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Abstract: The human response to invading fungi includes a series of events that detect, kill, or clear
the fungi. If the metabolic host response is unable to eliminate the fungi, an infection ensues. Some
of the host response’s metabolic events to fungi can be imaged with molecules labelled with radionu-
clides. Several important clinical applications have been found with radiolabelled biomolecules of
inflammation. 18F-fluorodeoxyglucose is the tracer that has been most widely investigated in the host
defence of fungi. This tracer has added value in the early detection of infection, in staging and visual-
ising dissemination of infection, and in monitoring antifungal treatment. Radiolabelled antimicrobial
peptides showed promising results, but large prospective studies in fungal infection are lacking.
Other tracers have also been used in imaging events of the host response, such as the migration of
white blood cells at sites of infection, nutritional immunity in iron metabolism, and radiolabelled
monoclonal antibodies. Many tracers are still at the preclinical stage. Some tracers require further
studies before translation into clinical use. The application of therapeutic radionuclides offers a very
promising clinical application of these tracers in managing drug-resistant fungi.
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1. Introduction

Fungal infections cause high morbidity and mortality, especially in immunocom-
promised patients [1]. The human body recognises fungi invading the body by pattern
recognition receptors. The pattern recognition receptors are genetically determined recep-
tors that recognise molecular sequences associated with fungi. These receptors are different
from the receptors of the adaptive immune system formed by T and B lymphocytes in
response to an antigenic challenge. Dectin-1 best illustrates the function of pattern recog-
nition receptors in fungal infections. Dectin-1 recognises B-glucan sequences in the inner
layer of the cell wall present in all fungi species [2–4]. Once the host recognises the fungi,
the receptor-pathogen interaction sets intracellular events that result in the formation of
chemokines and cytokines that modulate inflammation. These chemokines and cytokines
cause white blood cells to migrate to the infection site, leading to the phagocytosis of
the fungi, and eventually to the killing and clearing of the fungi [2,5]. Imaging these
inflammatory events showed added value in the management of these infections.

Anatomic-based imaging in infection often depends on structural changes that may not
occur early in the sequence of the host’s reaction to the fungi. Similarly, after an established
fungal infection is treated with antifungal agents, the anatomic changes associated with
the infection may persist long after the offending fungi are cleared. The metabolic changes
that occur with inflammation due to the host response precede the anatomic changes, and
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can be used during and after the treatment. These metabolic changes can be imaged with
radionuclide-based tracers [6].

Radionuclide imaging includes positron emission tomography (PET) and single-
photon emission computed tomography (SPECT), and provides functional data of struc-
tures deep within the body. PET and SPECT imaging rely on the radiolabelling of chemical
substances that resemble or are actual biomolecules of the body’s chemical processes.
The radionuclides emit energy directly as photons or after initially forming positrons.
SPECT or PET camera systems image the emitted photons. These cameras allow the
three-dimensional acquisition of pathophysiologic processes in the body. PET and SPECT
imaging are usually combined with anatomic-based imaging (PET/CT and SPECT/CT).
The anatomic-based imaging allows anatomic localisation and attenuation correction (when
possible) of PET and SPECT images. PET imaging has better resolution than SPECT, and
quantification of radiotracer tissue uptake has been better validated for PET in clinical
practice. SPECT is more widely available and relatively cheaper [7].

In this review, we describe radionuclide-based PET and SPECT imaging agents used
in inflammation and their correlation to the events of host defence of fungi. Medical
imaging plays a vital role in the management of fungal infections [8]. Imaging is part of the
diagnostic workup of patients with suspected fungal infection [9]. Imaging is able to stage
the infection, to detect occult or disseminated infection, to monitor antifungal therapy, and
to provide prognostic information [10,11].

2. PET Imaging

PET imaging is performed after the injection of PET tracers into a patient. PET tracers
are compounds in which an element is replaced by a radioactive positron emitter. A
positron is a positive electron that is not naturally present in nature, but is produced by
radioactivity. After a positron is released by radioactive decay, the positron travels a short
distance and combines with an electron in the host tissue or environment. The combined
positron and electron undergo annihilation, and their mass is converted to energy; the
energy is given of as two 511 keV photons travelling in opposite directions. A PET camera
system is able to detect the two electrons simultaneously. An image is reconstructed from
the photons to provide a three-dimensional representation of the underlying pathologic or
physiologic process that the PET tracer that was injected was meant to image.

