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Abstract: Among the major issues linked with producing safe water for consumption is the presence
of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible
for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in wa-
ter sources feeding treatment plants. Although their discovery was made in the early 1900s and
even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a
standardized protocol for the detection of these parasites, modified and named today the U.S. EPA
1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the
elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detec-
tion by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based
techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or
clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are
reviewed in this article, and their advantages and disadvantages are discussed guiding the readers,
such as graduate students, researchers, drinking water managers, epidemiologists, and public health
specialists, through the ever-expanding number of techniques available in the literature for the
detection of Cryptosporidium spp. and Giardia spp. in water.

Keywords: Cryptosporidium; Giardia; detection; water samples; U.S. EPA Method 1623.1; molecular
biology

1. Introduction

The production of drinkable water requires the monitoring of several key parameters,
such as the presence of chemical compounds, humic acid concentration, turbidity, and
microbial content in raw water. To reduce the presence of waterborne pathogenic agents
below a tolerable risk level, a series of treatments are applied to the raw water entering
the treatment plant to either eliminate or inactivate them. Although the sequence of
procedures used is treatment plant-dependent, a general pattern emerges that can be taken
as a guideline [1].

First, the water is roughly screened to get rid of macroscopical debris (ex.: branches,
aquatic animals, etc.). Secondly, several chemical products (coagulants and flocculants)
are added to modify surface electrophysical charges on the particle and attract them to
stick to one another, creating denser flocs. Thirdly, these flocs are left to sink to the bottom
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of large water pools, where they are collected. The water free of flocs is then filtered on
a layered granular medium of progressively smaller pore sizes to collect residual matter.
Once out of the filters, the water is then disinfected either chemically (ex.: free-chlorine,
combined chlorine, chlorine dioxide, ozone) and/or physically (ex.: ultraviolet rays). Once
these steps have been completed, the water is then considered potable and is delivered
through pipes to customers [1].

Among the microorganisms under surveillance in water treatment, the most famous
is likely Escherichia coli, a Gram-negative coccobacillus which is a strong indicator of fecal
pollution. In order to monitor the abundance of E. coli in water samples, several methods
are currently used, such as the filtering-membrane protocol or the commercialized Colilert
kit [2]. These methods are standardized to be used in environmental analysis laboratories
and are quite user-friendly to apply.

Although basic treatments applied at water treatment plants have proven to be ef-
fective against common waterborne pathogens such as bacteria and viruses, they do not
work as efficiently against cyst-forming protozoa. Their ability to form cysts grants them
an increased resistance to stress and to chlorine-based treatments in particular [3]. In fact,
previous experiments have demonstrated that ozone and ultraviolet treatments tend to be
the most efficient ways to inactivate them, while filtration on a granular medium eliminates
significant quantities of cysts [3–5]. The most common examples in this category are Cryp-
tosporidium spp. and Giardia spp., two parasitic protozoa responsible for gastrointestinal
symptoms in humans as well as in several animal genera such as cattle [6–11], birds [12–14],
deer [15,16], rodents [17–20], cats [21,22], dogs [22], snakes [23,24] and other mammals [25].

Throughout their life cycle, these two protozoa can form cyst conformations (oocyst
for Cryptosporidium and cyst for Giardia) as a way of transmitting themselves from one host
to the next. The cyst is ingested by the host either through contaminated water and food
or by a fecal-oral transmission [26–30]. Once the cyst meets the specific physicochemical
conditions of the small intestine, it ruptures to free infectious particles called sporozoites
for Cryptosporidium and trophozoites for Giardia. Giardia’s trophozoites bind to the host
epithelial cells to proliferate. During the infection, Cryptosporidium binds to the host cells
and form a parasitic vacuole with the cell membrane [31]. A Cryptosporidium oocyst contains
four sporozoites, each of which contains one copy of the genome [32,33]. Giardia’s cyst
holds two undivided trophozoites that split once the cyst has opened. Each trophozoite
possesses two identical nuclei with an amount of genome copies reported between four and
twelve [34]. Once inside the host’s cell, Cryptosporidium sporozoites reproduce asexually
then sexually before producing new oocysts [35]. Giardia trophozoites reproduce asexually
while still bound to the intestinal cell line and ultimately produces new cysts. When
physicochemical conditions change, (oo)cysts are excreted via feces into the environment
and stay dormant until ingested by the next host. For both parasites, an average of
10 (oo)cysts ingested is required to provoke disease in a human individual [36,37].

Among the data available, it is documented that between 2011 and 2016, approximately
239 outbreaks were caused by Cryptosporidium spp. worldwide. [38]. In the United States,
the etiological agent in 30,000 cases per year is attributed to either Cryptosporidium spp. or
Giardia spp. [38]. Their illnesses (called cryptosporidiosis and Giardiasis, respectively) are
generally characterized by watery stools, dehydration, nausea, vomiting and abdominal
cramps, but they can also be asymptomatic in some individuals [39,40]. Although the
diseases caused by these organisms are mostly self-healing, the severity and length of these
diseases are known to be influenced by the fitness of the host’s immune system [41,42].
For immunocompromised or vulnerable populations, these infections can become chronic
or life-threatening [39,40]. Both microorganisms are capable of zoonotic transmission,
depending on the host species and parasites involved [43,44]. Therefore, in environments
where wildlife and/or livestock can interact with water sources, events of zoonosis could
be a major issue if the water is not sufficiently treated before distribution [45].

The fact that little can be done to reduce the contamination of water sources with
Cryptosporidium spp. or Giardia spp. highlights the importance of taking steps to maximize
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inactivation during treatment, leading to the production of potable water. However, to
apply effective and sufficient treatments, it is essential to have a reliable and extensive
knowledge of their abundance, identity, viability, and infectivity in raw water sources. Up
to now, several methods have been developed to determine these variables, each with its
advantages and disadvantages.

First, this review will present the current standard method for the detection of Cryp-
tosporidium spp. and Giardia spp. from water sources, known as U.S. EPA Method 1623.1.
Secondly, other promising methods developed to detect and/or quantify Cryptosporidium
spp. and Giardia spp. from water samples will be reviewed with a strong emphasis on the
most recent molecular techniques. Finally, the pros and cons of each of these approaches
(Method 1623.1 and molecular methods) will be discussed and compared.

2. U.S. EPA Method 1623.1
2.1. What Is the U.S. EPA Method 1623.1?

The U.S. EPA Method 1623.1 takes place in four major steps (summarized at Figure 1):
the filtration of the water sample, the elution of the biological matter collected on the filter,
the concentration of the cysts by immunomagnetic separation (IMS), and the microscopic
analysis of the concentrated material. Each of these steps will be described briefly below.
For a more detailed description of the protocol, refer to the original U.S. EPA protocol [46].
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Figure 1. Key steps of the U.S. EPA Method 1623.1. The main steps of the U.S. EPA Method 1623.1 are:
(1) the filtration of up to 100 L of the sample with an approved apparatus by the U.S. EPA with a
pore size of 1 µm, (2) the elution of the biological material from the filters with mechanical agitation
and centrifugation, (3) the concentration of the (oo)cysts by immunomagnetic separation and (4) the
observation of the samples by microscopy (DIC followed by fluorescence microscopy with fluorescent
molecules DAPI and FITC).

