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Abstract
Forests in Southeast Asia are rapidly being logged and converted to oil palm.
These changes in land-use are known to affect species diversity but consequences
for the functional diversity of species assemblages are poorly understood. Envi-
ronmental filtering of species with similar traits could lead to disproportionate
reductions in trait diversity in degraded habitats. Here, we focus on dung beetles,
which play a key role in ecosystem processes such as nutrient recycling and seed
dispersal. We use morphological and behavioural traits to calculate a variety of
functional diversity measures across a gradient of disturbance from primary forest
through intensively logged forest to oil palm. Logging caused significant shifts in
community composition but had very little effect on functional diversity, even
after a repeated timber harvest. These data provide evidence for functional redun-
dancy of dung beetles within primary forest and emphasize the high value of
logged forests as refugia for biodiversity. In contrast, conversion of forest to oil
palm greatly reduced taxonomic and functional diversity, with a marked decrease
in the abundance of nocturnal foragers, a higher proportion of species with small
body sizes and the complete loss of telecoprid species (dung-rollers), all indicating
a decrease in the functional capacity of dung beetles within plantations. These
changes also highlight the vulnerability of community functioning within logged
forests in the event of further environmental degradation.

Introduction

Land-use change is the major driver of ecosystem degrada-
tion and biodiversity loss globally (Nepstad et al., 1999;
Brooks et al., 2002; Nelson et al., 2006; Laurance, 2007),
with an ever-growing proportion of the world’s natural
habitats being altered by anthropogenic activities (Morris,
2010). Roughly 13 million hectares of forest were converted
annually between 2000 and 2010, concentrated within the
tropics and principally for agricultural expansion (Hansen
et al., 2008; FAO, 2010). In addition, 403 million hectares of
tropical forest are designated for logging (Blaser, Sarre &
Johnson, 2011), with the rate of logging about 20 times that
of forest clearance (Asner et al., 2009).

The impacts of land-use change on biodiversity are
often examined, particularly in tropical ecosystems, using

measures of diversity (e.g. species richness and Simpson or
Shannon diversity indices) that take no account of differ-
ences in species’ life-history traits and ecological niches. Yet
changes in environmental conditions following disturbance
may well act as a filter, allowing only a narrow spectrum of
traits to persist (Hamer et al., 2003; Gray et al., 2007;
Cardinale et al., 2012; Fauset et al., 2012). As a conse-
quence, such traditional diversity measures may be inappro-
priate indicators of changes in community structure,
underestimating the true extent of biodiversity loss follow-
ing disturbance (Cardinale et al., 2012; Mouillot et al.,
2013). One solution is to use measures of functional diver-
sity, which seek to quantify the range of functional (i.e. trait)
differences among species in a community (Tilman, 2001;
Petchey & Gaston, 2006), thus bridging the gap between
species diversity and species composition, and giving insight
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into potential resilience and recovery of species in response
to land-use change (Koh, Sodhi & Brook, 2004; Hillebrand,
Bennett & Cadotte, 2008; Ockinger et al., 2010; Mouillot
et al., 2013).

Despite the value of functional diversity metrics in infer-
ring ecosystem processes (de Bello et al., 2010; Naeem,
Duffy & Zavaleta, 2012; Mouillot et al., 2013), the impacts
of tropical land-use change on functional diversity are
poorly understood. Examination of the literature identified
just 12 studies that quantified the functional diversity of
tropical communities across a terrestrial disturbance gradi-
ent (Table 1). Of these studies, only three compared the
functional diversity of communities in logged forest with
those in primary forest. They found that amphibian func-
tional diversity was higher in primary forest (Ernst,
Linsenmair & Rödel, 2006), but that arboreal and avian
functional diversity were not different (Baraloto et al., 2012;
Edwards et al., 2013).

In addition, only one previous study has investigated the
impacts of oil palm agriculture on functional diversity
(Table 1; Edwards et al., 2013), yet this is a widespread and
rapidly expanding crop globally (Fitzherbert et al., 2008;
Gibbs et al., 2010). In Southeast Asia, the conversion of
forest (both primary and logged) to oil palm agriculture has
been rampant, with several million hectares of oil palm
plantation replacing forest over the last two decades (Koh &
Wilcove, 2008; Gibbs et al., 2010; Reynolds et al., 2011).
Dung beetles provide key ecosystem functions and services,
including nutrient recycling, soil aeration, secondary seed

dispersal and parasite suppression (Nichols et al., 2008), as
their habit of breaking apart dung piles and distributing the
material away from the source. However, only one previous
study has examined impacts of land-use change on the func-
tional diversity of dung beetles (in Mexico; Barragán et al.,
2011), yet these are globally widespread, highly abundant
(Hanski & Cambefort, 1991), sensitive to environmental
changes (Larsen, Williams & Kremen, 2005; Nichols et al.,
2007) and key indicators for other taxonomic groups, espe-
cially mammals (Nichols et al., 2009).

