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Ajmaline is an anti-arrhythmic drug that is used to unmask the type-1 Brugada syndrome

(BrS) electrocardiogram pattern to diagnose the syndrome. Thus, the disease is defined

at its core as a particular response to this or other drugs. Ajmaline is usually described as

a sodium-channel blocker, and most research into the mechanism of BrS has centered

around this idea that the sodium channel is somehow impaired in BrS, and thus the

genetics research has placed much emphasis on sodium channel gene mutations,

especially the gene SCN5A, to the point that it has even been suggested that only the

SCN5A gene should be screened in BrS patients. However, pathogenic rare variants in

SCN5A are identified in only 20–30% of cases, and recent data indicates that SCN5A

variants are actually, in many cases, prognostic rather than diagnostic, resulting in a more

severe phenotype. Furthermore, the misconception by some that ajmaline only influences

the sodium current is flawed, in that ajmaline actually acts additionally on potassium and

calcium currents, as well as mitochondria and metabolic pathways. Clinical studies have

implicated several candidate genes in BrS, encoding not only for sodium, potassium, and

calcium channel proteins, but also for signaling-related, scaffolding-related, sarcomeric,

and mitochondrial proteins. Thus, these proteins, as well as any proteins that act upon

them, could prove absolutely relevant in the mechanism of BrS.

Keywords: Brugada syndrome (BrS), ajmaline, arrhythmias, sudden cardiac death (SCD), sodium channel,

potassium channel, calcium channel, mitochondria

INTRODUCTION

Ajmaline is used as a pharmacologic test to diagnose Brugada syndrome (BrS) and identify people
who are at higher risk of developing life-threatening arrhythmias and sudden cardiac death. Many
patients are ultimately implanted with an implantable cardioverter-defibrillator that can save their
lives. The BrS is an inherited disease characterized by a coved-type ST-segment elevation in the right
precordial leads (V1-V3) on the electrocardiogram (ECG). The true prevalence of BrS is unknown,
since many people are asymptomatic. In fact, the syndrome may not even be suspected until an
incidence of cardiac arrest. Certain “trigger situations,” such as fever, drug use, or consumption
of alcohol or large meals can elicit the BrS ECG pattern (1). Since the systematic introduction
of sodium-channel blockers to screen for the syndrome, the diagnosis, and thus the perceived
incidence, of BrS has increased (2).
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Sodium channel blockers, such as ajmaline, flecainide, or
procainamide can be used to provoke the type-1 BrS ECG
pattern, which is said to affirmatively diagnose the syndrome (3,
4). Thus, the disease is defined at its core as a particular response
to these drugs. Some clinicians prefer the use of ajmaline, which
appears to have a lower false negative rate, due to its higher
sensitivity (5, 6). This higher sensitivity of ajmaline, compared
to flecainide, may be due to flecainide’s greater inhibition of
Ito, which then renders it less effective (5). Whole-cell patch
clamp experiments demonstrated a reduced Ito total charge
with an IC50 of 216 and 15.2µM for ajmaline and flecainide,
respectively, while sodium channel current was affected similarly
by both drugs, as suggested by equivalent changes in QRS
and PQ intervals (5). However, reports have cautioned about
ajmaline’s false positive rate, stating that a positive ajmaline test
does not always mean that a patient has BrS (7–10). In fact,
ajmaline metabolism is very complex (11) for several reasons
relating to the liver metabolism, kidney metabolism, plasma
proteins binding, and variability in the expression of ajmaline-
metabolizing enzymes (12). Ajmaline undergoes some major
metabolic pathways: mono- and di-hydroxylation of the benzene
ring with subsequent O-methylation, reduction of the C-21,
oxidation of both C-17 and C-21-hydroxyl function and N-
oxidation (13). Consequently, one of the major genes controlling
ajmaline metabolism is CYP2D6, encoding for a cytochrome C
component. Thus, it is not surprising that patients harboring
variants or even polymorphisms in the CYP2D6 gene might
display a different capability to metabolize ajmaline (14). To
date, more than 70 allelic variants of the CYP2D6 gene have
been reported, and altered CYP2D6 function has been associated
with both adverse drug reactions and reduced drug efficacy (15).
This is the main reason why poor metabolizer alleles can be
important as a possible cause of false positivity during ajmaline
challenge test.