First, the choice of the sampling site must be made depending on the target of the study
(e.g., raw water entering a treatment plant, water exiting a wastewater treatment plant, etc.).
But, whatever the sampling site, it must be kept in mind that the following criteria must
always be met during sample collection: a continuous flow of 2 L/min, appropriate fittings
to plug the filtration apparatus, and a water input of a sufficient volume (from 10 to 50 L).

Once the sampling site has been chosen and the flow rate has been adjusted to 2 L/min,
the tubes used for the filtration must be rinsed with a volume of at least 25 L of the sample to
clear potential clumps. Then, a U.S. EPA-approved filtration apparatus (ex: an EnviroChek
1 µm pore-size filtration capsule by Pall Corporation, New York, NY, USA) is attached
to the conditioned tubes before filtration is initiated. Approximately 50 L is expected to
pass through the filter, but care must be taken to monitor the pressure inside the filtration
capsule to avoid breakage (must be below 30 psi). Also, it is important to monitor the water
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flow throughout the period of filtration to keep it as close to the standardized flow rate as
possible. Once the filter is clogged, the apparatus can be unplugged, and the capsule is
kept cold (2–8 ◦C) until further processing at the appropriate facility.

The material retained on the filters is eluted by the addition of an elution solution
that is dependent on the composition of the filter recommended by the manufacturer (ex:
Laureth-12 10% in the case of the EnviroChek 1 µm pore-size filtration cartridge) and
agitation of the filtration capsule with a laboratory shaker (Pall Corporation, New York, NY,
USA) approved by the U.S. EPA. The elution may also be preceded by a pre-elution step
with sodium hexametaphosphate 5% (w/v) that acts as a chemical dispersant by modifying
the surface charge of the filter [47]. Also, a second elution step is suggested to maximize
recovery of the biological material from the filter. The eluate is then transferred into a
conical tube and centrifuged at 1500× g for 15 min. The pellet is recovered, resuspended in
5 mL of ultrapure water (or phosphate-buffered saline with a detergent such as Tween80)
per 0.5 mL of pellet and transferred in a Leighton tube for the next step.

Following the elution from the filter, immunomagnetic separation is done using a kit
such as the Dynabeads™ GC-Combo (Applied Biosystems, Waltham, MA, USA). Magnetic
beads are added to the Leighton tubes. These beads are linked to antibodies recognizing
either a Cryptosporidium or Giardia surface antigen. After a contact time of about an hour,
the Leighton tube is placed on a concentrator (such as Dynabeads™ MPC™-1, Applied
Biosystems, MA, USA), which is essentially a magnet to separate the metallic beads from
the rest of the eluate. The beads attracted to the magnet are transferred into a 1.5 mL
microtube, where the dissociation of the beads from the parasites is performed. Briefly, HCl
0.1 N is added to the microtube, which is vortexed and then placed in a second concentrator
(such as Dynabeads™ MPC™-S, Applied Biosystems, MA, USA). After a short reaction
time (12 min), the magnetic strip of the concentrator is adjusted to recover the beads (freed
from the parasites) on the side of the microtube. NaOH 1 N is then added to neutralize the
pH of the solution containing the (oo)cysts. The complete volume of liquid at the bottom
of the microtube (approximately 75 µL) is transferred onto a glass slide for microscopic
observation and the slide is left to dry at 37 ◦C.

As soon as the slides are dried, absolute methanol is pipetted onto each slide. Then,
antibodies tagged to fluorescein isothiocyanate (FITC) fluorochrome is added to the slides,
left to react for 15 min and the excess solution removed. Fixing buffer (from the Dynabeads
kit) is added, left to react for 2 min and the excess solution is also removed. The same thing is
done with the 4′,6-diamidino-2-phenylindole (DAPI) fluorochrome solution before adding
more of the fixing buffer. Finally, the mounting medium is added, and the slides are sealed
with nail polish. Microscopy must be performed on the slides within seven days after their
preparation. Slides can be stored in a humid, dark room at 2–8 ◦C between observations.
First, to identify (oo)cysts, a search for FITC fluorochrome-stained for round/ovoid apple-
green brilliant structures (5–18 µm in diameter for Giardia and 4–6 µm for Cryptosporidium)
is done at a magnification of 200×. Cells that meet these first criteria are then examined with
DAPI fluorochrome at 400× to determine whether nuclei are present (up to four nuclei in
both protozoa). It is important to note that the absence of nuclei does not necessarily exclude
a positive identification of either parasite. At last, the slides are observed with Differential
Interference Contrast at 1000× to determine if the particle examined belongs to either genus
of the target protozoa. An example of both protozoa in fluorescence microscopy and in
Differential Interference Contrast can be found at Figure 2. As an additional validation
of the identification of a cell as a Giardia or a Cryptosporidium (oo)cyst, a positive control
such as ColorSeed™ (BioPoint, Sydney, Australia) can be used for comparison, which are
inactivated (oo)cysts stained with red fluorescence (Texas Red). Since the fluorescence of
the control (oo)cysts is red, controls and sample cells, which are fluorescent green (FITC) or
blue (DAPI), can be easily distinguished.
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in these pictures belong to the Cryptosporidium genus while cells 8–18 µm long by 5–15 µm wide are
identified as Giardia spp. (A) A bright green fluorescence can be seen on the cells’ periphery with
the use of two antibodies specific to each parasite linked to FITC. (B) The DAPI marker allows the
identification of nuclei within the cells. Cryptosporidium spp. is known to possess four nuclei in its
oocyst configuration. Giardia spp. cysts contain two cells that are still linked, each of which has
two nuclei. Therefore, two to four nuclei are expected to be observed according to the orientation
of the cyst. (C) Under differential interference contrast, Cryptosporidium spp. oocysts can be seen
as spherical structures with rough edges. Giardia spp. cysts have an irregular shape most often
perceived as ovoid.

2.2. Pros and Cons of Using U.S. EPA Method 1623.1

A synthesized version of these pros and cons is presented in Table S1.

2.2.1. Pros

Using this standard method for water analyses has several advantages including
the possibility of concentrating large volumes of water (up to 100 L). Being able to filter
such a large sample volume and then concentrate it with the use of immunomagnetic
separation grants a superior collection power. This permits the user to analyze a bigger
volume of the water entering the treatment plant, which results in a better assessment of
the concentration of Cryptosporidium and Giardia (oo)cysts. Moreover, one of the strong
points of the U.S. EPA Method is its detection limit of one oocyst per 100 L. According
to the World Health Organization (WHO), in order to stay below the risk assessment
level of 10−6 disability-adjusted life years for these protozoa, raw water should contain
approximately 10–30 (oo)cysts per 100 L and achieve at least a 3-log reduction at the water
treatment plant [48,49]. Therefore, being able to detect such a low number of (oo)cysts
from water samples with the U.S. EPA 1623.1 allows compliance with this guideline. The
use of microscopy for quantification avoids the biases associated with PCR amplification.
Also, the use of several fluorescent dyes simultaneously gives more confidence in the
identification. With this approach, the examiner can thus evaluate whether an object is an
(oo)cyst and quantify the number of positive cells on each slide.

