
https://doi.org/10.1371/journal.pone.0231677


and averages them out. This is prone to error and skewing of the mean due to extremes. The

algorithm reverse-calculates the values given on the exported retinal oximetry image with the

help of the pseudocolor map. The bimodal fit on the histogram of oxygen saturation levels

gives an accurate saturation estimate.

A total of 44 retinal oximetry images of healthy individuals of Asian Indian origin were

used in the study. The bimodal peaks are identified and arteriolar and venular saturations and

AVSD values are automatically calculated. In Table 1, we compare the average of the manually

obtained values against those computed by the proposed algorithm. We observe that the algo-

rithm results are comparable to the manual measurement. We use the intraclass correlation

coefficient (ICC) as a measure of reliability of the algorithm estimate of oxygen saturation in

comparison with that of the ground-truth. We present the ICC for single and average measures

with 95% confidence interval (CI). For arteriolar oxygen saturation, the ICC showed a good

Table 1. Comparison of estimated oxygen saturation versus the ground-truth. The numbers reported are obtained after averaging over 44 images. ST: supero-tempo-

ral; SN: supero-nasal; IN: infero-nasal; IT: infero-temporal.

Region of interest Quadrant-Arteriolar Quadrant-Venular

Arterioles Venules AVSD ST SN IN IT ST SN IN IT

Ground-truth 89.41 56.32 33.09 88.00 93.50 91.40 85.50 55.90 58.70 60.10 51.10

Algorithm 87.48 57.41 30.07 86.06 92.90 92.10 87.55 55.30 63.06 61.20 52.30

https://doi.org/10.1371/journal.pone.0231677.t001

Fig 6. (a): [Color online] Bland-Altman plot for comparing the algorithm-derived arteriolar oxygen saturation levels versus manual measurements for 44 images. (b):

[Color online] Bland-Altman plots for comparing the algorithm-derived venular oxygen saturation levels versus manual measurements for 44 images. (c): [Color online]

Bland-Altman plots for comparing the algorithm-derived AVSD versus manual measurements for 44 images.

https://doi.org/10.1371/journal.pone.0231677.g006
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agreement for single measures (0.66; 95% CI: 0.51 to 0.78) and excellent agreement for average

measures (0.85; 95% CI: 0.76 to 0.92). For venular oxygen saturation, the ICC showed a good

agreement for single measures (0.61; 95% CI: 0.45 to 0.74) and excellent agreement for average

measures (0.82; 95% CI: 0.71 to 0.90). For the AVSD, the ICC showed fair agreement for single

measures (0.47; 95% CI: 0.29 to 0.64) and good agreement for average measures (0.72; 95% CI:

0.55 to 0.84). We compare the manual and algorithm measurements of arteriolar and venular

oxygen saturation using the Bland-Altman difference plots. In this method, one plots the dif-

ferences between the manual and algorithm results against the averages of the two techniques.

The Bland-Altman plots for measured oxygen saturation in arterioles, venules, and AVSD ver-

sus manual assessment are shown in Fig 6(A), 6(B) and 6(C), respectively. The plots show

excellent agreement between the manual and algorithm results. There is only one estimate out-

side the limits of agreement for arteriolar and venular oxygen saturation and AVSD. The box-

plots for the measured oxygen saturation in arterioles, venules, and AVSD versus manual

assessment are shown in Fig 7(A), 7(B) and 7(C), respectively. The boxplots do not indicate

the presence of outliers in the estimated oxygen saturation. The automated oximetry analysis

on the complete ring-shaped ROI and all the four quadrants (ST, SN, IN, and IT) is provided

in Table 1. A comparison of algorithm results for arteriolar and venular oxygen saturation and

AVSD with that of the ground-truth for each quadrant is also provided in Table 1. The results

show that the automated analysis exhibits a high degree of agreement with manual measure-

ments. The standard deviations between the ground-truth and algorithm determined

Fig 7. (a): [Color online] Boxplots for comparing the algorithm-derived arteriolar oxygen saturation levels versus manual measurements for 44 images. (b):

[Color online] Boxplots for comparing the algorithm-derived venular oxygen saturation levels versus manual measurements for 44 images. (c): [Color online]

Boxplots for comparing the algorithm-derived AVSD versus manual measurements for 44 images.

https://doi.org/10.1371/journal.pone.0231677.g007
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arteriolar, venular oxygen saturation, and AVSD for the ring-shaped ROI over 44 images are

provided in Table 2.

From a clinical perspective, this study is important, because it shows that the algorithm

could be used in place of manual measurements. It has multiple advantages. First, it is auto-

matic and fast thus saving time and effort. Second, a trained grader would not be needed to

measure the oxygen saturation from an oximetry image. Third, it would eliminate inter-

observer variability as different observers may choose different vessel segments giving rise to

different saturations. With the help of an automated technique, oximetry measurements can

be standardized. Finally, since the proposed approach considers the bimodal peaks, it would

not be affected by extreme values.

The supporting material available online [46] comprises the ImageJ plugin [47, 48] for

implementing the technique presented in this paper, exemplar oximetry images, and a video

demonstrating the functionality of the plugin.

4. Conclusions

We have developed an automated, reliable, and accurate technique for performing retinal arte-

riolar and venular oxygen saturation measurements as an efficient alternative to manual or

semi-automated procedures. The segmentation of OD and subsequent extraction of ring-

shaped region of interest is performed using the active-disc technique. The oxygen saturation

level estimated is on par with that obtained by manual assessment. A bimodal fit on the histo-

gram of the oxygen saturation levels showed prominent peaks corresponding to the venular

and arteriolar oxygen saturations. The technique was validated on a normative database of

Asian Indian eyes containing 44 retinal oximetry images. The validation resulted in an average

arteriolar and venular oxygen saturation of 87.48% and 57.41%, respectively, and AVSD of

30.07%. The results are close to those obtained from manual procedures and are also consis-

tent across the dataset.
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