Ajmaline challenges must be conducted in specialized centers
due to the potential development of life-threatening ventricular
arrhythmias, such as polymorphic ventricular tachycardia (VT)
or ventricular fibrillation (VF) (16–18). Ajmaline infusion should
be done carefully, stopping as soon as the result is positive or
when QRS broadens to ≥130% of baseline or frequent pre-
mature ventricular complexes occur (17, 19, 20).

Ajmaline is usually described as a sodium-channel blocker
(3), and most research into the mechanism of BrS has centered
around this idea that the sodium channel is somehow impaired
in BrS (21, 22), and thus the genetics research has placed much
emphasis on sodium channel gene mutations, especially the
gene SCN5A, whereas systematic studies on other genes are

Abbreviations:AP, action potential; BrS, Brugada syndrome; Ca2+, calcium; ECG,

electrocardiogram; HEK, human embryonic kidney; HERG, human ether a-go-go

related gene; ICa−L, L-type calcium current; IK, delayed rectifier potassium current;

IK1, inwardly rectifying potassium current; IK(ATP), ATP-sensitive potassium

current; IK,end, the current measured at the end of 300ms depolarizing pulse;

IKur, ultrarapid outward potassium current; INa, sodium current; Ito, transient

outward potassium current; K+, potassium; KATP, ATP-sensitive potassium

channel; Na+, sodium; NCX, sodium-calcium exchanger; NPA, N-propyl ajmaline,

a quaternary derivative of ajmaline; PVCs, pre-mature ventricular complexes;

RV, right ventricle; Vas, ventricular arrhythmias; VF, ventricular fibrillation; VT,

ventricular tachycardia.

lacking (23). The research up until this point has focused so
much on the SCN5A gene that it has even been suggested that
only the SCN5A gene should be screened in BrS patients (23),
something that has been hotly debated (24–26), as many argue
that research is needed to understand the possible role of several
other genes in this disease (27–32). However, pathogenic rare
variants in SCN5A are identified in only 20–30% of ajmaline-
positive cases (33–36), and recent data indicates that mutations
in SCN5A are actually, in many cases, prognostic rather than
diagnostic, resulting in a more severe phenotype (26, 35, 37–
39). Furthermore, the misconception by some that ajmaline
only influences the sodium current, and thus sodium channels
should be the only channels of interest in BrS, is flawed, in that
ajmaline actually acts additionally on potassium and calcium
currents, as well as mitochondria and metabolic pathways. Thus,
potassium channels, calcium channels, mitochondrial proteins,
and metabolic pathway proteins, or factors that act upon these
proteins, could prove absolutely relevant, as their function is
directly influenced by the very drug that is used to diagnose the
disease in the first place.

MULTIPLE BINDING SITES OF AJMALINE
ON Na+, K+, AND Ca2+ CHANNELS

Ajmaline has multiple sites of action, including sodium,
potassium, and calcium channels. Plant alkaloids, including
ajmaline, act on at least six receptor sites on voltage-gated Na+

channels (40). In single intact amphibian skeletal muscle fibers,
it appeared that ajmaline has multiple sites of action, including
the positively charged S4 voltage-sensing segment of Na+ and K+

channels (40). However, ajmaline also blocks channels that do not
have a voltage sensor (e.g., KATP) (40).

In human embryonic kidney (HEK) cells, ajmaline has an
inhibitory effect on human ether a-go-go related gene (HERG)
potassium channels in the open, but not in the closed states, and
probably binds at aromatic residues Tyr-652 and Phe-656 in the
channel pore cavity (41). The inhibitory effect was stronger at
higher frequencies (41). Ajmaline is an open channel inhibitor
at therapeutic concentrations of cardiac potassium KV1.5 and
KV4.3 channels, responsible for cardiac IKur and Ito current,
respectively (42). Ajmaline potently blocks glibenclamide-
sensitive K+ channels in Xenopus oocytes in a concentration-
dependent manner (43). There is an effect of ajmaline on the
inhibition of K+ outflow from rat liver mitochondria (44). In
rat right ventricular myocytes, the decreased amplitude and time
integral of Ito by ajmaline is dependent on concentration, but not
frequency or use (45). In rat right ventricular myocytes, ajmaline
blocks the transient outward potassium current (Ito) when the
channel is in the open state and there is fast recovery from the
block at resting voltage (45).

