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Abstract
The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shore-

lines, including salt marshes with persistent heavy oiling that required intensive shoreline

“cleanup” treatment. Oiled marsh treatment involves a delicate balance among: removing

oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery,

and not causing further ecological damage with treatment. To examine the effectiveness

and ecological effects of treatment during the emergency response, oiling characteristics

and ecological parameters were compared over two years among heavily oiled test plots

subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled

control), as well as adjacent reference conditions. An additional experiment compared

areas with and without vegetation planting following treatment. Negative effects of persis-

tent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were

observed. In areas without treatment, oiling conditions and negative effects for most marsh

parameters did not considerably improve over two years. Both manual and mechanical

treatment were effective at improving oiling conditions and vegetation characteristics,

beginning the recovery process, though recovery was not complete by two years. Mechani-

cal treatment had additional negative effects of mixing oil into the marsh soils and further

accelerating erosion. Manual treatment appeared to strike the right balance between

improving oiling and habitat conditions while not causing additional detrimental effects.

However, even with these improvements, marsh periwinkle snails showed minimal signs of

recovery through two years, suggesting that some ecosystem components may lag vegeta-

tion recovery. Planting following treatment quickened vegetation recovery and reduced

shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend

manual treatment followed by planting. We caution against the use of intensive treatment

methods with lesser marsh oiling. Oiled controls (no treatment “set-asides”) are essential
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for judging marsh treatment effectiveness and ecological effects; we recommend their use

when applying intensive treatment methods.

Introduction
The Deepwater Horizon oil spill resulted in the oiling of 796 kilometers (km) of coastal marsh
shorelines according to Shoreline Cleanup Assessment Technique (SCAT) surveys during the
emergency response [1]. Of this total, 135 km of shoreline were described as heavy marsh oil-
ing, based on a combination of oiling width across the shore, oiling percent cover, and oil
thickness [1]. Persistent heavy oiling was most widespread in salt marshes in northern Bara-
taria Bay, Louisiana, in marshes dominated primarily by Spartina alterniflora, and to a lesser
extent by Juncus roemerianus [1–4]. Due to the degree and nature of oiling in this area, typical
low-intensity “cleanup” treatments, including use of sorbents and low-pressure water flushing,
were not effective for the most heavily oiled marshes [2], presenting continuing oil remobiliza-
tion and exposure risks for adjacent habitats and wildlife (see [5] for an overview of oiled
marsh treatment methods). In addition, due to the degree of heavy oiling, and experience from
prior spills with similar oiling, there was concern that the long-term recovery of these marshes
could be at risk without treatment, due primarily to the presence of thick emulsified oil layers,
which can be very slow to degrade in coastal wetland environments [5–8]. At the same time,
there was the competing concern that aggressive oil removal, such as manual or mechanical
cutting, raking, or scraping, could cause further marsh damage, delaying or limiting marsh
recovery, as has often been observed following oil spills [5,9–14]. Due to these multiple con-
cerns, we conducted field experiments to evaluate treatment options prior to wider-scale treat-
ment application [2]. The treatment tests were conducted on heavily oiled marsh shoreline
centrally located in the affected area, near Bay Jimmy in northern Barataria Bay (Fig 1;
29.443899° N, 89.887604° W). The tests and subsequent monitoring led to the development
and adaptive improvements of operational-scale Shoreline Treatment Recommendations
(STRs) implemented under the emergency spill response across 11 km of shoreline in northern
Barataria Bay [2] and in smaller areas with similar oiling in Terrebonne-Timbalier Bay and
Biloxi Marsh (Chandeleur Sound), Louisiana [1].

This paper examined the effectiveness and ecological effects of different oiled marsh
“cleanup” treatment methods used in the treatment test area. Oiling characteristics and several
ecological parameters were compared among manual treatment, mechanical treatment, natural
recovery, and adjacent reference conditions over two years following initial oil impact. Manual
treatment was conducted by small crews using hand tools to remove oil and oiled debris to the
degree possible and expose residual oiling to natural degradation processes. Mechanical treat-
ment used mechanized tools aimed towards the same goals as manual treatment with antici-
pated increases in efficiency and fewer personnel in the marsh. Natural recovery involved “no
treatment”, serving as both an emergency response option frequently used for oiled marshes
and as an oiled control, to allow more meaningful evaluation of active treatment methods. Col-
lectively, the manual, mechanical, and no treatment sampling areas comprised the “heavily
oiled plots” as compared to the adjacent reference plots which had lighter to no oiling, intact
vegetation structure, and no treatment. The reference plots represented target conditions for
defining recovery in the heavily oiled plots.

Ecological comparisons examined the marsh vegetation, which defines the salt marsh and
serves as the foundation species for this habitat. Salt marsh vegetation can be variably affected by
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oil spills, but, impacts can be more severe, and recovery times longer, when the majority of the
plant stems and leaves are coated with oil and the marsh substrate is also heavily oiled [5,15], as
was the case during our study. See Michel and Rutherford (2014) [5] and Mendelssohn et al.
(2012) [15] for recent reviews of marsh vegetation impacts and recovery following oil spills. Eco-
logical comparisons also included two common intertidal macroinvertebrates, marsh periwin-
kles (Littoraria irrorata) and fiddler crabs (Uca spp.). These taxa are also important to marsh
structure and function, and we were interested in looking at these species so that our definitions
of impact and recovery were not limited to just the vegetation, as is commonly the case during
emergency response. Marsh periwinkles can be affected by oil spills, with impacts including
increased mortality, reduced density, reduced recruitment, and altered size distributions [16–
18]. Oil spill impacts to fiddler crabs can include increased mortality, reduced burrow density,
impaired locomotion and behavior, abnormal burrow construction, changes in sex ratio, and
reduced juvenile settlement [19–22]. We also examined marsh shoreline retreat (erosion) to
determine whether oiling or treatment influenced shoreline erosion and marsh loss, which are
major concerns in coastal Louisiana [23–24]. Finally, in an additional experiment, we compared
areas with and without vegetation planting following mechanical treatment, examining the influ-
ence of planting on vegetation recovery and shoreline retreat.

Our study provided a field experiment during a spill of national significance, examining
existing spill response guidance from prior case histories. This guidance was best summarized
by Baker (1999) [13] for salt marshes with thick oil deposits (see also [5,11]):

“Because neither natural cleanup nor aggressive treatment provides the best environmental
benefit, it seems that the greatest benefit would result from a moderate level of clean-up—
sufficient to remove most of the bulk oil, but gentle enough to leave the surface of the shore

Fig 1. Study area map, including plot locations by oiling/treatment class.

doi:10.1371/journal.pone.0132324.g001
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intact and to avoid churning oil into underlying sediments. This can be achieved by using
small crews and avoiding the use of heavy machinery as far as possible. The appearance of
the shore after such treatment is likely to be somewhat oily and therefore not optimal from
an aesthetic viewpoint, but there are numerous examples of biological recovery taking place
in the presence of weathered oil remnants. If plants were smothered to death before removal
of the bulk oil, replanting schemes can be helpful.”