2.2.2. Cons

Several aspects of the U.S. EPA Method 1623.1 make it a non-optimal technique.
The first disadvantage, especially when considering the monitoring of water quality of
municipalities with limited resources, is its high cost (approximately 1000$ per sample).
Many apparatuses and reagents are required to perform the U.S. EPA protocol correctly. It
also requires a significant amount of time. Therefore, several towns and cities may choose
not to use this method but rather rely on the concentration of indicator microorganisms
(ex: coliform bacteria) to infer the presence of these parasites. This leads to incomplete
monitoring of these protozoa across large territories and could ultimately result in many
people being vulnerable to infection.
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The second well-documented disadvantage of Method 1623.1 is the low recovery
of (oo)cysts [50]. It has been shown that the recovery rate can be as low as 50% [51],
which makes it unreliable. It was documented that from 8 to 14% of parasites were lost
following the centrifugation step of this protocol when compared with samples of the same
composition submitted only to IMS and fluorescence microscopy [52]. The same study also
found a loss of 29 to 34% of parasites attributable to the filtration and elution protocol by
comparison with identical samples but submitted to centrifugation, IMS and fluorescence
microscopy. It is also important to underline that although the immunomagnetic separation
protocol is useful in removing a large proportion of the non-target biological material, this
process can result in cross-reaction, especially with other eukaryotic organisms such as
algae, yeast, ciliates and with cellular debris [53,54]. Cross-reaction can also happen during
staining with fluorescent dyes such as FITC [53]. Therefore, since many of these organisms
have a morphology similar to that of Cryptosporidium and Giardia cysts, the identification
by microscopy can be more difficult even with IMS and the addition of the fluorescent dyes
mentioned earlier. Thus, the low recovery rate and the cross-reaction of the method may
make the results less reliable.

The third inconvenience of this method is that it ultimately renders little information
for the time and the money that it requires. After filtration of up to 100 L of water,
concentrating it, and finally analysing the recovered material by microscopy for potentially
many hours, the only information it can give is whether structures similar to (oo)cysts have
been observed. Because of the possibility of cross-reaction as mentioned earlier, structures
with the same shape as the targets are easily misidentified as (oo)cysts, potentially leading to
an inaccurate count [53]. Finally, the method is limited to determining the presence/absence
of (oo)cysts, and is incapable of producing essential data such as the species of the protozoa,
their viability, etc. Therefore, improvements could be made by generating more information
from the samples analyzed.

3. Review of the Molecular Experiments Targeting Cryptosporidium spp. and Giardia
spp. from Environmental Water Samples
3.1. Literature Review Process

With the objective of being as thorough as possible, articles were reviewed from the
discovery of either parasite (approximately 1910s for both). The keywords Cryptosporidium
and Giardia were used respectively on Web of Science to find as many articles as possi-
ble on either microorganism. A total of 5700 articles were selected for Cryptosporidium
and 5200 for Giardia based on the content of their abstract and the keywords chosen by
the authors. Of those, 2300 articles for Cryptosporidium and 1600 for Giardia were read
for their potential interest regarding detection of these parasites from various matrices
and/or from different hosts. Finally, 166 articles for Cryptosporidium and 111 for Giardia
were analyzed in greater detail, since these studies included water samples that were
processed with biomolecular techniques. Detailed analysis of these articles can be found in
Supplementary Material (Table S2).

3.2. Description of the Techniques
3.2.1. Pre-Biomolecular Era (Until 1990)

The Cryptosporidium genus was first mentioned in 1907 but was more explicitly de-
scribed in 1910 [19,55]. From the moment this new genus was discovered, it attracted the
attention of several research groups who tried to observe it with a variety of approaches
such as differential interface contrast microscopy, transmission electronic microscopy and
light microscopy coupled with several slide staining methods (ex.: Giemsa, Ziehl-Neelsen,
hematoxylin and eosin, periodic acid-Schiff, phloxine tartrazine) [6,56–60]. Most of these
studies were centered around the analysis of animal feces, as different groups of researchers
raced to discover Cryptosporidium oocysts in new host animal species [14,16,20,24,61–63].
But it was only in 1983 that it was established that Cryptosporidium could indeed infect hu-
mans by zoonosis [64]. Cryptosporidiosis was first considered a disease that infected mostly
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immunocompromised individuals. However, later studies showed that immunocompetent
individuals were also susceptible. A few years later, Cryptosporidium was officially classified
a waterborne parasite just like Giardia spp. [65,66]. At this point it was clear that a method
was necessary to detect Cryptosporidium as well as Giardia spp. (oo)cysts from water sources
to limit the health risks to consumers. The first step was to develop a diagnostic analysis
for water samples based on the fundamental studies performed on animal and human
feces. Since Cryptosporidium and Giardia are difficult to culture and are found at low concen-
trations in water samples, conventional methods used to monitor fecal or total coliforms
could not be applied. In the optic of concentrating (oo)cysts from samples, a process that
used either a filtration capsule or a filtration membrane was coupled with microscopy
to increase the chances of detection [67,68]. Since conventional staining techniques often
lack sensitivity, a new approach was considered: fluorescent and immunofluorescent dyes.
Even today, the most common method used today is DAPI and antibodies tagged with
FITC. The use of fluorescence increased the strength of the signal emitted and the use of
antibodies recognizing specific epitopes on cells allowed a significant increase in specificity.

Giardia was discovered much earlier than Cryptosporidium, although the first articles
still available on Web of Science were published in the 1910s [69]. A well-known anec-
dote is that Antoni van Leeuwenhoek himself in the process of testing the magnification
power of his microscope with his own fecal samples produced a sketch of what was later
identified as a vegetative Giardia cell [70]. History reveals another epidemic of Giardia-
sis when soldiers in 1915 came back from two major battlefields, Flanders and Gallipoli
(now found in Belgium and Turkey, respectively) with hard-to-treat gastrointestinal symp-
toms [71,72]. But the pathogenic nature of Giardia was finally agreed upon after epidemics
exploded in English nurseries in the 1940s that affected young children as well as their
caretakers [73,74]. At that time, the only means of diagnosing Giardia infection was via
the examination of patients’ feces by microscopy as well as some procedures based on
staining such as with Gram’s iodine [73,75]. Before being acknowledged as a waterborne
agent, it was first recognized as the cause of venereal disease [76,77] and as a pathogen
capable of zoonosis [71,78,79]. It was in the 1970s and 1980s that the scientific community
concluded that Giardia could be transmitted through water [80–82]. From then, there were
many studies investigating how to eliminate Giardia cysts in water [83–86]. But in these
years, the main method for detection of the cysts from water samples remained based on
filtration and microscopy [87]. The 1980s marked the beginning of the use of immunofluo-
rescence for the detection of this protozoan, first for clinical samples but later on for water
samples as well [88–90]. This was soon complemented with other methods such as ELISAs
(enzyme-linked immunosorbent assays) and Enzyme-immunoassays (EIA) [91–94]. It is
also important to specify that the U.S. Environmental Protection Agency authorized the
first version of a detection method of Giardia cysts in water samples in 1976 [95]. However,
it was quickly discovered that the performance and cyst recovery of most of these meth-
ods, even the U.S. EPA one, were very low [95–97]. Improvement was required to ensure
reliable data.

3.2.2. Biomolecular Era (From 1990)

Table S2 provides a detailed, yet non-exhaustive, list of research articles using molec-
ular biology to detect, quantify and/or identify species of Cryptosporidium and Giardia
from water samples (environmental water samples, treated water samples, wastewater
samples, etc.). This table represents the data that was compiled in the other tables and
figures presented below. For simplicity’s sake in the table, complete titles such as the
small-subunit gene and 18S rRNA gene were abbreviated to the 18S rRNA gene in the table.
Also, because most studies used Sanger technology, the heading ‘’sequencing” used in this
table refers to this technique. Next generation sequencing is specifically mentioned when it
was used. It is important to explain that the limits of detection specified in this table are the
ones clearly stated in the article itself. Any limit of detection present in Supplementary data



Microorganisms 2022, 10, 1175 8 of 25

or mentioned in a previous article was not considered and classified as “Data not available”
along with the other articles not presenting a limit of detection value.