Whole cell patch clamp technique used to determine the
effect of ajmaline on action potential (AP) and ionic current
components in rat right ventricular myocytes demonstrated an
inhibitory effect on sodium current (INa), L-type calcium current
(ICa−L), transient outward potassium current (Ito), the current
measured at the end of 300ms depolarizing pulse (IK,end), and
ATP-sensitive potassium current [IK(ATP)] (46). The inhibition
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of INa causes both the decreased rate of rise of depolarizing
phase and the lowered amplitude of AP (46). Additionally,
Ito inhibition was responsible for AP prolongation after
ajmaline administration (46). In isolated guinea pig ventricular
cardiomyocytes, ajmaline suppressed calcium currents (ICa) in
a dose-dependent manner without affecting the steady-state
inactivation kinetics and the voltage dependency of the current-
voltage relationship, inhibited inwardly rectifying potassium
current (IK1), and decreased the delayed rectifier potassium
current (IK) without altering the activation or deactivation time
courses (47). A study recording intracellular action potentials
and transmural ECG in canine RV wedge preparations suggested
that combined sodium and calcium channel block may be more
effective than sodium channel block alone in unmasking the
BrS pattern (48). The study used terfenadine to block both
sodium and calcium current, which resulted in the loss of the
epicardial AP dome, ST segment elevation, phase 2 reentry, and
spontaneous polymorphic VT/VF (48). This effect of terfenadine
was normalized with 4-aminopyridine, which inhibits Ito (48).
The drugs flecainide, ajmaline, and procainamide alone did not
generate polymorphic VT, but they did so together with the
calcium channel blocker verapamil (48).

N-propyl ajmaline (NPA) is the quaternary derivative of
ajmaline. The permanently charged NPA and protonated
ajmaline both actmainly with open channels, while unprotonated
ajmaline acts mainly on inactivated Na+ channels in frog
myelinated fibers (49). In frog myelinated fibers, sodium and
potassium currents are inhibited by ajmaline and NPA, for
sodium in both directions, but for potassium, only the outward
potassium current, not the inward potassium current (49). The
location of the binding sites have been suggested to be in the
inner mouths of Na+ and K+ channels (49). In voltage clamp
experiments using frog nodes of Ranvier, the binding site for
NPA has been described to be located in the inner mouth of the
Na+ channels, and it becomes available to the charged blocker
(NPA) only after opening of the activation gate (50). NPA in
enzymatically isolated cells of adult rats inhibits INa due to a
voltage-dependent interaction with openNa+ channels, andNPA
has similar blocking effects on Na+ channels in myocardial cells
and nerve fibers (51).

GENETICS OF CHANNELS IMPLICATED
BY FUNCTIONAL STUDIES

Functional studies have identified several molecular targets of
ajmaline. Many of these molecular targets are encoded for by
genes that have been associated with BrS in clinical studies.
Table 1 lists the known molecular targets of ajmaline and their
related genes. Figure 1 shows a schematic of ajmaline targets in
the cell, as demonstrated by functional studies.

A Unique Role for Calcium:
Excitation-Contraction Coupling in
Brugada Syndrome
Calcium signaling is responsible for connecting the electrical
signaling of the cell to the mechanical force of contraction and
relaxation of the sarcomeric proteins. Thus, calcium imbalances

in the cell could result in alterations to the force production. In
porcine epicardial shavings, excitation failure by current-to-load
mismatch was shown to cause ST segment elevation modulated
by Ito and ICaL (54). A study by Biamino et al. demonstrated a
relaxing effect of ajmaline on vascular smoothmuscle using aortic
helical strips, attributing the effect possibly to a reduction in Ca2+

and probably Na+ conductance (55). In BrS patients, ajmaline
administration results in a decrease of right ventricular ejection
fraction and minimum principal strain in the right ventricular
outflow tract and right ventricular anterior wall (56, 57). In
fact, it has been previously suggested that the electromechanical
coupling in BrS, including calcium handling and sarcomeric
alterations, should be investigated (28, 57). Reduced intracellular
calcium, which may result in a reduction of force production, has
been proposed as a possible mechanism in BrS (8, 28, 58, 59).
Additionally, administration of pharmaceuticals that act on outer
cell membrane receptors can result in signaling changes within
the cell (60, 61). It would be interesting to see in future studies
whether ajmaline affects intracellular processes, such as signaling
pathways that lead to post-translational modifications, affecting
various proteins, such as those located in the sarcoplasmic
reticulum or the myofilaments.