2.1. 18F-FDG PET in Fungal Infections
18F-Fluorodeoxyglucose (18F-FDG) is a glucose analogue and the most common PET

tracer in the clinical setting. 18F-FDG is widely used as the radiolabelled agent of choice
in imaging many infections and inflammatory conditions [12–16]. It has been used in the
evaluation of different aspects of fungal infections. After fungi invade the body’s tissues,
they are recognised by pattern recognition receptors which, in turn, initiate intracellular
signals that result in inflammation to clear the fungi. The inflammatory processes that are
activated use energy. These energy-dependent processes result in the uptake of glucose
by the immune cells. The increased glucose uptake by the GLUT transporters on the
cell membrane of immune cells generates a signal with 18F-FDG. This forms the basis of
imaging inflammation with PET [17]. 18F-FDG PET is usually integrated with computed
tomography (CT). Recently, some systems also integrate PET with magnetic resonance
imaging in clinical practice. The positron 18F has a half-life of 110 min, allowing enough
time for the tracer to be taken up in the inflamed tissue and to be imaged by PET, while not
lasting too long in the host to give an unnecessarily high radiation burden.

Several case reports and case series with relatively small numbers documented the
ability of 18F-FDG PET/CT to detect lesions of fungal infections early before anatomic
changes, the usefulness in detecting occult lesions and detecting dissemination, and the
ability to monitor antifungal therapy [18–22]. The role of 18F-FDG PET/CT was further
confirmed in several larger studies [23–27].
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The pattern of uptake may direct the imaging specialist to the presence of a fungal
infection. Bilateral adrenal gland uptake, for example, may occur in Cryptococcus or
Histoplasmosis sp. infections. Figure 1 shows a patient with Cryptococcus neoformans with
bilateral adrenal gland uptake due to the fungi [20,28–31]. Knowledge of the epidemiology
of fungal infection and the patterns that may occur is important in the interpretation of
18F-FDG PET/CT in fungal infections.
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Figure 1. Patient with pulmonary cryptococcosis (blue arrow) with bilateral intense hypermetabolic
uptake on coronal slice of 18F-FDG PET due to adrenal involvement (red arrow).

There are numerous species of fungi that may cause an invasive fungal infection.
In the literature, most of the case reports and studies focus on radionuclide imaging of
Candida sp. and Aspergillus sp. because these are often the most common species in blood-
stream infection and infections among the immunocompromised, such as patients with
hematologic malignancies. 18F-FDG PET/CT has been shown to be useful in the diagnosis
and monitoring of treatment in other fungi such as Histoplasmosis sp. Cryptococus neoformis
and Pneumocystis jeroveci pneumonia [19,28–30].

2.2. Other PET Tracers Used for Inflammation and Their Role in Fungal Infection
2.2.1. PET Labelled Siderophores

One method of defence by the human body from pathogens is to ensure that the
nutrients needed for the survival of the microorganism are not available to the pathogen.
These nutrients, such as iron or copper, are highly regulated by being bound to various
molecules, so they are not readily available to pathogens. This is called nutritional immu-
nity. To overcome this, fungi and other pathogens adopt various mechanisms [32]. Fungi
employ siderophores to overcome the relative deficiency of iron caused by the host nutri-
tional immunity. Iron is an important cofactor for different physiologic processes, such as
respiration, metabolism of amino acids and biosynthesis of nucleic acids and steroid com-
pounds [33,34]. Siderophores tend to be species-specific. More than 500 different structures
of siderophores have been identified among fungi, bacteria, and other microorganisms [35].
Some siderophores are endogenous in the pathogens, while others are secreted outside
the pathogen. Aspergillus fumigatus secretes two siderophores—fusarinine C and triacetyl-
fusarinine C—in addition to two endogenous siderophores it possesses [36,37]. In fungi,
siderophore–iron transporters in the fungal membrane transport secreted siderophores
which have chelated iron from the host into the fungal cell. Siderophore–iron transporters
occur in most fungal species, and this transporter is only found in fungi [37,38]. These
factors make secreted siderophores a good substrate to target fungi. Siderophores have
been labelled with PET radioisotopes, which are analogues of iron: Gallium 68 (68Ga) with
a half-life of 68 min, and Zirconium 89 (89Zr) with a half-life of 78 h [39,40]. PET imaging
with 68Ga has gained prominence recently with GMP-grade Germanium 68/Gallium 68
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generator availability [41]. The short half-life of 68 min gives 68Ga favourable radiation bur-
den characteristics compared to the longer-lived 89Zr. The PET tracers 68Ga or 89Zr as iron
analogues are chelated with siderophores as a complex and injected into the patient. The
siderophore–iron analogue complex is transported into the fungi by the siderophore–iron
transporters and allow the fungi to be imaged. These labelled siderophores demonstrated
a high uptake in Aspergillus fumigatus-infected lungs with high target to nontarget ratio
in rodent models. The potential translation of radiolabelled siderophores to the clinic is
limited by the differences in uptake among other fungal and bacterial species. There are
research studies ongoing to modify siderophores, to make them more acceptable as a PET
agent for infection [40,42].