Also, the origin of the water samples in these biomolecular studies was analyzed
and sorted according to the parasite of interest as well as the continent (Figure 3). It
was found that samples predominantly came from Europe and Asia, followed by North
America. Among the aspects to explain the distribution of these frequencies, outbreaks
are likely to be a major investigation trigger (ex.: Cryptosporidium waterborne outbreak of
Milwaukee, Wisconsin, in 1993 [98] and in Swindon and Oxfordshire, United Kingdom
in 1991 [99]). Increasing numbers of HIV/AIDS cases worldwide since the 1980s may
also have brought concerns toward parasitosis, since people suffering from this infection
are immunocompromised and, therefore, more vulnerable to pathogens [100]. As can be
seen in Figure 3, some regions of the world are still underrepresented in the genotyping
of these parasites from water samples, particularly Central and South America. Several
factors may be responsible for this disparity, such as the high costs relative to molecular
biology applications, especially in low-income regions, or the preference to use traditional
detection techniques such as microscopy for which expertise was previously developed.
Unfortunately, this lack of information may prevent us from getting a much more complete
picture of the presence of these parasites and of their genotypes/species throughout the
world, especially in underdeveloped regions that are strongly affected by these organisms.
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Techniques Used

During our literature review, the molecular biology techniques used to detect Cryp-
tosporidium and Giardia from water samples were extracted and the number of times each
was presented in the literature for that purpose was compiled. Also, the highest and
lowest limit of detection achieved for each technique was determined. The results of this
compilation can be found at Table 1.
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Table 1. Frequency of use of different biomolecular techniques and detection limits achieved. To
compare the detection limits retrieved from the literature, the values were converted mathematically
into (oo)cysts per microliter. When the detection limit was given in weight instead of in cells, the
reference values of 40 fg of DNA per oocyst and of 313 fg of DNA per cyst were used for the
conversion, as stated in [101,102]. Also, since Giardia is a polyploid organism and thus the number of
genome copies varies between cells, one genome copy per nucleus (four copies per cyst) was assumed
to simplify the conversion. Finally, to standardize the limits of detection, the volume of the reaction
was systematically assumed to be of 1 µL for more simplicity.

Organism Technique Frequency Lower Detection Limit Higher Detection Limit

Giardia spp.

DNA hybridization 5 1–5 cysts/mL 1000 copies/reaction

PCR and derivatives 81 10 cysts/100 L 100 cysts/reaction

Real-time PCR 27 5 cysts/L 50 cysts/reaction

LAMP 3 100 fg of target DNA/mL 100 fg of target DNA/mL

Cryptosporidium spp.

DNA hybridization 6 Non applicable 1000 copies/reaction

PCR and derivatives 139 1–5 oocysts/20 L 0.13 ng of DNA per mL

Real-time PCR 31 10 oocysts/100 L 50 oocysts/reaction

LAMP 4 100 fg of target DNA/mL 1.8 fg/reaction

The use of molecular biology to detect Cryptosporidium and Giardia became more com-
mon beginning in the 1990s, starting first with classical methods such as DNA hybridization
(e.g., Southern Blot), and dot blot. But soon PCR took over as the main means of detection
in combination with either gel electrophoresis or membrane-transferring techniques for the
separation and visualization of amplified products. This method is based on the annealing
of short oligonucleotides called primers that recognize the flanking regions of the sequence
targeted for amplification. A DNA polymerase, directed by the primers, binds to the target
sequence and uses it as a template to synthesize a copy. This is repeated many times
through an exponential process, and the PCR products are then detected by migration on
an agarose gel. Variants of this PCR approach were quickly adopted such as nested PCR,
semi-nested PCR or RFLP-PCR to improve sensitivity. Nested PCR consists of a succession
of two PCR reactions, the first with external primers and the second with internal primers
creating a shorter amplicon within the first PCR’s amplification products. Semi-nested
PCR is when one of the external primers is reused in the second round of PCR. RFLP-PCR
(restriction fragment length polymorphism) is the combination of a PCR protocol with
a restriction digestion to cut PCR amplicons into smaller fragments. In several studies,
RAPD-PCR (random amplified polymorphic DNA PCR) or AP-PCR (arbitrarily primed
PCR) were also used to increase the yield of genetic information. With these techniques,
primers are randomly generated among genome sequences of the organism to allow typing
based on the pattern obtained by gel electrophoresis. As the years went by, other questions
arose, such as whether there were Cryptosporidium or Giardia present in samples, and if
so, how many there were and whether they were still viable. To answer these additional
questions, real-time PCR and reverse transcription PCR (mostly the TaqMan option) were
widely used. These techniques allow the quantification of a DNA target and the study
of gene transcription. Also, as other parasitic organisms were found to cause disease in
animals and/or humans, multiplex-PCR was developed, a technique that allows the detec-
tion of more than one target at the same time from a single sample. As the final version of
the U.S. EPA Method 1623 was published in January 1999, several research studies chose
to add an immunomagnetic separation step to the preparation of their samples destined
for molecular biology, making it one of the most popular concentration methods used for
the detection of Cryptosporidium and Giardia from water samples. Around the 2000s, DNA
sequencing also became a very popular technique to use to gain more information about
these protozoa, with a preference for the ABI 3730 technology. Finally, Notomi and collab-
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orators’ developed a Loop-mediated isothermal amplification (LAMP) technique in the
year 2000 [103] which became one of the more commonly used methods for the detection
of these organisms [104–107]. This process is also based on DNA amplification mediated
by primer annealing, but uses at least two pairs of primers and a DNA polymerase with a
strand-displacement activity [103].

Most Frequent Genetic Targets

Depending on the objectives of the study, different genetic targets were chosen to
detect, quantify or identify Cryptosporidium and Giardia from water samples (see Table 2 for
more details). However, for Cryptosporidium, the most common targets were the 18S rRNA
gene and genes coding for oocyst cell wall proteins (like the Cryptosporidium oocyst wall
protein (COWP) gene), Heat-shock protein 70, thrombospondin related adhesive protein
genes (TRAP-C1 and TRAP-C2), glycoprotein-60, S-adenosyl-methionine synthetase-1 and
the DNA-J-like protein. For Giardia, the most common targets for biomolecular techniques
were the 18S rRNA gene (see Box 1 below on 16S vs. 18S rRNA gene in Giardia) and
genes coding for giardins (like the β-giardin gene), triose phosphate isomerase, glutamate
dehydrogenase and elongation factor alpha-1.

Table 2. Frequency of use of different genetic targets by molecular biology studies.

Organism Genetic Target Time Used

Giardia spp.

Giardin gene (ex. β-giardin) 49

18S rRNA gene 39

Glutamate dehydrogenase gene 34

Triose phosphate isomerase gene 31

Elongation factor gene (ex.EF1-α) 4

Heat-shock gene 2

Cryptosporidium spp.

18S rRNA gene 122

Glycoprotein-60 gene 26

Oocyst cell wall protein gene 25

Heat-shock protein gene 19

Other genes 11

Uncharacterized genomic sequences 9

TRAP-C genes 3

S-adenosyl-methionine synthetase-1 gene 3

Box 1. 16S or 18S rRNA gene in Giardia: are they the same gene?