Our work also supplements earlier and ongoing studies of Deepwater Horizon oil spill
impacts and recovery in oiled marshes [25–33], adding a focused consideration of shoreline
treatment effectiveness and effects. In addition, only a limited number of field studies and case
histories have evaluated vegetation planting in oiled marshes following spills [10,16,34–35].
Our study further evaluated whether planting vegetation would be an effective strategy to
enhance vegetation recovery and marsh stability following oil impacts and intensive shoreline
treatments.

Our overall study objective was to examine and compare marsh recovery under heavy oiling
conditions with and without different shoreline treatments over the first two years following
oil impact. The treatment tests and subsequent monitoring informed the emergency spill
response [2], serving as another example of “science in support of the Deepwater Horizon
response” [36]. Our study was also closely aligned with the types of emergency response studies
called for by Peterson et al. (2012) [37], which are often lacking during spills. Sharing this
information will be useful for other scientific endeavors associated with the Deepwater Horizon
spill, as well as for oil spill planning, emergency response, damage assessment, and restoration
for future spills.

Methods

Treatments and Plot Set-up
Manual treatment involved raking, cutting, and removal of oiled wrack, oiled vegetation mats,
and underlying oil on the substrate by small crews using hand tools (see [2] for photos of man-
ual treatment and additional details). Hand crews used walking boards to minimize foot traffic
on the marsh surface. The manual treatments formed the basis of the STRs. Mechanical treat-
ment involved mechanized grappling to remove oiled wrack and mechanized raking, cutting,
and scraping to remove or reduce oiled vegetation mats and oil on the substrate, followed by
additional manual treatment and loose natural sorbent application. The mechanical treatments
were applied using long-reach hydraulic arms mounted on shallow-draft barges and large air-
boats stationed just seaward of the marsh shoreline (see [2] for photos of mechanical treatment
and additional details). The natural recovery (no treatment, oiled control) and reference plots
were not treated.

Sampling plots were ~50 square meters (m2) each, spanning the width of heavy oiling across
shore. The manual treatment plots (5 replicates) and no treatment plots (9 replicates) were ran-
domly established within the continuous heavy oiling band during October to December 2010.
The manual treatments were applied in December 2010. The no treatment plots were left
untreated for the duration of the study. The no treatment plots represented the only compara-
bly oiled sites in the study area where shoreline treatment was not applied. The mechanical
treatment plots (5 replicates) were randomly established in areas that received operational-
scale mechanical treatments in May-June 2011 under the emergency response. The reference
plots (5 replicates) were randomly located along the nearest contiguous and comparable sec-
tion of shoreline in the study area (with minor to no oiling during the treatment tests).
Although it would have been desirable to have reference plots randomly interspersed among
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the heavily oiled and variously treated plots, this was impossible due to the distribution of
heavy oiling. It would also have been desirable to apply the manual and mechanical shoreline
treatments at the same time, however, this was impossible as this work was part of an on-going
emergency response, and the mechanical treatment methods were developed and applied at a
later time (described above) by the emergency response organization. The time difference was
taken into account when interpreting the data.

As part of a separate experiment, planting of S. alterniflora was conducted following the
operational mechanical treatments. For the planting experiment, ~20 m2 plots were randomly
established within the mechanically treated areas during July-August 2011 [38] (following
mechanical treatment in May-June 2011, as described above). Both planted and unplanted
(control) plots were randomly assigned (5 replicates each). For the planting experiment, both
the planted and control plots were set back from the seaward marsh edge by 4.5 m at the time
they were installed, so that the plantings would have time to establish prior to encountering
shoreline retreat. Individual bare root S. alterniflora stems were planted by hand, using a trans-
planted S. alterniflora variety propagated from wild stocks native to Bay Jimmy. Fifty-five
stems were planted approximately 45 centimeters (cm) apart along five rows: four rows run-
ning shore normal spaced on 90 cm centers, and the fifth row running parallel to shore along
the interior or “landward” edge of the plots (resulting in a planting density of 2–3 stems m-2).
Planting was completed in late summer and early fall 2011. No fertilizer was used during plant-
ing. Naturally recruiting aboveground vegetation other than S. alterniflora was trimmed by
hand during planting and subsequently in planted areas to limit competition with planted
material. The control areas were trimmed as well for consistency (though minimal trimming
was needed overall).

Oiling Conditions
Multiple pre-treatment oiling assessments were conducted across the study area during June-
December 2010. The earliest pre-treatment oiling assessments were SCAT surveys spanning
the study area and surrounding region. Later pre-treatment assessments were conducted at
plot level. Where assessments were conducted by multiple personnel near the onset of the
study, observations from the longest-term participant were given priority, for consistency and
continuity with the post-treatment assessments. Mechanical treatment plots were not yet estab-
lished during the pre-treatment assessments. However, each future mechanical plot fell
between two existing plots. After reviewing the oiling assessment data, as well as overlapping
plot photographs depicting oiling conditions, we determined that it was appropriate to estimate
pre-treatment oiling values in the mechanical plots by averaging the two nearest pre-existing
plots on either side. Post-treatment oiling assessments were conducted in September 2011 and
2012 for all the plots. Surface and subsurface oiling descriptions were based on SCAT methods
applied individually to each plot, including estimates of oiling width across shore, oil percent
cover (%), oil thickness, and oil character across the entire plot [39]. Oiling assessments
included at least three shovel test pits per plot to measure oil thickness, assist in examining oil
on the marsh substrate beneath the oiled vegetation mats, and to describe subsurface oiling.

Subsurface soil sampling was conducted during July-August 2011 and September 2012. Soil
samples were collected using 15 cm diameter cores taken to 10 cm depth, specifically excluding
oiled vegetation debris and oil on the marsh surface, which was carefully scraped aside where
necessary prior to sampling. Therefore, our oil chemistry results represent oil concentrations
in the subsurface soils (not oil on the marsh surface). One soil core was collected from the
approximate center of each plot. Total polycyclic aromatic hydrocarbons (tPAH) in marsh
soils were determined using GC/MS-SIM (gas chromatography/mass spectrometry in selective
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ion monitoring mode) based on EPAMethod 8270D [40]. TPAH included the sum of 43–45
PAHs, including alkylated homologues, presented as mg/kg.