GENETICS OF CHANNELS IMPLICATED
BY CLINICAL STUDIES

The genetics of BrS remains a hotly debated subject. More than
20 genes are currently included in diagnostic genetic testing
panels, previously reviewed in detail elsewhere (32), although the
significance of variants in all but the SCN5A gene are disputed,
since most studies to-date have focused on understanding better
variants in the SCN5A gene, while studies on the other genes
are generally lacking (23). However, pathogenic rare variants in
SCN5A are identified in only 20–30% of ajmaline-positive cases
(33–36), and recent data indicates that mutations in SCN5A
are actually, in many cases, prognostic rather than diagnostic,
resulting in a more severe phenotype (26, 35, 37–39). Several
important studies of other genes are now available, and more
are needed to better understand the mechanism of ajmaline in
provoking the type-1 BrS ECG pattern.

Sodium channel-related genes other than SCN5A that have
been previously implicated in BrS, and they include SCN10A,
SCN1B, SCN2B, SCN3B, SCN4B, RANGRF (MOG1), andGPD1L.
Potassium-related genes previously associated in BrS include
KCND2, KCND3, KCNE1, KCNE2, KCNE3, KCNE5, KCNH2,
KCNJ2, KCNJ5, KCNJ8, KCNQ1, ABCC9, and HCN4, while
calcium-related genes previously described in BrS include
CACNA1C, CACNA2D1, CACNB2, RYR2, and TRPM4 (32, 62).
In addition, the gene PKP2 has been associated with BrS, and
studies have shown a relationship between PKP2 and both
sodium and potassium channels. For example, in a study by
Cerrone et al., loss of PKP2 caused decreased INa and NaV1.5
(63). Hong et al. demonstrated an interaction between PKP2 and
KATP channels in rat heart (64).

Sarcomeric properties have been directly linked to
arrythmogenic sudden death (61, 65), and variants in
myofilament genes, including TPM1 and MYBPC3, have
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TABLE 1 | Known molecular targets of ajmaline and potential genes that they implicate.

Protein or current described in functional studies targeted by

ajmaline

Examples of genes that these targets implicate (52)

Sodium channel current (INa) (40, 46) SCN5A, SCN10A, SCN1B, SCN2B, SCN3B, SCN4A

Potassium channel current (IK ) (46) KCNA4, KCNE4

ATP-sensitive potassium channel (KATP) (40, 46) ABCC8, ABCC9, KCNJ1, KCNJ5, KCNJ8, KCNJ11

human ether a-go-go related gene (HERG) potassium channels (41) hERG (KCNH2)

KV1.5 channels, responsible for cardiac IKur (42) KCNA5

K+ outflow from mitochondria (mitoKATP ) (44) Formed by 5 components (53):

• Mitochondrial ATP-binding cassette protein 1 (mABC1): ABCB8

• Phosphate carrier: MPCD, SLC34A1, SLC17A1, SLC17A7, SLC17A6, SLC25A26,

SLC25A3, SLC25A25, SLC37A4, SLC25A23

• Adenine nucleotide translocator: SLC25A4, SLC25A5, SLC25A6, SLC25A31, SLC25A6

• ATP synthase: ATP5PF, ATP5F1C, ATP5F1B, ATP5F1D, ATP5F1A, ATP5ME, MC5DN2,

ATP5PO, ATP5G1, ATP5G2

• Succinate Dehydrogenase: SDHC, SDHB, SDHA, SDHD, SDHAF2, SDHAF4,

SDHAF1 (2021)