Several articles cited in this review mentioned that they targeted the 16S rRNA gene in Giardia
such as [48,108–112]. The usage of the two terms, 18S rRNA gene and 16S rRNA gene, raised
a questioning about the validity of using either of these names. To solve this issue, we decided
to select the sequences available in the NCBI database under the names of 16S rRNA gene and
18S rRNA gene belonging to Giardia spp. and to align them bioinformatically with the Clustal
Omega software. The alignment was visualised with Jalview and it turned out that these two
labels correspond to the same gene in the Giardia genus. Therefore, since Giardia is a eukaryotic
organism, the authors suggest that the 18S rRNA gene label be used for future studies to avoid
further confusion.

3.3. Pros and Cons of Biomolecular Methods

A synthesized version of these pros and cons is presented at Table S1.
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3.3.1. Pros of Biomolecular Methods

Since biomolecular methods target DNA instead of entire cells, it does not require
the growth of the organism of interest for detection. This is quite a significant advantage
when targeting Cryptosporidium and Giardia, since both are parasites and therefore require
nutrients provided by the host to proliferate. Also, the targeting of nucleic acids does
not require the collection of intact or even whole cells to do the analysis, which might be
tricky for certain types of detection methods such as those based on microscopy. Molecular
methods can thus be relatively more sensitive because both intact (oo)cysts and fragments
of (oo)cysts can be detected.

Furthermore, compared to microscopy-based assays, molecular methods are globally
more reliable since they do not depend on the skills of the microscopist to distinguish an
(oo)cyst from any other cell with a similar appearance. Consequently, the biomolecular
process is shorter to do, not only in the preparation of the samples but also for the analysis
of the results, which tend to be less subjective than with microscopy.

Finally, the molecular biology techniques have the capacity to push the analysis of
these microorganisms a step further by finding complementary information. For example,
with appropriate primers, identification to the genus level can be achieved. Also, real-time
PCR allows a more precise quantification of the amount of a genetic target, and therefore
the organism, in the sample [113,114]. Assessment of the (oo)cyst viability is possible with
techniques such as reverse transcription real-time PCR, which allows the determination of
whether a target gene is transcribed within the organism or not, which has been shown
to correlate with viability [115]. The sequencing of nucleic acids can help identify the
species of Cryptosporidium and Giardia found in a sample, and since not all species are
necessarily found in the same type of environment, it can give insight into the source of the
contamination of the water by these parasites. The complementary information gained with
biomolecular techniques allows research teams and environmental analysis laboratories
to get more from their precious samples and to learn more from their study site when
compared to microscopy-based approaches.

3.3.2. Cons of Biomolecular Methods

DNA-based approaches also have disadvantages. Because DNA is not only contained
in cells but can also be found freely in the environment, every step of the process, from
sampling to the acquisition of the results, is susceptible to contamination by external sources
of DNA such as the manipulators, the container used, etc. However, Cryptosporidium and
Giardia are generally not among the most abundant microorganisms found in environmental
samples, so this source of contamination is likely to be minimal. It is also important to
consider that distinguishing DNA coming from a living cell versus DNA from a dead one
can be a difficult task to do, which can lead to an overestimation of the risks associated
with the presence of these parasites in a sample when using biomolecular methods.

Also, another issue to keep in mind is that since they are eukaryotic cells, just like for
the handlers of the samples and other macroorganisms, extreme care must be taken when
choosing the genetic targets and designing the primers to avoid amplifying DNA from
another source than the two parasites of interest. Some techniques can be quite powerful
with very low limits of detection (one or two copies of the target gene) such as LAMP.
However, if the primers used have even a small resemblance to contaminant DNA, it can
give a positive signal with a strong intensity with background DNA material, which can
be misleading. This raises another issue concerning the detection of Cryptosporidium and
Giardia by molecular means, which is the absence of a standardized methodology. Many
studies that were done in the past focused on the detection of these organisms (see Table S2).
As mentioned earlier, many different targets and primers can be used depending on the
ultimate goals of the project. Since every one of them has different specificities, comparing
their performance is a difficult, if not impossible, task. The U.S. EPA 1623.1 method has
the advantage of being the standard procedure which allows comparison between studies,
something biomolecular techniques presently do not do.
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Also, several elements can undermine the efficiency of the biomolecular technique
used. First, since these organisms’ DNA is not only inside the cells but also contained in
rigid (oo)cysts, care must be taken with the cell lysis protocol used. Insufficient cell lysis
can lead to less genetic target to amplify by PCR and consequently bias the data [116].
Similarly, nucleic acid amplification techniques tend to be sensitive to the presence of
various compounds in environmental samples like humic acids, clay, etc. that act as
inhibitors of the amplification process [117,118]. DNA extracts obtained from samples must
be as pure as possible to avoid getting false negatives.

Finally, since the detection of Cryptosporidium and Giardia have historically been done
by microscopy and that molecular biology is an ever-evolving domain, many diagnostic
laboratories may not possess the instruments required to amplify DNA. Costly purchases
might be necessary to implement these techniques, which might raise some concerns, espe-
cially since no standardized molecular technique has been agreed upon. Laboratories with
fewer resources may not be able to buy these instruments and reagents and might prefer
to continue to rely on the microscopic methods for the detection of these parasites. In the
long run, biomolecular techniques may be more profitable (money-wise and information-
wise), but the transition from one means of detection to the next may be a leap not every
laboratory can afford.

4. Recommendations on Biomolecular Techniques

Based on the information gathered from the literature, here are some recommendations
that we can provide to fellow colleagues facing a dilemma on which technique to choose.
Although a perfect method that applies to all scenarios does not exist, it is possible to
determine the most appropriate one based on several aspects like the aim of the experiment
(presence/absence, quantification, viability assessment, etc.), the concentration of parasites
expected in the type of sample (ex.: generally, there are more (oo)cysts in wastewater
samples than groundwater samples) and the likelihood of the sample containing PCR
inhibitory compounds.

Based on the results from previous studies, the best choice for a presence-absence
study seems to be the LAMP method, not only for Giardia but for Cryptosporidium as
well. It has been found to be very efficient in the detection of bacteria, viruses and other
eukaryotes [119–121]. This technique is documented to be the least sensitive to PCR
inhibitory substances. Therefore, it should be favored in situations where few (oo)cysts
are expected, like with environmental water samples where the method has been shown
to successfully detect the target in as little as femtograms worth of DNA per reaction (see
Table 2 for more details). It can also be used in wastewater samples where the concentration
of PCR inhibitory compounds is likely to be high, since it is the least sensitive technique
to this problem. However, pairing LAMP with fluorescent DNA-intercalating dye can
be complex when accurate quantification of the copy number is desired. Therefore, we
suggest that LAMP should be used primarily when the determination of presence/absence
is the objective.

In a situation where quantification of (oo)cysts is required, quantitative PCR is the
standard technique. A lot of variability was noticed among studies relative to the sensitivity
obtained. Therefore, we strongly suggest testing different primer pairs, when possible,
to select the most sensitive ones. If PCR inhibitors are also an issue in the study context,
adding anti-inhibitory compounds like bovine serum albumin, polyvinylpolypyrrolidone
(PVPP) or betaine to the samples should be tested. Also, some extra purification steps can
be applied to reduce the concentration of inhibitors [118]. New techniques such as droplet
digital PCR should also be considered for quantification purposes, but these processes can
be quite costly.