Ecological Parameters
Ecological sampling was conducted primarily in September 2011 and 2012 (vegetation sam-
pling in the planting experiment was conducted in July 2012). Vegetation percent cover (%)
was estimated visually across each plot in total and for each plant species observed. Marsh peri-
winkles and fiddler crab burrows were counted in three 0.25 m2 quadrats along the approxi-
mate centerline of each plot, with one quadrat each located near the seaward marsh edge (~1.5
m from edge), near the center of the plot, and near the landward extent of the plot. Data were
converted to m-2 basis for analysis. In 2012, periwinkle counts included careful searches for the
smallest juvenile snails hidden between the vegetation leaf sheaths and stems or in rolled leaves.
All marsh periwinkles recorded in the quadrats in 2012 were measured using digital calipers to
determine total shell length to the nearest 1 millimeter (mm). Shell length data were used to
compare size frequency histograms among treatments, including periwinkle life-history stages
based on shell length; defined as juveniles (<6 mm), sub-adults (6–13 mm), and adults (>13
mm) (after [41–42]). Fiddler crab species composition was determined by collecting fiddler
crabs on the marsh surface and from burrow entrances within each plot to make species identi-
fications. A maximum of 10 fiddler crabs were captured and identified to species for each plot.

Shoreline retreat measurements were made using the plot stakes established during plot set-
up. Stakes were placed at the seaward edge of the marsh platform (defined by an erosional
scarp) and at a back stake along both sides of each plot. Stake positions were recorded using
post-processed differentially corrected Global Positioning System (GPS) locations (±10 cm),
and these positions were used to create digital cross-shore transects via a Geographic Informa-
tion System (GIS) (two transects per plot). Back stake locations were confirmed during each
sampling period by GPS and changes in the location of the seaward marsh edge (erosional
scarp) were re-staked and recorded via GPS along the digital transects. During initial set-up
and subsequent annual sampling (November 2011 and September 2012), the distance between
the back stakes and the stakes at the seaward marsh edge were directly measured using a tape
measure. When stakes were missing, distance measurements made in the field to previously
recorded locations using GPS were used in lieu of tape measurements. Methods were the same
for the planting plots; however, as these plots were set back from the marsh edge, transect mea-
surements extended beyond the plot stakes to the seaward marsh edge. The differences in
cross-shore distances between the back stake and seaward marsh edge in each subsequent year
were averaged across the two transects per plot. The annual shoreline retreat rate was calcu-
lated by dividing the shoreline retreat distance by the number of days between measurements
then multiplying by 365 days, expressed as meters per year (m yr-1).

Data Analysis and Availability
Repeated measures ANOVA was used for all data collected in both 2011 and 2012. For data
collected in only a single year, ANOVA with Tukey HSD comparisons, or t-tests, were used
depending on the number of classes being compared. We were primarily focused on differences
among oiling/treatment classes over the duration of the study; however, we also report p-values
for the effects of year and the interaction of oiling/treatment class and year. We defined
p� 0.05 as indicating statistical significance. We report all p-values to two decimal places. In
cases where p = 0.00 due to rounding, we report p< 0.01. Because replication was modest and
we wanted to be conservative in terms of not falsely dismissing potential oiling and treatment
effects or interactions, we considered p� 0.10 as potentially significant (when p> 0.05). SPSS
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statistical software (version 22) was used for all analyses. Our data are publically available on
NOAA’s Deepwater Horizon Environmental Response Management Application (ERMA),
http://gomex.erma.noaa.gov/erma.html (see the “NOAA Treatment Testing and Set-Asides
Study” files under the “Response Sampling and Monitoring” folder).

Ethics Statement
Authorization to conduct the treatment tests and study was provided by the Deepwater Hori-
zon Unified Command (U.S. Coast Guard, State of Louisiana, and BP) and the Regional
Response Team (RRT) under the Oil Pollution Act of 1990 and the Deepwater Horizon emer-
gency response [2]. Operational shoreline treatments and maintenance and monitoring of the
test plots and no treatment “set-asides” were authorized by STRs S3-045 and S4-032 (including
variances and revisions) issued by the Unified Command, serving as both work plans and per-
mits [2]. All subsequent research was conducted in coordination with the Unified Command
and emergency response. The study area is privately owned; access permits were obtained from
the landowner prior to conducting all work. No protected species were sampled. Invertebrate
animals were held briefly in the field for identification and size measurements and were
released unharmed into the areas from which they were collected at the completion of sam-
pling. Efforts were made to minimize further habitat disturbance during sampling, mainly by
using non-destructive methods, limiting the number of personnel and foot traffic in the marsh,
and avoiding cross-contamination of sampling areas.

Results and Discussion

Pre-Treatment Oiling Conditions
Initial heavy oiling in northern Barataria Bay marshes occurred mainly in June 2010. The oil
came ashore primarily as emulsified oil (an oil and water emulsion, also referred to as
“mousse”) [2]. Floating oil and gross oiling on shorelines may have resulted in repetitive marsh
oiling through August 2010, including the effects of tropical storms on oil remobilization and
spreading. Pre-treatment oiling conditions were very similar and continuous across the heavily
oiled test area (Fig 2 and S1 and S2 Figs, S1 Table, and following text). Oiling conditions were
defined as two distinct oiling “zones” across the heavily oiled area. The first zone included a
1–3 m wide oiling band on the seaward marsh edge consisting of exposed surface oil residue (a
solid, semi-cohesive mixture of oil and sediments) with 50–100% oil cover and ~1 cm oil thick-
ness. The top layer of the surface oil residue had a dry, crusty consistency, including thin algal
mats, a veneer of fine clay sediments, and surface cracking. All the vegetation in this zone died
and sloughed off leaving only short vegetation stubble or no remnant vegetation.

The second oiling zone was contiguous with the first, extending further into the marsh. This
zone included a 5–10 m wide band of heavily oiled vegetation mats and oiled wrack overlying a
thick (>1 cm) layer of emulsified oil on the marsh substrate (Fig 2b and 2c). The oiled vegetation
mats consisted of dead, laid over, and rooted marsh vegetation with a continuous oil coat of
tarry consistency. Surviving marsh vegetation was absent or very limited in this zone. SCAT
ground surveys conducted shortly after the oil came ashore mapped the heavily oiled test area as
a single unit of comparable shoreline oiling with 95–100% surface oil cover. In late 2010, pre-
treatment plot level assessments indicated 88% surface oil cover (and 87% oiled vegetation mat
cover) across the heavily oiled plots, with no differences among treatment classes (S1 and S2
Figs). The emulsified surface oil layer had a typical thickness of 2–3 cm. Shoreline treatments
focused on this second oiling zone, and consisted of removing the oiled vegetation mats and
wrack and as much of the emulsified oil layer as possible, exposing the remaining surface oil to
natural weathering and degradation processes, and minimizing the removal of marsh substrate.
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The adjacent reference area was also oiled in part, but to a much lesser degree than the treat-
ment test area. Vegetation in the reference area was not laid over or killed by the oil. As of
December 2010, when the reference plots were established, the marsh vegetation had no visual
signs of oiling and appeared dense and healthy at the seaward marsh edge and across all the ref-
erence plots. Two of the reference plots had no visible oiling on the marsh substrate, while
three of the reference plots had substrate oiling consisting of small patches of surface oil residue
at the seaward marsh edge. This oiling was ~0.5 m wide with 1–10% oil cover and ~0.3 cm oil
thickness. No oiling was observed in the interior of the reference plots (there was no second oil-
ing zone as described for the heavily oiled plots). The oiling levels observed in the reference
plots during this study would be classified as “no oil observed” to light oiling according to
SCAT methods [1].