2.2.2. PET Labelled Antibodies

Antibodies produced by B lymphocytes are part of the host immune responses against
fungi. The specific contribution of antibodies to the host defence against fungi has been a
contentious issue. Earlier investigators suggested antibodies were not necessary for host
defence against fungi in humans [43,44]. The use of monoclonal antibodies has helped
advance our understanding of antibodies’ vital role in different fungal species [45–48]. The
use of an agent that targets a specific molecule present on the pathogen in a similar way to
a “magic bullet” offers a desirable method for targeting microbes or molecules expressed
in pathophysiologic processes in the body. The combination of PET labels to antibodies
targeting specific molecules in patients is referred to as immunoPET. ImmunoPET has been
used extensively in oncological applications. There is an increased interest in the use of
immunoPET in infectious diseases [49]. A monoclonal antibody JF5 has been developed
and labelled with Copper 64 (64Cu) with a half-life of 12.7 h [50,51]. The longer half-life of
64Cu (compared with 18F) is important, as antibodies and high molecular weight molecules
require a longer time to clear from the plasma. A more efficient way of producing 64Cu from
a solid rather than liquid target has made the use of 64Cu more favourable [52]. The JF5
radiolabel can differentiate actively growing hyphae of Aspergillus sp. from inactive spores.
JF5 binds to galactofuranose glycoprotein, which is expressed on the hyphae in medically
important species of Aspergillus. Both the murine antibody and humanised antibody are
currently available [50,53,54]. There is no non-specific binding of JF5 to mammalian tissues
as the epitope β1,5-galactofuranose is not present in mammalian tissues. The 64Cu-JF5
showed good tracer accumulation in the lungs in invasive pulmonary aspergillosis in an
animal model [50].

2.2.3. PET Labelled Antifungal Agents

Antifungal agents help combat fungal infections when the host defence is unable to
clear invading fungi resulting in an infection. The antifungal agent fluconazole has been
labelled with 18F. Fluconazole is a synthetic azole that inhibits ergosterol biosynthesis.
Ergosterol is a lipid that is required in the synthesis of the fungal cell membrane. 18F-
fluconazole was studied in preclinical animal models of candidiasis. Unfortunately, the
tracer showed high renal uptake, and the uptake in tissues with fungal infection was not
impressive [55–57].

Recently, the antifungal drug amphotericin B has been labelled with 68Ga in an in vitro
model. This radiotracer showed good accumulation in inserts with clinically important
moulds such as Aspergillus fumigatus, and Rhizopus arrhizus. These results must be tested in
animal models of fungal infections [58].

2.2.4. Gallium 68 (68Ga) Citrate
68Ga citrate is a PET tracer that has been evaluated in infection and inflammation [59,60].

Its corresponding SPECT tracer Gallium (67Ga) citrate was used for inflammation and infection
in the past, but that role has been largely supplanted by 18F-FDG. Gallium is an iron analogue,
and the body iron binding proteins in the body handle it in a similar way to iron [61]. The role
of iron and host nutritional immunity has been earlier described. Although the SPECT tracer
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(67Ga citrate) was used in fungal infections, especially in HIV patients in the past, 68Ga citrate is
yet to be evaluated in fungal infections. One area it may potentially play a role in is intracranial
lesions, where the accumulation of 18F-FDG in the brain may limit detection of intracranial
pathology with 18F-FDG. In Mycobacterium tuberculosis, 68Ga citrate showed better lesion
detection of intracranial lesions, due to the absence of tracer accumulation in the brain [62].
Moreover, studies have suggested 68Ga citrate is less likely to accumulate in post-infective
lesions after treatment of the different infections [62–64]. Large multi-centred prospective
studies are needed to investigate the use of 68Ga citrate in fungi for these indications.