When assessing the viability of (oo)cysts is necessary, RNA extraction and a reverse
transcription step before a DNA amplification technique such as LAMP or PCR seems to be
the best option. It allows the investigator to determine whether a target gene was expressed
in the (oo)cysts, indicating that the cell was metabolically active. It is also important to
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remember that infectiousness and viability are two different concepts, and that as of now,
the best technique to determine the infectiousness involves an animal model [108].

5. Conclusions

1. Cryptosporidium and Giardia are parasitic protozoa that can transmit waterborne dis-
eases, especially if not adequately monitored in water sources.

2. The U.S. EPA developed Method 1623.1 to detect these protozoa from water samples.
Briefly, this protocol consists of the filtration of 100 L of the sample onto a 1 µm filter,
the elution of the biological material from the filter, the concentration of (oo)cysts
by immunomagnetic separation and the detection of whole cells by fluorescent mi-
croscopy with FITC and DAPI stains.

3. Historically, Cryptosporidium and Giardia were primarily detected by microscopy
until the 1990s, when molecular biology emerged. Since then, a multitude of PCR
protocols, PCR variants, real-time techniques, isothermal protocols and sequencing-
based protocols were designed to improve the detection and characterization of these
protozoa in aquatic samples. These techniques continue to evolve and improve.

4. U.S. EPA Method 1623.1 and biomolecular techniques both have specific advantages
and limitations that must be taken into consideration with the objectives of the study
before deciding which method is most appropriate to use.

5. The present review article aims to provide useful insights and perhaps even trigger
new ideas, for researchers, drinking water managers, epidemiologists, and public
health specialists for the improvement of the monitoring of Cryptosporidium and
Giardia spp. in water sources.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10061175/s1, Table S1. Recapitulation of the pros
and cons of the techniques used to detect Cryptosporidium spp. and Giardia spp. from water samples;
Table S2: Complete description of biomolecular studies targeting Cryptosporidium spp. and Giardia spp.
in water samples. (The [122–307] are cited only in supplementary materials but are part of the
literature review made for this publication).
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205. Füchslin, H.P.; Koẗzsch, S.; Egli, T. Cryptosporidium spp. in drinking water: Samples from rural sites in Switzerland. Swiss Med.
Wkly. 2012, 142, 1–8. [CrossRef]

206. Haramoto, E.; Katayama, H.; Asami, M.; Akiba, M. Development of a novel method for simultaneous concentration of viruses
and protozoa from a single water sample. J. Virol. Methods 2012, 182, 62–69. [CrossRef]

207. Keserue, H.-A.; Füchslin, H.P.; Wittwer, M.; Nguyen-Viet, H.; Nguyen, T.T.; Surinkul, N.; Koottatep, T.; Schürch, N.; Egli, T.
Comparison of rapid methods for detection of Giardia spp. and Cryptosporidium spp. (Oo)cysts using transportable instrumentation
in a field deployment. Environ. Sci. Technol. 2012, 46, 8952–8959. [CrossRef]

208. Kishida, N.; Miyata, R.; Furuta, A.; Izumiyama, S.; Tsuneda, S.; Sekiguchi, Y.; Noda, N.; Akiba, M. Quantitative detection
of Cryptosporidium oocyst in water source based on 18S rRNA by alternately binding probe competitive reverse transcription
polymerase chain reaction (ABC-RT-PCR). Water Res. 2012, 46, 187–194. [CrossRef]

209. Li, N.; Xiao, L.; Wang, L.; Zhao, S.; Zhao, X.; Duan, L.; Guo, M.; Liu, L.; Feng, Y. Molecular Surveillance of Cryptosporidium spp.,
Giardia duodenalis, and Enterocytozoon bieneusi by Genotyping and Subtyping Parasites in Wastewater. PLoS Negl. Trop. Dis. 2012,
6, e1809. [CrossRef] [PubMed]

210. Liang, Z.; Keeley, A. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for
viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples. Water Res.
2012, 46, 5941–5953. [CrossRef] [PubMed]

211. Loganthan, S.; Yang, R.; Bath, A.; Gordon, C.; Ryan, U.M. Prevalence of Cryptosporidium species in recreational versus non-
recreational water sources. Exp. Parasitol. 2012, 131, 399–403. [CrossRef]

212. Rodríguez, D.C.; Pino, N.; Peñuela, G. Microbiological quality indicators in waters of dairy farms: Detection of pathogens by PCR
in real time. Sci. Total Environ. 2012, 427–428, 314–318. [CrossRef] [PubMed]

213. Ruecker, N.J.; Matsune, J.C.; Wilkes, G.; Lapen, D.R.; Topp, E.; Edge, T.A.; Sensen, C.W.; Xiao, L.; Neumann, N.F. Molecular
and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water. Water Res. 2012, 46, 5135–5150.
[CrossRef]

214. Van Dyke, M.I.; Ong, C.S.L.; Prystajecky, N.A.; Isaac-Renton, J.L.; Huck, P.M. Identifying host sources, humanhealth risk and
indicators of Cryptosporidium and Giardia in a Canadian watershed influenced by urban and rural activities. J. Water Health 2012,
10, 311–323. [CrossRef]

http://doi.org/10.1007/s12403-010-0027-2
http://doi.org/10.4269/ajtmh.2011.10-0449
http://doi.org/10.1128/AEM.00146-11
http://doi.org/10.2166/wh.2011.098
http://doi.org/10.1007/s10661-010-1726-7
http://doi.org/10.1007/s00436-011-2333-4
http://www.ncbi.nlm.nih.gov/pubmed/21461728
http://www.ncbi.nlm.nih.gov/pubmed/22347296
http://doi.org/10.1080/15287394.2012.721167
http://www.ncbi.nlm.nih.gov/pubmed/23095153
http://doi.org/10.2166/wh.2012.204
http://www.ncbi.nlm.nih.gov/pubmed/22960487
http://doi.org/10.1016/j.vetpar.2011.10.027
http://doi.org/10.1128/AEM.02470-12
http://doi.org/10.4414/smw.2012.13683
http://doi.org/10.1016/j.jviromet.2012.03.011
http://doi.org/10.1021/es301974m
http://doi.org/10.1016/j.watres.2011.10.048
http://doi.org/10.1371/journal.pntd.0001809
http://www.ncbi.nlm.nih.gov/pubmed/22970334
http://doi.org/10.1016/j.watres.2012.08.014
http://www.ncbi.nlm.nih.gov/pubmed/22980572
http://doi.org/10.1016/j.exppara.2012.04.015
http://doi.org/10.1016/j.scitotenv.2012.03.052
http://www.ncbi.nlm.nih.gov/pubmed/22542296
http://doi.org/10.1016/j.watres.2012.06.045
http://doi.org/10.2166/wh.2012.131


Microorganisms 2022, 10, 1175 22 of 25

215. Xiao, S.; An, W.; Chen, Z.; Zhang, D.; Yu, J.; Yang, M. Occurrences and genotypes of Cryptosporidium oocysts in river network of
southern-eastern China. Parasitol. Res. 2012, 110, 1701–1709. [CrossRef]

216. Damiani, C.; Balthazard-Accou, K.; Clervil, E.; Diallo, A.; Da Costa, C.; Emmanuel, E.; Totet, A.; Agnamey, P. Cryptosporidiosis in
Haiti: Surprisingly low level of species diversity revealed by molecular characterization of Cryptosporidium oocysts from surface
water and groundwater. Parasite 2013, 20, 45. [CrossRef]