KV4.3 channels and outward potassium current (Ito) (42, 45) KCND3

L-type calcium current (ICa−L ) (46) CACNA1C, CACNB2

inwardly rectifying potassium current (IK1) (47) KCNJ2, KCNJ5, KCNJ8

delayed rectifier potassium current (IK ) (47) KCNS3, KCNS1, KCNS2

FIGURE 1 | Molecular targets of ajmaline as suggested by functional studies indicated by red arrows.

been found in BrS patients (27, 66, 67). Several other genes,
encoding signaling and scaffolding proteins, including AKAP9,

ANK2, CASQ2, CAV3, CBL, DSC2, DSG2, DSP, FGF12, HEY2,
JUP, LMNA, LRRC10, NOS1AP, SEMA3A, SLMAP, SNTA1, and
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TMEM43, have been suggested as candidate genes (32, 62, 68).
The function of proteins that are affected by protein kinase A
or reactive oxygen species (ROS), such as the protein products
of many of the genes listed above, may be altered by changes
in mitochondrial function, which is responsible for ATP and
ROS production (26). In fact, studies have implicated a direct
role for mitochondria in BrS, specifically, severe cases have been
associated with a particular mitochondrial DNA (mtDNA) allelic
combination and a high number of mtDNA single nucleotide
polymorphisms (69, 70), and a role for mitochondrial transfer
RNA genes has been suggested (71). Thus, in addition to SCN5A,
various other genes have been suggested to have a role in
BrS, including other sodium channel-related genes, as well as
several potassium-related, calcium-related, signaling-related,
scaffolding-related, sarcomeric, and mitochondrial genes,
consistent with the identified molecular targets of the ajmaline
drug used to unmask and diagnosis the syndrome.

Although it is generally agreed that variants in the SCN5A
gene are involved in BrS, it is important to think of variants
even within this gene as individual variants with specific effects,
rather than thinking of all SCN5A variants collectively, as some
may be benign, while others pathogenic (26). Along these lines,
several studies have sought to understand the effect of specific
SCN5A variants (37, 72–80). It has been recently suggested that
variants in the SCN5A gene may actually be prognostic, rather
than diagnostic (35, 38, 39).

Studies to better understand the role of variants in each of
the above-mentioned genes will be an important area of future
research. A recent study by Di Mauro et al. demonstrated an
important role for CACNA1C (31), highlighting the importance
of functional studies of genes that may be involved in BrS, but
for which we currently lack the proof (81). Recent studies have
also focused on the roles of the genes SCN10A and HEY2 in BrS
(29, 82). However, much work remains to be done before we can
understand the role of each of the protein products of these genes,
as well as the role of the proteins that signal to them and alter
their function. Currently, the understanding of genetics in BrS
is in its infancy, and genetic testing alone should not be used
for diagnostic purposes, but rather, diagnosis of BrS should be
based upon an arrhythmological examination by a specialized
cardiologist (26). The presence of a variant in the SCN5A gene,
however, may be relevant for prognostic purposes (35, 38).

LIMITATIONS AND FUTURE STUDIES

Most of the studies to better understand the mechanism
of ajmaline have been performed in cellular models using

non-cardiomyocyte cell types or in animal models that are
sometimes not even mammalian. While these models give us

some insight, each model comes with its own set of advantages
and limitations (83). The functional studies performed to-
date indicate that ajmaline does not act solely on sodium
channels and suggests that clinical genetic testing could be
expanded for research purposes to include, for example,
genes that encode for potassium and calcium channels.
Thus, the mechanism of BrS could be researched from also
this clinical direction. Regarding future functional studies, it
would be interesting to quantify ajmaline signaling to, and
effects on, particular sodium, potassium, and calcium channels
and the resulting effect of sodium, potassium, and calcium
handling, to ultimately understand the mechanism behind the
altered ECG.

CONCLUSION

The misconception by some that ajmaline only influences the
sodium current, and thus sodium channels should be the
only channels of interest in BrS, is flawed, in that ajmaline
actually acts additionally on potassium and calcium currents, as
well as mitochondria and metabolic pathways. Clinical studies
have implicated several candidate genes in BrS, encoding not
only for sodium, potassium, and calcium channel proteins, but
also for signaling-related, scaffolding-related, sarcomeric, and
mitochondrial proteins. Thus, these proteins, as well as any
proteins that act upon them, could prove absolutely relevant in
the mechanism of BrS.
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