2.2.5. PET Labelled White Blood Cells

As part of the host response to fungi, cytokines attract white blood cells to the site
of infection in the tissues. Radiolabelled white blood cell imaging using SPECT tracers is
the only nuclear medicine imaging method that is able to differentiate between infection
and inflammation [65,66]. The labelling of white blood cells with radionuclides is by
drawing blood from the patient, separating white blood cells, radiolabelling and re-injecting
them [67]. White blood cells have also been labelled with 18F-FDG to take advantage of
the better resolution and image quantification of PET imaging [68]. However, the labelling
efficiency of 18F-FDG was not as good as the SPECT tracer imaging methods for labelling
white blood cells. Furthermore, the half-life of 18F (110 min) is not favourable for delayed
imaging, and normally it takes around 20 h for the white blood cells to accumulate at the
site of infection [69]. Therefore, white blood cells have been labelled with 64Cu and other
longer-lived PET radioisotopes to allow for delayed imaging with PET [70,71]. White blood
cell labelling has the disadvantage of the need to handle blood products. This carries the
risk of transmission of blood-borne infectious disease to the staff involved in the labelling
of the blood products and to the patients whose white cells are being labelled [72]. Again,
some patients with fungal infections may be critically ill or also suffer from neutropenia;
labelling of white blood cells under these circumstances may not be practical. Furthermore,
there have been concerns about the radiation damage to the lymphocytes by the labelled
radionuclide [72,73]. These factors have not allowed PET-labelled white blood cells to
supplant their counterpart in infection imaging. The difficulty of labelling white blood cells
in patients with fungal infection makes 18F-FDG PET the preferred method at this moment.

2.2.6. PET Labelled Antimicrobial Peptides

Antimicrobial peptides are small molecular weight cationic peptides released by
immune cells to kill fungi and other pathogens as part of the innate immune response [4].
Fragments of antimicrobial peptides such as ubiquicidin (29–41) have been labelled with
68Ga [74,75]. This peptide is expected to accumulate in Aspergillus fumigatus and Candida
albicans and bacteria similarly to its SPECT counterpart, as the mechanism of uptake is the
binding of the cationic peptide to the negative charge on the membrane of the microbe for
both PET and SPECT tracers. The antimicrobial peptides lack a tertiary structure; hence,
the different labelling methods, in the same way as the different methods used for labelling
PET or SPECT tracers, may affect their ability to target and image microorganisms. Studies
of the PET-labelled antimicrobial peptides are needed to see if it will be as efficient in fungi
as its SPECT counterpart.

3. SPECT Tracers in Inflammation

SPECT imaging is based on the detecting photons that usually arise from a radioisotope
nucleus by radioactive decay [76]. The most used radioisotope is Technetium 99 m (99mTc),
which emits a photon with 140 Kev energy and has a half-life of 6 h. Other frequently used
radioisotopes are Indium 111 (111In) and Gallium 67 (67Ga), with relatively longer half-lives
and a significantly higher radiation burden on patients when used for imaging.
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3.1. SPECT Labelled White Blood Cells

White blood cells labelled with technetium 99m (99mTc) (as 99mTc-hexamyethylpropyl
eneamine) or indium 111 (111In) (as 111In oxine) is the preferred nuclear imaging method of
choice to differentiate infection from inflammation [66]. There are relatively few reports of
the use of SPECT-labelled white cell studies in fungal infections [77]. Fungal infections have
been noted to cause false-negative white cell studies due to the relative low accumulation of
neutrophils compared to other infections [78]. Other agents such as 18F-FDG are preferred
in imaging fungal infections.

3.2. Anti-Granulocyte Imaging

Monoclonal anti-granulocyte antibodies against granulocytes have been labelled with
SPECT-based tracers to overcome the need to handle blood products [79–83]. There are
several monoclonal anti-granulocyte antibodies targeting different antigens. The antigens
include NCA, CD15, or CD66, which have been tested against infectious agents [76,79,80].
There are only two commercial agents available [66]. No large studies involving fungal
infections are available, but one study found the evaluation of pulmonary fungal disease,
especially pneumocystis, particularly disappointing [84].