217. Edge, T.A.; Khan, I.U.H.; Bouchard, R.; Guo, J.; Hill, S.; Locas, A.; Moore, L.; Neumann, N.; Nowak, E.; Payment, P.; et al.
Occurrence of waterborne pathogens and Escherichia coli at offshore drinking water intakes in lake Ontario. Appl. Environ.
Microbiol. 2013, 79, 5799–5813. [CrossRef]

218. Osaki, S.C.; Soccol, V.T.; Costa, A.O.; Oliveira-Silva, M.B.; Pereira, J.T.; Procópio, A.E. Polymerase chain reaction and nested-PCR
approaches for detecting Cryptosporidium in water catchments of water treatment plants in Curitiba, State of Paraná, Brazil.
Rev. Soc. Bras. Med. Trop. 2013, 46, 270–276. [CrossRef]

219. Ruecker, N.J.; Matsune, J.C.; Lapen, D.R.; Topp, E.; Edge, T.A.; Neumann, N.F. The detection of Cryptosporidium and the resolution
of mixtures of species and genotypes from water. Infect. Genet. Evol. 2013, 15, 3–9. [CrossRef] [PubMed]

220. Sroka, J.; Stojecki, K.; Zdybel, J.; Karamon, J.; Cencek, T.; Dutkiewicz, J. Occurrence of Cryptosporidium oocysts and Giardia cysts in
effluent from sewage treatment plant from eastern Poland. Ann. Agric. Environ. Med. 2013, 1, 57–62.

221. Staggs, S.E.; Beckman, E.M.; Keely, S.P.; Mackwan, R.; Ware, M.W.; Moyer, A.P.; Ferretti, J.A.; Sayed, A.; Xiao, L.; Villegas, E.N.
The Applicability of TaqMan-Based Quantitative Real-Time PCR Assays for Detecting and Enumerating Cryptosporidium spp.
Oocysts in the Environment. PLoS ONE 2013, 8, e66562. [CrossRef] [PubMed]

222. Wilkes, G.; Ruecker, N.J.; Neumann, N.F.; Gannon, V.P.J.; Jokinen, C.; Sunohara, M.; Topp, E.; Pintar, K.D.M.; Edge, T.A.;
Lapen, D.R. Spatiotemporal analysis of Cryptosporidium species/genotypes and relationships with other zoonotic pathogens in
surface water from mixed-use watersheds. Appl. Environ. Microbiol. 2013, 79, 434–448. [CrossRef]

223. Xiao, G.; Qiu, Z.; Qi, J.; Chen, J.-A.; Liu, F.; Liu, W.; Luo, J.; Shu, W. Occurrence and potential health risk of Cryptosporidium and
Giardia in the Three Gorges Reservoir, China. Water Res. 2013, 47, 2431–2445. [CrossRef]

224. Alonso, J.L.; Amorós, I.; Guy, R.A. Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using
propidium monoazide quantitative real-time PCR. Parasitol. Res. 2014, 113, 2671–2678. [CrossRef]

225. Betancourt, W.Q.; Duarte, D.C.; Vásquez, R.C.; Gurian, P.L. Cryptosporidium and Giardia in tropical recreational marine waters
contaminated with domestic sewage: Estimation of bathing-associated disease risks. Mar. Pollut. Bull. 2014, 85, 268–273.
[CrossRef]

226. Dobrowsky, P.H.; De Kwaadsteniet, M.; Cloete, T.E.; Khan, W. Distribution of indigenous bacterial pathogens and potential
pathogens associated with roof-harvested rainwater. Appl. Environ. Microbiol. 2014, 80, 2307–2316. [CrossRef]

227. Dreelin, E.A.; Ives, R.L.; Molloy, S.; Rose, J.B. Cryptosporidium and Giardia in surface water: A case study from Michigan, USA to
inform management of rural water systems. Int. J. Environ. Res Public Health 2014, 11, 10480–10503. [CrossRef]

228. Durigan, M.; Abreu, A.G.; Zucchi, M.I.; Franco, R.M.B.; De Souza, A.P. Genetic diversity of Giardia duodenalis: Multilocus
genotyping reveals zoonotic potential between clinical and environmental sources in a metropolitan region of Brazil. PLoS ONE
2014, 9, e115489. [CrossRef]

229. Galván, A.; Magnet, A.; Izquierdo, F.; Vadillo, C.F.; Peralta, R.; Angulo, S.; Fenoy, S.; del Aguila, C. A year-long study of
Cryptosporidium species and subtypes in recreational, drinking and wastewater from the central area of Spain. Sci. Total Environ.
2014, 468–469, 368–375. [CrossRef] [PubMed]

230. Hu, Y.; Feng, Y.Y.; Huang, C.; Xiao, L. Occurrence, source, and human infection potential of Cryptosporidium and Enterocytozoon
bieneusi in drinking source water in Shanghai, China, during a pig carcass disposal incident. Environ. Sci. Technol. 2014, 48,
14219–14227. [CrossRef] [PubMed]

231. Kitajima, M.; Haramoto, E.; Iker, B.C.; Gerba, C.P. Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent
water at wastewater treatment plants in Arizona. Sci. Total Environ. 2014, 484, 129–136. [CrossRef] [PubMed]

232. Ma, L.; Sotiriadou, I.; Cai, Q.; Karanis, G.; Wang, G.; Wang, G.; Lu, Y.; Li, X.; Karanis, P. Detection of Cryptosporidium and Giardia in
agricultural and water environments in the Qinghai area of China by IFT and PCR. Parasitol. Res 2014, 113, 3177–3184. [CrossRef]

233. Moss, J.A.; Gordy, J.; Snyder, R.A. Effective Concentration and Detection of Cryptosporidium, Giardia, and the Microsporidia from
Environmental Matrices. J. Pathog. 2014, 2014, 408204. [CrossRef]

234. Prystajecky, N.A.; Huck, P.M.; Schreier, H.; Isaac-Renton, J.L. Assessment of Giardia and Cryptosporidium spp. as a microbial source
tracking tool for surface water: Application in a mixed-use watershed. Appl. Environ. Microbiol. 2014, 80, 2328–2336. [CrossRef]

235. Samie, A.; Ntekele, P. Genotypic detection and evaluation of the removal efficiency of Giardia duodenalis at municipal wastewater
treatment plants in Northern South Africa. Trop. Biomed. 2014, 31, 122–133.

236. Swaffer, B.A.; Vial, H.M.; King, B.J.; Daly, R.; Frizenschaf, J.; Monis, P.T. Investigating source water Cryptosporidium concentration,
species and infectivity rates during rainfall-runoff in a multi-use catchment. Water Res. 2014, 67, 310–320. [CrossRef]

237. Widerström, M.; Schönning, C.; Lilja, M.; Lebbad, M.; Ljung, T.; Allestam, G.; Ferm, M.; Björkholm, B.; Hansen, A.; Hiltula, J.; et al.
Large outbreak of Cryptosporidium hominis infection transmitted through the public water supply, Sweden. Emerg. Infect. Dis.
2014, 20, 581–589. [CrossRef]