Post-Treatment Oiling Conditions
Oiled vegetation mat cover in the no treatment plots remained relatively high and distinct
from the treated plots which had little to no mat presence following treatment (Fig 3, S1

Fig 2. Pre-treatment oiling conditions. (A) Aerial view of heavy oiling distribution during plot set-up and adjacent reference area (shoreline at top right), (B)
heavily oiled vegetation mat at plot-scale, (C) test pit depicting thick layer of emulsified oil (orange) on the marsh surface below the oiled vegetation mat, (D)
reference plot for comparison.

doi:10.1371/journal.pone.0132324.g002
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Table). One plot each for the manual and mechanical treatments had a narrow zone of oiled
vegetation mat near the landward extent of the plot that was missed during treatment because
it was buried and not visible. These areas were subsequently unburied by natural processes,
and so were visible and recorded during the next sampling event, explaining the apparent
“increase” in oiled vegetation mat cover for the mechanical treatment plots in 2012 (a mat was
buried and not visible in 2011, but became unburied and was observed in 2012).

Oil cover on the soil surface remained well above reference values for the heavily oiled plots,
regardless of treatment (Fig 4). The manual and mechanical treatment plots had similar surface
oil cover, and both had less surface oil cover than the no treatment plots, indicating an
improvement in surface oiling conditions with treatment. In addition, both manual and
mechanical treatments converted the dominant oiling character in 100% of the treated plots
from emulsified oil to a more weathered surface oil residue, whereas the primary surface oiling
type in all the no treatment plots continued to be emulsified oil, remaining unchanged through
2012. The time difference between manual and mechanical treatment did not appear to affect
surface oiling characteristics, probably due to the heavy and persistent oiling conditions and
slow natural degradation processes associated with thick oiling and wetland soils.

There were no observed signs of increased oil penetration or mixing of oil into the subsur-
face soil as a result of manual treatment. However, signs of increased subsurface oiling caused
by mechanical treatments were observed in the test pits. In most of the mechanical treatment
plots, heavy oil residues or emulsified oil were mixed into the soil to depths of 5–20 cm. Mixing
of oil into marsh soils during treatment is typically viewed as detrimental, because subsurface

Fig 3. Oiled vegetation mat cover in 2011 and 2012.Differences among oiling/treatment classes were
observed (p < 0.01); differences were not observed among years (p = 0.97); and potential differences were
observed for the interaction of oiling/treatment class and year (p = 0.06). Specific oiling/treatment class
differences were observed for no treatment versus all other classes (all p < 0.01). Data are means ± 1
standard error (SE). N = 9 for the heavily oiled plots with no treatment; n = 5 for all other oiling/treatment
classes including reference.

doi:10.1371/journal.pone.0132324.g003
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oiling weathers and degrades more slowly than surface oiling, resulting in longer-term contam-
ination which may chronically affect marsh vegetation and infauna [5].

Subsurface tPAH concentrations in the marsh soils generally indicated differences between
the reference plots and the heavily oiled plots, though differences were only statistically signifi-
cant for reference versus no treatment (Fig 5). The chemistry results validate the low level of
background oiling in the reference plots versus the heavy oiling conditions in the other plots.
Although the manual and mechanical treatments improved surface oiling conditions as
described above, they did not substantially change tPAH concentrations in the subsurface soils
relative to the no treatment plots. On the other hand, these results also indicate that treatments
did not worsen oiling levels in the subsurface soils, one of the primary concerns during marsh
treatment. This agrees with visual observations that the manual treatments did not mix oil into
the soils; however, it conflicts with the direct observations that mechanical treatment did mix oil
into the soils. These results may partly reflect the variable distribution of oil in marsh soils, as
well as the limitations of soil grab samples and likely insufficient sampling, making it difficult to
detect potential differences among treatments. Given similar circumstances, we would suggest
taking additional soil samples from each plot to better address tPAH concentrations, as well as
conducting targeted sampling of oiled intervals within test pits used to describe subsurface oiling.

Severe storms in late April 2011, Tropical Storm Lee in early September 2011, and Hurricane
Isaac in late August 2012 caused localized re-mobilization of oil from the existing oiled marsh in
the study area (meaning oil already in the marsh was mobilized and locally redistributed during
these storms). These events resulted in oiling of new vegetation growth within the plots, as well
as oiling of previously unoiled vegetation landward of the plots (to a few meters beyond the plots

Fig 4. Surface oil cover in 2011 and 2012.Differences among oiling/treatment classes (p < 0.01) and years
(p = 0.03) were observed; potential differences were observed for the interaction of oiling/treatment class and
year (p = 0.09). Specific oiling/treatment class differences were observed for reference versus all other
classes, and manual and mechanical treatment versus no treatment (all p < 0.01). Data are means ± 1 SE.
N = 9 for the heavily oiled plots with no treatment; n = 5 for all other oiling/treatment classes including
reference.

doi:10.1371/journal.pone.0132324.g004
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in April 2011; to tens of meters beyond the plots during Tropical Storm Lee; and to several
meters beyond the plots during Hurricane Isaac). In all cases, oil remobilization was noticeably
less in areas that were treated, and there was no remobilized oil observed in the reference area.
Following Tropical Storm Lee in particular, there was a marked difference in the degree of oil re-
mobilization from the manual and mechanical treatment areas (with little to no oil remobiliza-
tion) compared to the no treatment plots (with substantial oil remobilization) (Fig 6).

Overall, both the manual and mechanical treatments were effective in removing the heavily
oiled vegetation mats and wrack, reducing the degree of surface oiling, converting the domi-
nant surface oiling condition from emulsified oil to a more weathered surface oil residue, and
reducing oil remobilization. In contrast, oiling conditions in the no treatment plots remained
largely unchanged throughout the study. Though still differing substantially from reference
conditions, both manual and mechanical treatments improved surface oiling conditions con-
siderably. However, mechanical treatment also resulted in visible mixing of oil into the marsh
soils, which is typically detrimental to marsh recovery.