3.3. 67Gallium Citrate
67Ga citrate is a SPECT tracer that has been used extensively in the past in infection

and inflammation. The tracer is taken up at infection sites by specific and nonspecific
mechanisms. The nonspecific mechanisms include the increased tracer uptake due to
increased vascularity because of inflammation. The specific mechanisms are related to
increased iron-binding proteins such as lactoferrin, transferrin and siderophores from the
pathogen. 67Ga has a half-life of 78.3 h. The tracer gives a high radiation burden compared
to 99mTc-based imaging, and after injection the patient must wait for about 24 h before
imaging. The tracer was also nonspecific accumulating in noninfective lesions [85]. These
factors led to the search for a better imaging agent, and 18F-FDG has taken over most of the
indications 67Ga previously had. 67Ga citrate was important in the evaluation of fungal
infection, especially in HIV patients [86,87].

3.4. SPECT Labelled Fluconazole

The antifungal drug fluconazole has been labelled with 99mTc. This tracer accumulated
in sites infected with Candida albicans in a mouse model [88,89]. It did not accumulate
in bacterial infection nor in sterile inflammation. The intensity of tracer accumulation
correlated to the live fungi in infected tissue, suggesting it will be useful in monitoring
antifungal therapy. The tracer performed poorly in imaging Aspergillus fumigatus. Further-
more, resistance to the antimicrobial may result in false positive results. The intensity of
uptake in affected tissue was not high [61]. The agent has not been translated to humans.

3.5. SPECT Labelled Amphotericin B

Amphotericin B is another antifungal agent labelled with 99mTc with good results in
in vitro studies. Amphotericin B binds irreversible to ergosterol, disrupting the integrity of
the cell wall leading to death. The radiolabelled tracer accumulated in Transwell inserts
infected with Aspergillus fumigatus and other relevant moulds, but not in a bacteria-infected
insert. Preclinical studies of this radiolabel in an animal model would move this tracer
nearer the potential clinical translation [62].

3.6. SPECT Labelled Antimicrobial Peptides

Many antimicrobial peptides have been investigated as potential agents to be labelled
with 99mTc, including ubiquicidin fragments and human lactoferrin peptide [88,90–92].
The ubiquicidin 29–41, a fragment of the antimicrobial peptide ubiquicidin, has been
labelled with 99mTc and been tested in animal model and humans. The labelled fragment
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accumulated in Candida albicans, Aspergillus fumigatus and bacteria. The tracer did not
accumulate in sterile inflammation or sites with killed bacteria.

3.7. SPECT Labelled Chitin Related Proteins

Chitin is an essential component of the fungal cell wall. In inflammation, different
molecular sizes and concentrations of chitin affect fungal immunity differently. Depend-
ing on the size, the chitin polymer may induce an inflammatory response or an anti-
inflammatory response, or may not evoke any inflammatory response [93]. SPECT-based
labels of a chitin-binding protein and the enzyme chitinase have been evaluated for imaging
fungal infections [94,95]. In a mouse model, 123I-chitinase showed accumulation in mice
tissue infected with fungus but not in bacteria or sterile inflammation. A chitin binding
protein (CBP21) also showed more accumulation in tissues infected fungi compared to
bacteria. The uptake by these agents was modest, with reported target to background ratio
higher than 1. No translation to humans of these agents has been done.

3.8. Other Radionuclides for Inflammation

Other components of the immune system, such as cytokines IL-1, IL-2, IL-8, and
platelet factor 4 have been investigated as agents for imaging infections. Some of these
have been unsuccessful due to biological activity of the radiolabel such as induction of
fever by IL-1. In some other cases, the labels have found applications in other causes of
inflammation but not in infection [96].

Some tissues or cells which are considered not to be a part of the immune system are
involved in the host response against fungi. These include epithelial tissues, platelets, and
endothelial cells. The epithelial cells express protein recognition receptors that recognise
fungi and initiate host response against fungi. The integrity of epithelial tissues is essential
in host defence against fungi. The lungs are the most common site of fungal infections;
radiolabelled agents can assess the respiratory epithelium’s integrity. In the past, the
respiratory epithelial transport has been assessed using inhaled epithelial lung clearance.
This procedure is not performed routinely in clinical practice [86].