238. Adamska, M.; Sawczuk, M.; Kolodziejczyk, L.; Skotarczak, B. Assessment of molecular methods as a tool for detecting pathogenic
protozoa isolated from water bodies. J. Water Health 2015, 13, 953–959. [CrossRef]

http://doi.org/10.1007/s00436-011-2688-6
http://doi.org/10.1051/parasite/2013045
http://doi.org/10.1128/AEM.00870-13
http://doi.org/10.1590/0037-8682-0053-2013
http://doi.org/10.1016/j.meegid.2012.09.009
http://www.ncbi.nlm.nih.gov/pubmed/23088833
http://doi.org/10.1371/journal.pone.0066562
http://www.ncbi.nlm.nih.gov/pubmed/23805235
http://doi.org/10.1128/AEM.01924-12
http://doi.org/10.1016/j.watres.2013.02.019
http://doi.org/10.1007/s00436-014-3922-9
http://doi.org/10.1016/j.marpolbul.2014.05.059
http://doi.org/10.1128/AEM.04130-13
http://doi.org/10.3390/ijerph111010480
http://doi.org/10.1371/journal.pone.0115489
http://doi.org/10.1016/j.scitotenv.2013.08.053
http://www.ncbi.nlm.nih.gov/pubmed/24041604
http://doi.org/10.1021/es504464t
http://www.ncbi.nlm.nih.gov/pubmed/25383482
http://doi.org/10.1016/j.scitotenv.2014.03.036
http://www.ncbi.nlm.nih.gov/pubmed/24695096
http://doi.org/10.1007/s00436-014-3979-5
http://doi.org/10.1155/2014/408204
http://doi.org/10.1128/AEM.02037-13
http://doi.org/10.1016/j.watres.2014.08.055
http://doi.org/10.3201/eid2004.121415
http://doi.org/10.2166/wh.2015.077


Microorganisms 2022, 10, 1175 23 of 25

239. Almeida, J.C.; Martins, F.D.C.; Neto, J.M.F.; Dos Santos, M.M.; Garcia, J.L.; Navarro, I.T.; Kuroda, E.K.; Freire, R.L. Occurrence of
Cryptosporidium spp. and Giardia spp. in a public water-treatment system, Paraná, Southern Brazil. Rev. Bras. Parasitol Veterinária
2015, 24, 303–308. [CrossRef] [PubMed]

240. Bonilla, J.A.; Bonilla, T.D.; Abdelzaher, A.M.; Scott, T.M.; Lukasik, J.; Solo-Gabriele, H.M.; Palmer, C.J. Quantification of protozoa
and viruses from small water volumes. Int. J. Environ. Res. Public Health 2015, 12, 7118–7132. [CrossRef] [PubMed]

241. Castro-Hermida, J.A.; González-Warleta, M.; Mezo, M. Cryptosporidium spp. and Giardia duodenalis as pathogenic contaminants of
water in Galicia, Spain: The need for safe drinking water. Int. J. Hyg. Environ. Health 2015, 218, 132–138. [CrossRef] [PubMed]

242. Colli, C.M.; Bezagio, R.C.; Nishi, L.; Bignotto, T.S.; Ferreira, C.; Falavigna-Guilherme, A.L.; Gomes, M.L. Identical assemblage of
Giardia duodenalis in humans, animals and vegetables in an urban area in Southern Brazil indicates a relationship among them.
PLoS ONE 2015, 10, e0118065. [CrossRef] [PubMed]

243. David, B.; Guimarães, S.; de Oliveira, A.P.; de Oliveira-Sequeira, T.C.G.; Bittencourt, G.N.; Nardi, A.R.M.; Ribolla, P.E.M.;
Franco, R.M.B.; Branco, N.; Tosini, F.; et al. Molecular characterization of intestinal protozoa in two poor communities in the State
of São Paulo, Brazil. Parasites Vectors 2015, 8, 103. [CrossRef] [PubMed]

244. Ehsan, A.; Geurden, T.; Casaert, S.; Paulussen, J.; De Coster, L.; Schoemaker, T.; Chalmers, R.; Grit, G.; Vercruysse, J.; Claerebout, E.
Occurrence and potential health risk of Cryptosporidium and Giardia in different water catchments in Belgium. Environ. Monit.
Assess. 2015, 187, 6. [CrossRef]

245. Ehsan, A.; Casaert, S.; Levecke, B.; Van Rooy, L.; Pelicaen, J.; Smis, A.; De Backer, J.; Vervaeke, B.; De Smedt, S.;
Schoonbaert, F.; et al. Cryptosporidium and Giardia in recreational water in Belgium. J. Water Health 2015, 13, 870–878.
[CrossRef]

246. Gertler, M.; Dürr, M.; Renner, P.; Poppert, S.; Askar, M.; Breidenbach, J.; Frank, C.; Preußel, K.; Schielke, A.; Werber, D.; et al.
Outbreak of following river flooding in the city of Halle (Saale), Germany, August 2013. BMC Infect. Dis. 2015, 15, 88. [CrossRef]

247. Hill, V.R.; Narayanan, J.; Gallen, R.R.; Ferdinand, K.L.; Cromeans, T.L.; Vinjé, J. Development of a nucleic acid extraction
procedure for simultaneous recovery of DNA and RNA from diverse microbes in water. Pathogens 2015, 4, 335–354. [CrossRef]

248. Marangi, M.; Giangaspero, A.; Lacasella, V.; Lonigro, A.; Gasser, R.B. Multiplex PCR for the detection and quantification of
zoonotic taxa of Giardia, Cryptosporidium and Toxoplasma in wastewater and mussels. Mol. Cell. Probes 2015, 29, 122–125. [CrossRef]

249. Parsons, M.B.; Travis, D.; Lonsdorf, E.V.; Lipende, I.; Roellig, D.M.A.; Kamenya, S.; Zhang, H.; Xiao, L.; Gillespie, T.R. Epidemi-
ology and Molecular Characterization of Cryptosporidium spp. in Humans, Wild Primates, and Domesticated Animals in the
Greater Gombe Ecosystem, Tanzania. PLoS Negl. Trop. Dis. 2015, 9, e0003529. [CrossRef] [PubMed]

250. Pitkänen, T.; Juselius, T.; Isomäki, E.; Miettinen, I.T.; Valve, M.; Kivimäki, A.-L.; Lahti, K.; Hänninen, M.-L. Drinking water quality
and occurrence of Giardia in finnish small groundwater supplies. Resources 2015, 4, 637–654. [CrossRef]

251. Prystajecky, N.; Tsui, C.K.-M.; Hsiao, W.W.L.; Uyaguari-Diaz, M.I.; Ho, J.; Tang, P.; Isaac-Renton, J. Giardia spp. are commonly
found in mixed assemblages in surface water, as revealed by molecular and whole-genome characterization. Appl. Environ.
Microbiol. 2015, 81, 4827–4834. [CrossRef] [PubMed]

252. Shanan, S.; Abd, H.; Bayoumi, M.; Saeed, A.; Sandström, G. Prevalence of protozoa species in drinking and environmental water
sources in Sudan. Biomed. Res. Int. 2015, 2015, 345619. [CrossRef]

253. Spanakos, G.; Biba, A.; Mavridou, A.; Karanis, P. Occurrence of Cryptosporidium and Giardia in recycled waters used for irrigation
and first description of Cryptosporidium parvum and C. muris in Greece. Parasitol. Res. 2015, 114, 1803–1810. [CrossRef]

254. Wells, B.; Shaw, H.; Hotchkiss, E.; Gilray, J.; Ayton, R.; Green, J.; Katzer, F.; Wells, A.; Innes, E. Prevalence, species identification
and genotyping Cryptosporidium from livestock and deer in a catchment in the Cairngorms with a history of a contaminated
public water supply. Parasites Vectors 2015, 8, 66. [CrossRef]
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