Vegetation
Total vegetation cover in the heavily oiled plots was well below reference values regardless of
treatment and year (Fig 7), indicating that vegetation cover had not recovered more than two
years following initial heavy oiling. Mechanical treatment took place in 2011, explaining the
very low cover values recorded in that year. Among the heavily oiled plots, manual treatment
had the greatest vegetation cover in both years, exceeding 50% of reference values in 2012.
Mechanical treatment values in 2012 were similar to those for manual treatment in 2011, both
approximately one year post-treatment; therefore, these treatments may be somewhat compa-
rable in terms of vegetation cover, at least through one year. All the heavily oiled plots showed

Fig 5. Total polycyclic aromatic hydrocarbons (tPAH) in subsurface marsh soils in 2011 and 2012.
Differences among oiling/treatment classes were observed (p = 0.04); differences were not observed among
years (p = 0.17) or for the interaction of oiling/treatment class and year (p = 0.59). Specific oiling/treatment
class differences were observed for reference versus no treatment (p = 0.05; reference versus manual
treatment was p = 0.16). Data are means ± 1 SE. N = 9 for the heavily oiled plots with no treatment; n = 5 for
all other oiling/treatment classes including reference. Due to lack of data in 2011, the repeated measures
ANOVA excludedmechanical treatment. An ANOVA was applied to the 2012 data including mechanical
treatment; differences were not significant (p = 0.32).

doi:10.1371/journal.pone.0132324.g005
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increases in vegetation cover with time, whether treated or untreated, indicating some initial
vegetation recovery in progress; however, untreated values were still quite low more than two
years following initial oiling. Overall, active treatments appeared to have a positive influence
on total vegetation cover compared to no treatment; this was particularly evident for manual
treatment, though recovery of total vegetation cover was still incomplete.

S. alterniflora is the dominant species of salt marsh vegetation in the study area, as evi-
denced by cover values from the reference plots (Figs 7 and 8). The pattern in S. alterniflora
cover among plots was similar to total vegetation cover, although S. alterniflora cover values

Fig 6. Example of differences in localized oil remobilization following Tropical Storm Lee in 2011. (A)
Remobilized oil on marsh vegetation extending > 50 m landward (inland) of a no treatment plot, (B) absence
of remobilized oil landward of the adjacent manual treatment plot.

doi:10.1371/journal.pone.0132324.g006
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were much lower across the heavily oiled plots compared to reference conditions. Among the
heavily oiled plots, S. alterniflora cover was greatest in the manual treatment plots in both
years, though not statistically different from the mechanical treatment plots. By 2012, S. alterni-
flora cover slightly exceeded 10% and 20% of reference values for the plots with mechanical
and manual treatments, respectively. S. alterniflora cover in the no treatment plots was very
low in both years (0–1%), showing little recovery more than two years following initial oiling,
similar to the findings of Lin and Mendelssohn (2012) [26] at seven months following heavy
oiling. Active treatment had a positive influence on S. alterniflora cover, but not to the same
extent observed for total vegetation cover, indicating species composition differences within
the recovering vegetation. In addition, these results suggest vegetation recovery may be ongo-
ing for several years with treatment and even longer without treatment [5,15].

The reference plots were strongly dominated by S. alterniflora in both years, with smaller
contributions by J. roemerianus, S. patens, and Distichlis spicata (Fig 9), typical for salt marshes
in the region [43–44]. Avicennia germinans (black mangrove) shrubs and seedlings occurred
sporadically in the reference area, but were not recorded in the reference plots. The heavily
oiled plots were quite different, whether treated or not, with dominance shared among several
species, including S. patens, Paspalum vaginatum, Phragmites australis, D. spicata, and S. alter-
niflora. Both S. alterniflora and J. roemerianus were originally present and appeared to be dom-
inant prior to the spill in the heavily oiled plots, based on the appearance of the oiled
vegetation mats and the intact vegetation landward of the plots (based on initial field observa-
tions and review of plot photos). Therefore, the pre-spill vegetation composition in the heavily
oiled plots was similar to the adjacent reference area. The observed difference in marsh species

Fig 7. Total vegetation cover in 2011 and 2012.Differences among oiling/treatment classes, years, and the
interaction of oiling/treatment class and year were observed (all p < 0.01). Specific oiling/treatment class
differences were observed for reference versus all other classes, and manual treatment versus mechanical
treatment and no treatment (all p < 0.01). Data are means ± 1 SE. N = 9 for the heavily oiled plots with no
treatment; n = 5 for all other oiling/treatment classes including reference.

doi:10.1371/journal.pone.0132324.g007
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Fig 8. Spartina alterniflora cover in 2011 and 2012.Differences among oiling/treatment classes (p < 0.01),
years (p < 0.01), and the interaction of oiling/treatment class and year (p = 0.01) were observed. Specific
oiling/treatment class differences were observed for reference versus all other classes, and manual treatment
versus no treatment (all p < 0.01). Data are means ± 1 SE. N = 9 for the heavily oiled plots with no treatment;
n = 5 for all other oiling/treatment classes including reference.

doi:10.1371/journal.pone.0132324.g008

Fig 9. Vegetation species composition in 2011 and 2012.

doi:10.1371/journal.pone.0132324.g009
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composition in the heavily oiled plots may have been a result of several factors: the nearly com-
plete vegetation dieback resulting from heavy oiling; differing sensitivities and reactions to oil-
ing and disturbance among plant species; and initial plant re-colonization during lower
salinities associated with freshwater diversion enacted in reaction to the spill [45].

In 2011, the main comparison of vegetation composition was between the manual treatment
plots and the no treatment plots, since the mechanically treated plots had recently been treated
and contained little vegetation. Though the species recorded were similar, the manual treatment
plots had a more even distribution of species and greater relative cover of S. alterniflora and S.
patens as compared to the no treatment plots, which were strongly dominated by P. vaginatum.
The manual treatment plots also had recruitment of A. germinans seedlings into the plots fol-
lowing treatment. Small patches of P. australis were already present in some plots and survived
oiling by re-sprouting from rhizomes, but did not spread or further colonize the marsh follow-
ing oiling or treatment. In contrast, all the other species in the heavily oiled plots either
expanded into the plots from outside or newly colonized the plots following oiling or treatment.

The occurrence of P. vaginatum in the plots, particularly its heavy dominance in the no
treatment plots, was unexpected, as this species is more characteristic of lower salinity coastal
marsh rather than salt marsh [43–44]. However, P. vaginatum can be a disturbance-associated
species [46–48], which may explain its presence in the heavily oiled plots, especially in combi-
nation with a period of lower salinity. P. vaginatum was often the first species to appear in the
plots and was observed colonizing directly on top of the heavily oiled vegetation mats. P. vagi-
natummay have been reduced in the manual and mechanical treatment plots by the removal
of the oiled vegetation mats and direct raking and cutting of P. vaginatum, perhaps enhancing
the later colonization or spreading of other species. Overall, as of 2011, manual treatment
appeared to result in vegetation composition more similar to reference conditions as compared
to no treatment.