4. Application of Radionuclide Therapy in Host Defence

The labelling methods that target the fungi can be exploited for radionuclide therapy of
these agents. Radionuclide therapy delivers damaging radiation to the infected or diseased
tissue with minimum damage to the surrounding normal tissue. The radionuclides used for
therapy are either alpha or beta particles. An alpha particle is an atomic nucleus containing
two protons and two neutrons (a helium nucleus) that is emitted during radioactive decay.
The charge of the two protons (2+) and the large size of the two proteins allows it to
deliver most of its energy, which often leads to damage to nucleic acid material and other
biomolecules killing or inhibiting the growth of cells including fungi in the vicinity of the
targeted tissue. Beta particles consist of electrons released with high kinetic energy and
also deposit the surrounding tissue. The relative lower mass and lesser charge of the beta
particle (1-) compared to the alpha particle lets them deposit less energy compared to alpha
particles, but the beta particles are able to deposit their energy over a longer range of tissue.
In targeting fungi, the radionuclide attached to the biomolecule for imaging is replaced with
a therapeutic radionuclide to target, kill or inhibit the growth of fungi [97]. The targeted
radionuclide therapy works on the principle that the side effects are minimal, as radioactive
agent is directly delivered to diseased tissues, sparing uninfected tissues. In cases of a
widespread infection, however, radionuclide therapy may cause bone marrow suppression,
as occurs in other radionuclide therapy, which can be predicted by the diagnostic scan [98].

There are relatively few antifungal agents available, and drug resistance against these
antifungal agents is a constant challenge. The use of radioimmunotherapy in fungal
infection has been tested in some animal models with encouraging results [99–103]. The
radionuclides such as Bismuth 213 (an alpha particle) or Rhenium 188 (a beta particle)
are examples of some of the labels used for therapy. Radioimmunotherapy is not subject
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to resistance in the same way as traditional drugs, and is independent of the patient’s
immune status. Monoclonal antibodies against antigens in all fungi such as β-glycan
would eliminate the need to develop or know the species before administering fungal
radioimmunotherapy [97].

5. Clinical Translation of Fungal Agents

Radionuclide imaging of fungal infection has been used for imaging different aspects
of the host response to fungi. PET imaging with 18F-FDG is the only radionuclide so far
that has a major role in imaging the host response to fungi with wide clinical acceptance.
Some promising agents are at various stages of production. Table 1 outlines the different
agents and whether they have been used in humans. The clinical usage and widespread
applicability depends not only on the success of the agents in imaging of fungal infections
but also on the demand, ease of preparation and widespread applicability. It is likely that
an imaging agent that can really distinguish between infection and inflammation and with
a broad spectrum activity against different pathogens may gain wider acceptance than the
specialised tracers which are limited to special centres [104].

Table 1. Tracers used in imaging fungal infection and whether they have been translated to humans.

Tracer [Ref] PET or SPECT
Imaging Label Used in Humans Aspect of Host Response

FDG [23–27] PET 18F Yes
Glucose utilisation for

energy-dependent processes of
inflammation

White blood cells
[65–71] Both 18F, 64Cu, 111In, 99mTc Yes Migration of white blood cells

to the site of infection

Monoclonal
anti-granulocytes

[76–78]
SPECT 99mTc Yes Migration to white blood cells

Antimicrobial peptides
[74,75,86,90–92] Both 99mTc, 68Ga Yes

The cationic peptide reacts
with the negative charge on

the fungi membrane. Release
by cells to kill fungi

Siderophores [39,40] SPECT 68Ga, 89Zr No
Traps iron for fungi to

overcome host nutritional
immunity

Monoclonal antibodies
against fungi PET 64Cu, 89Zr No Against an antigen JF5 in

Aspergillus fumigatus

Chitin proteins
[92,93] SPECT 123I, 99mTc No

Chitin has different effect on
host response depending on

the size

Fluconazole
[57,86,87] Both 99mTc, 68Ga No

Anti-fungal used to combat
fungi when host defence fails.
Affects ergosterol biosynthesis

Amphotericin
[58] Both 99mTc, 68Ga No Anti-fungal-irreversible bind

to ergosterol

6. Conclusions

The host defence mounted by the body against fungi affords the opportunity for
radionuclide imaging with important clinical applications. However, so far, only 18F-
FDG has widespread acceptance for clinical use in patients with fungal infections, for
detection, staging, and therapy evaluation. Other radionuclides have been evaluated only
preclinically, or are only used in small patient series. Large multi-centred prospective
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clinical trial must be performed to evaluate the role of these specific radionuclides in
imaging fungal infections.
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