In 2012, both the manual and mechanical treatment plots were similar in species composi-
tion and trending more towards reference conditions, with increasing relative cover of S. alter-
niflora. J. roemerianus was not present in any of the heavily oiled plots in 2012. Impacts and
lack of J. roemerianus recovery in heavily oiled areas is consistent with other studies [26]. J. roe-
merianus generally has low tolerance to oiling and is one of the slowest species to recover from
oiling or disturbance in general [26,49–50]. The no treatment plots were also less dominated
by P. vaginatum in 2012, though still more so than in the treated plots. The no treatment plots
also had a more even distribution of species in 2012, including S. patens and increased relative
cover of D. spicata; though still with relatively little S. alterniflora. Increases in relative cover of
D. spicata in the heavily oiled plots may have been related to increasing salinity once freshwater
diversion was scaled back. D. spicata is also frequently associated with disturbance in salt
marshes [51]. Other than the lack of J. roemerianus recovery [26], changes in vegetation species
composition in salt marshes in relation to Deepwater Horizon impacts have not been reported
elsewhere and may warrant further investigation. Changes in vegetation composition could
have a variety of ecosystem implications, ranging from changes in microbial assemblages and
faunal consumers to decreased marsh stability. Overall, through 2012, though still quite differ-
ent from reference conditions, both the manual and mechanical treatments resulted in vegeta-
tion composition more similar to reference conditions compared to no treatment.

Marsh Periwinkles
Total marsh periwinkle (Littoraria irrorata) densities in the heavily oiled plots were well below
reference values regardless of treatment and year (Fig 10). Marsh periwinkles were nearly
absent from the heavily oiled plots in 2011. In 2012, there were very low numbers of snails in
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the heavily oiled plots,<1–5% of reference values, indicating minimal periwinkle recovery.
These results are similar to an earlier Deepwater Horizon study from heavily oiled sites in 2010
[28], with our study indicating continuing marsh periwinkle impacts through 2012, more than
two years following heavy oiling. In a related ongoing Deepwater Horizon study, we reported
periwinkle impacts extending through 2013 (more than three years following heavy oiling),
with possible initial signs of recovery limited to sites planted with S. alterniflora [52].

Snail size frequency histograms from 2012 for the reference plots depicted a bimodal to tri-
modal pattern with two major peaks, one for juveniles and one for adults, and a smaller peak
encompassing sub-adults (Fig 11). We think this may be a typical size distribution pattern for
sites with established adult periwinkle populations, juvenile recruitment in the prior year (lead-
ing to sub-adults), and recent juvenile recruitment [17,42,53–54]. In contrast to the reference
plots, the heavily oiled plots had low numbers of snails across all sizes and life stages. Juveniles
were largely absent from the heavily oiled plots in 2012, indicating either a lack of juvenile
recruitment or limited survival. The near absence of juveniles as well as sub-adults further indi-
cates that periwinkle recovery in the heavily oiled plots was minimal to absent by 2012.

Marsh periwinkles are closely associated with the dominant salt marsh vegetation, particu-
larly S. alterniflora. For example, Kiehn and Morris (2009) [55] reported that marsh periwinkle
presence and density were positively correlated with S. alterniflora stem density. Similarly,
Stagg and Mendelssohn (2012) [41] found that marsh periwinkle growth, survival, and produc-
tivity were positively correlated with S. alterniflora cover in a sediment-restored salt marsh in
Louisiana. Therefore, recovery of marsh periwinkles in the heavily oiled plots may be tied to
the recovery of S. alterniflora, though residual oiling levels may also be a factor. Marsh

Fig 10. Total marsh periwinkle (Littoraria irrorata) densities in 2011 and 2012.Differences among oiling/
treatment classes, years, and the interaction of oiling/treatment class and year were observed (all p < 0.01).
Specific oiling/treatment class differences were observed for reference versus all other classes (p < 0.01).
Data are means ± 1 SE. N = 9 for the heavily oiled plots with no treatment; n = 5 for all other oiling/treatment
classes including reference.

doi:10.1371/journal.pone.0132324.g010
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periwinkle recovery, including density and population structure, may lag S. alterniflora recov-
ery for several years once conditions are suitable to support recruitment, immigration, survival,
and growth. Lags in recovery or development of marsh periwinkle densities and population
structure relative to vegetation conditions have been observed following oil spills [16–17],
physical marsh impacts [56], and marsh restoration and creation projects [57–58]. Further
study is needed concerning marsh periwinkle impacts and recovery, and the potential positive
effects of planting S. alterniflora in heavily oiled areas.

Fiddler Crabs
Crab burrow densities (mainly fiddler crabs, Uca spp.) in the heavily oiled and treated plots
were similar to reference values. However, in the heavily oiled plots without treatment, burrow
densities were lower than reference conditions (mainly in 2011) (Fig 12). At the time of sam-
pling in 2011, crab burrow densities in the manual and mechanical treatment plots were similar
to reference levels. By 2012, the no treatment plots were similar to reference levels as well.
Treatment may have hastened the return of crab burrow densities by about one year. The
removal of the heavily oiled vegetation mats and the reduction of the thick emulsified oil layer,
as well as raking of the underlying substrate, may have facilitated fiddler crab recruitment and
immigration from adjacent areas.

Impacts and recovery of fiddler crabs were reported in a previousDeepwater Horizon study
[27]. Our study shows density reductions in areas with heavier oiling and without treatment
extending for an additional year into 2011. Impacts to fiddler crabs have also been observed at
prior spills. Most notably, fiddler crab impacts following the Florida barge spill in Buzzards Bay,
Massachusetts were still evident 37 years later due to long-term sediment contamination
(impacts included reduced burrow densities) [19]. The Florida spill was different from theDeep-
water Horizon spill in the following ways: the spilled material was a No. 2 fuel oil, which gener-
ally has greater chemical toxicity than most crude oils [5]; the Florida spill occurred much closer
to shore and near the water surface, with less time for oil weathering before making landfall; and
the Florida spill occurred in a colder climate, perhaps slowing oil weathering and degradation
rates, as well as affecting fiddler crab behavior and impacts (e.g., crabs needing to shelter in bur-
rows during low winter temperatures in contaminated soils—see [20–21]). These differences

Fig 11. Marsh periwinkle (Littoraria irrorata) shell length frequencies in 2012. Periwinkle life-history size ranges defined as juveniles (<6 mm), sub-
adults (6–13 mm), and adults (>13 mm). Juvenile, sub-adult, and adult snail densities were greater for the reference plots versus all other classes (all
p� 0.01).

doi:10.1371/journal.pone.0132324.g011
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could explain why fiddler crab burrow density reductions were not as long-term in our study, at
least based on sampling through 2012. However, in a related ongoingDeepwater Horizon study,
we reported possible continuing impacts to fiddler crab burrow density into 2013 with a poten-
tial positive influence of S. alterniflora planting in oiled and treated plots [52].

In contrast to burrow density in the present study, fiddler crab species composition may
point to continuing differences among the reference and heavily oiled plots (Fig 13). Uca longi-
signalis was 100% dominant in the reference plots, whereas the heavily oiled plots had relative
compositions of 66–83% U. longisignalis and 17–34% Uca spinicarpa. Oiling and associated
habitat alterations may have led to these differences. U. longisignalis typically dominates
densely vegetated salt marsh sites in Louisiana, whereas U. spinicarpa dominates clay banks
with sparse vegetation [59]. Where the two species co-occur in salt marsh sites dominated by
U. longisignalis, U. spinicarpa is typically restricted to the seaward marsh edge and may com-
prise�10% of the population [59]. Reduced vegetation cover coupled with areas of surface oil
residue overlaid with thin algal mats and clay sediments may have led to greater relative abun-
dance of U. spinicarpa in the heavily oiled sites. During sampling, U. longisignalis was typically
captured in vegetated portions of the plots; while U. spinicarpa was typically captured in
sparsely vegetated areas with surface oil residue. In a related, ongoing Deepwater Horizon
study, we reported similar differences in species composition in 2013; however; S. alterniflora
planting in oiled and treated plots resulted in 100% dominance by U. longisignalis, matching
reference conditions [52]. We are not aware of any Deepwater Horizon or other oil spill studies
that have examined changes in fiddler crab species composition. Further study is needed con-
cerning fiddler crab impacts and recovery in relation to oiling, shoreline treatment, and

Fig 12. Crab burrow densities (Uca spp.) in 2011 and 2012.Differences among oiling/treatment classes
were observed (p = 0.05); differences were not observed among years (p = 0.47) or for the interaction of
oiling/treatment class and year (p = 0.12). Potential differences among specific oiling/treatment classes were
observed for reference versus no treatment (p = 0.06). Data are means ± 1 SE. N = 9 for the heavily oiled
plots with no treatment; n = 5 for all other oiling/treatment classes including reference.

doi:10.1371/journal.pone.0132324.g012
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planting, including the causes and effects of species composition changes. Similar to marsh per-
iwinkles, fiddler crab recovery may also be linked to continuing vegetation recovery.

Marsh Shoreline Retreat
The rate of marsh shoreline retreat was 2–3 times greater in the heavily oiled plots compared to
the reference plots in 2011 and 2012, whether manually treated or not treated (Fig 14). Directly
comparable erosion data were not collected for the mechanical treatment plots under the main
study. However, qualitatively, it did appear that the mechanical treatments lowered the marsh
surface and that these areas were experiencing even greater erosion (see following section).

Shoreline retreat rates in the reference plots were very similar to previously published rates
of 0.8–1.3 m yr-1 for this portion of Barataria Bay [60] (based on [61]), indicating that the refer-
ence plots were within the range of expected background erosion rates. The greater shoreline
retreat in the heavily oiled plots was likely due to vegetation die-back and subsequent soil weak-
ening as a result of the oil spill and incomplete vegetation recovery more than two years later
(Figs 7 and 8). Increased marsh erosion has been reported following other oil spills [62–65]. In
addition, our results are similar to those observed in prior Deepwater Horizon studies [28–29],
with the exception that we observed accelerated erosion during both 2011 and 2012, perhaps
due to less variation in oiling conditions and incomplete vegetation recovery across our oiled
study area.

Reviewing the wave model output and discussion from Silliman et al. (2012) [28], as well as
fetch and wind speed and direction data for the study period [66–67], there was likely little dif-
ference in wave exposure among the heavily oiled plots and reference plots, reinforcing the
idea that differential shoreline retreat was related to oiling and vegetation impacts. Further-
more, review of data from Penland et al. (2001) [68] and Couvillion et al. (2010) [69] indicate
that, prior to the oil spill, there were no substantial differences in rates of shoreline retreat
between the heavily oiled plots and the reference plots for the 78-year period from 1932 to
2010 (1.2 m yr-1 vs. 1.3 m yr-1, respectively). These data further reinforce the notion that accel-
erated shoreline retreat in 2011 and 2012 was related to oiling, rather than differences in plot
location, aspect, wave energy, or other factors.

Fig 13. Fiddler crab (Uca spp.) relative species composition in 2012.

doi:10.1371/journal.pone.0132324.g013
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In addition to oiling effects on erosion, we found that the manual treatments did not result in
further accelerated shoreline retreat relative to no treatment, a major concern during oil removal
actions in marshes. In addition, the greater vegetation recovery observed through 2012 for man-
ual treatment may lessen future shoreline retreat linked to the oil spill. S. alterniflora recovery in
particular may be important in this regard, since it is the typical dominant salt marsh species in
the region. Improved S. alterniflora recovery would also be important if S. alterniflora provides
greater shoreline stabilization compared to other species, such as P. vaginatum and D. spicata,
which are shorter in stature and more shallowly or weakly rooted [51,70].

Overall, if the oil spill resulted in accelerated shoreline retreat over a wider scale, even for a
few years, this would equate to permanent or longer-term marsh habitat loss and comparable
losses and impacts for associated resources, beyond those caused by direct oiling of marsh hab-
itat and biota. These permanent or longer-term losses would apply to marsh vegetation, soils,
marsh periwinkles, fiddler crabs, and other species dependent on salt marshes (as well as other
ecosystem components and services). In the present study, our findings are based on oiled
marsh areas present (not eroded) at the time of sampling in 2011 and 2012. Losses of vegeta-
tion, marsh periwinkles, and fiddler crabs to erosion have not been estimated.

Post-Treatment Planting
In 2012, roughly one year after planting, S. alterniflora cover was 69% (±10 SE) in the planted
plots. Qualitative comparison with the main test plots for the same time period indicated that
planting resulted in much greater vegetation cover (faster vegetation recovery) compared to

Fig 14. Marsh shoreline retreat in 2011 and 2012.Differences among oiling/treatment classes were
observed (p < 0.01); differences were not observed among years (p = 0.58) or for the interaction of oiling/
treatment class and year (p = 0.89). Specific oiling/treatment class differences were observed for reference
versus manual treatment and no treatment (both p < 0.01). Data are means ± 1 SE. N = 9 for the heavily oiled
plots with no treatment; n = 5 for all other oiling/treatment classes including reference.

doi:10.1371/journal.pone.0132324.g014
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any of the treatments without planting (Figs 7 and 8, S1 Table). For comparison, total vegeta-
tion cover was 23% (±8 SE) and S. alterniflora cover was 9% (±5 SE) in the main mechanical
treatment plots in 2012, where vegetation was not planted (Figs 7 and 8). In a related ongoing
Deepwater Horizon study, we reported vegetation impacts extending through 2013 in areas
without planting (more than three years following heavy oiling) [52]. In contrast, sites planted
with S. alterniflora had similar vegetation cover, 88% (±3 SE), compared to reference condi-
tions at two years post-planting [52].

The rate of shoreline retreat was 1.5 times greater for the unplanted control plots compared
to the planted plots (Fig 15). In addition, shoreline retreat progressed to the seaward edge of
the planted plots and halted where the vegetation began, but continued for an additional ~2 m
into the interior of the unplanted control plots. These results indicate a clear positive influence
of S. alterniflora in slowing erosion in areas with heavy oiling and mechanical treatment. The
influence of marsh vegetation in slowing erosion has been reviewed elsewhere [71–72]. S. alter-
nifloramay slow erosion through a variety of mechanisms, including baffling wave energy,
trapping sediments, and strengthening or binding marsh soils by roots and rhizomes. Over
time, the direct and indirect contribution of S. alterniflora to the accumulation of organic soil
material would also contribute to marsh stability.

Qualitative comparison also indicated that shoreline retreat was greater in the mechanical
treatment areas than in the manual treatment and no treatment plots, even with planting, and
was 4–5 times greater than in the reference plots (Figs 14 and 15). For instance, shoreline retreat
in the areas with mechanical treatment and planting was 4.4 m yr-1 (±0.3 SE) compared to 3.1
m yr-1 (±0.6 SE) in the no treatment plots in 2012. These results show that not only did oiling
accelerate shoreline retreat, but that mechanical treatment likely accelerated shoreline retreat
even further, though subsequent vegetation planting lessened this effect. The more aggressive
nature of the mechanical treatments, including mechanized raking and scraping, appeared to

Fig 15. Marsh shoreline retreat among planted and control (unplanted) plots in mechanically treated
areas in 2012.Differences were observed for planted versus controls (p = 0.03). Data are means ± 1 SE. The
dashed line represents the position of the seaward edge of the plots, which was also the seaward edge of
vegetation in the planted plots. N = 5 for both planted and control plots.

doi:10.1371/journal.pone.0132324.g015
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lower the marsh surface and remove or weaken the remaining root mat comprising the upper
marsh platform, making these areas more susceptible to erosion and shoreline loss. Based on
our field observations and feedback frommonitors engaged in marsh treatment operations, we
do not necessarily think that mechanical treatment accelerated shoreline retreat everywhere it
was applied (see [2]); however, this does appear to be the case in our study area, where mechan-
ical treatment has been most closely evaluated. Also, operational treatments across the wider
area of response were not exclusively mechanical; manual treatments alone were also conducted
at operational scale in many shoreline treatment areas under the emergency response.

Given the success of planting and its positive influence on improving vegetation recovery
and reducing shoreline retreat, we recommend that planting be considered under similar con-
ditions, particularly where vegetation impacts are substantial, vegetation recovery is slow, back-
ground erosion rates are high, or intensive treatments are used. Planting in such cases could be
conducted as part of shoreline treatment operations under the emergency response or as emer-
gency restoration under the Natural Resource Damage Assessment (NRDA) process. Planting
following heavy oiling and intensive treatment may be especially important in places such as
coastal Louisiana, where background marsh erosion rates are high and coastal marsh loss is a
major concern [23–24]. When planting is evaluated for use, residual oiling levels, soil toxicity,
and plant species tolerances should be considered as this could affect planting success [73–74].
In this study, though residual oiling levels were relatively high, the sites were within the toler-
ance limits of S. alterniflora reported for South Louisiana crude oil in marsh soils [2,73].
Finally, the influence of planting on a variety of other marsh characteristics and resources,
including marsh fauna, should be examined in more detail.

Conclusions
Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and
erosion were ongoing as of 2012 (Fig 16 provides a visual summary across oiling/treatment
classes). In areas that were not treated, oiling conditions and negative effects for most ecologi-
cal parameters did not considerably improve over two years. Both manual and mechanical
treatment were effective at improving oiling conditions and vegetation characteristics, begin-
ning the recovery process, though recovery was not complete by two years. Mechanical treat-
ment had additional negative effects of mixing oil into the marsh soils and further accelerating
erosion. Manual treatment appeared to strike the right balance between improving oiling and
habitat conditions while not causing additional detrimental effects, consistent with prior guid-
ance from case histories [5,11,13]. However, even with these improvements, marsh periwinkles
were reduced and showed minimal signs of recovery through two years. These results indicate
that definitions of impact and recovery should not be limited to marsh vegetation, and that
some ecosystem components may lag the recovery of vegetation structure. Planting following
treatment accelerated vegetation recovery and reduced marsh erosion in areas with mechanical
treatment. Additional benefits of post-treatment planting on other marsh characteristics war-
rant further study. Faced with comparable persistent heavy marsh oiling in the future, we
would recommend manual treatment followed by planting. We emphasize, however, that the
intensive treatments methods examined here (raking, cutting, etc.) would not be appropriate
for the majority of oiled marshes, particularly those with lighter or non-persistent oiling, and
could result in further marsh damage and delayed recovery, especially if not carefully moni-
tored. Natural recovery (no treatment) would be an appropriate approach for many oiled
marshes, especially those with lesser oiling. Oiled controls (no treatment “set-asides”) are
essential for judging marsh treatment effectiveness and ecological effects; we recommend their
use when testing or applying intensive or alternative treatment methods.

Oiled Salt Marsh Treatment and Recovery

PLOS ONE | DOI:10.1371/journal.pone.0132324 July 22, 2015 22 / 27



Supporting Information
S1 Fig. Pre-treatment oiled vegetation mat cover in 2010. Differences among oiling/treat-
ment classes were not observed (p = 0.28). Data are means ± 1 standard error (SE). N = 9 for
the heavily oiled plots with no treatment; n = 5 for all other oiling/treatment classes.
(TIF)

S2 Fig. Pre-treatment surface oil cover in 2010. Differences among oiling/treatment classes
were not observed (p = 0.86). Data are means ± 1 standard error (SE). N = 9 for the heavily
oiled plots with no treatment; n = 5 for all other oiling/treatment classes.
(TIF)

S1 Table. Means ± SE for all parameters by year and oiling/treatment class.
(XLSX)

Fig 16. Visual summary of marsh conditions in 2012, more than two years following heavy oiling. (A) Reference plot, (B) heavily oiled plot with manual
treatment, (C) heavily oiled plot with no treatment, (D) heavily oiled plots with mechanical treatment, with planting (upper left) and without planting (middle).

doi:10.1371/journal.pone.0132324.g016
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