In this study, we address these key knowledge gaps by
investigating the impacts of land-use change on the taxo-
nomic and functional diversity of dung beetles in the global
biodiversity hotspot of Sundaland, Southeast Asia (Myers
et al., 2000). We examine a gradient of increasing habitat
disturbance from primary forest through once-logged and
twice-logged forest to oil palm. We test the hypothesis that
disturbance acts as an environmental filter, selecting species
more functionally similar than expected by chance and
hence leading to lowered functional diversity in disturbed
habitats.

Materials and methods

Study location

Our study is based within the Yayasan Sabah (YS) logging
concession and adjacent oil palm plantations, in eastern
Sabah, Malaysian Borneo (4°58′ N, 117°48′ E). Within the

Table 1 Studies investigating functional diversity in the tropics across a land-use gradient

Taxa Geographic region Land-use change Functional metric(s) Study

Amphibians Ivory Coast and Central Guyana Primary and selectively logged forest FD Ernst et al., 2006
Ants Brazilian Atlantic forest Forest fragmentation (size) FEve Leal et al., 2012
Ants Brazilian Atlantic forest Secondary forest (age) FD, FAD Bihn, Gebauer & Brandl, 2010
Birds Malaysian Borneo Primary and selectively logged forest,

and oil palm
FD, FEve, FDiv Edwards et al., 2013

Birds Brazilian Amazon Unburned and burned (frequency)
forest

MPD, MNTD Hidasi-Neto, Barlow &
Cianciaruso, 2012

Birds, Plants,
Mammals

Costa Rica to USA Temperate and tropical, natural,
semi-natural and agricultural
habitats

FD Flynn et al., 2009*

Dung Beetles Mexico Forest fragmentation (size) FRic, FEve, FDiv Barragán et al., 2011
Dung Beetles Mexico Continuous forest, forest

fragmentation and pasture
FRic, FEve, FDiv Barragán et al., 2011.

Trees French Guiana Primary and selectively logged forest
gaps

FRic, FEve, FDiv Baraloto et al., 2012

Trees Mexico Secondary forest (age) FD Lohbeck et al., 2012
Understory plants Solomon Islands Primary forest, secondary forest,

plantations and pastures
FRic, FEve, FDis Katovai, Burley &

Mayfield, 2012
Utilitarian plants Madagascar Continuous and fragmented forest

(varying degradation), and
agricultural habitats

FD Brown et al., 2013

Woody plants Brazilian Cerrado Fire (frequency) FD Cianciaruso et al., 2012

Functional metric abbreviations: FAD, functional attribute diversity; FD, functional dendrogram; FDis, functional dispersion; FDiv, functional
divergence; FEve, functional evenness; FRic, functional richness; FSpe, functional specialization; MNTD, mean nearest taxon distance; MPD,
mean pairwise distance. Superscript (*) represents a meta-analysis.
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YS concession is 45 200 ha of primary forest in the Danum
Valley Conservation Area and Palum Tambun Watershed
Reserve, which is dominated numerically by valuable timber
species of the family Dipterocarpaceae (Fisher et al., 2011).
Adjacent to this primary forest is the 238 000 ha Ulu
Segama-Malua Forest Reserve (US-MFR) containing selec-
tively logged forest, of which 97 000 ha (41%) has under-
gone a single rotation of timber extraction (once-logged
forest) and the remaining area has undergone two rotations
of logging (twice-logged forest). The first rotation of timber
extraction took place between 1987 and 1991, with commer-
cial stems > 0.6 m diameter removed to yield ≈ 115 m3 of
timber per ha (Fisher et al., 2011). Twice-logged locations
were relogged between 2001 and 2007 with the minimum
harvested tree diameter reduced to > 0.4 m, yielding an
additional 15–72 m3 of timber per ha (Edwards et al., 2011;
Fisher et al., 2011). Surrounding the US-MFR are oil
palm plantations, with sampling locations restricted to
mature plantations (10–15 years old), with density of
≈ 100 palms ha−1 (Edwards et al., 2010).

Dung beetle sampling

Fieldwork was conducted between August and October
2009, and between February and September 2011. In each of
our four habitats, we created four sampling sites that were
widely spaced across the landscape. Sites within a habitat
were separated by ≥ 2 km, and distances between sites in
different habitats ranged from 1 to 92 km.

We used standardized baited pitfall traps to sample dung
beetles (Coleoptera: Scarabaeidae: Scarabaeinae) across
the four habitat types. Within each site, we created two
transects (separated by 500–900 m), and along each transect
we placed five pitfall traps baited with human dung at 100 m
intervals (total traps = 160; see Edwards et al., 2011 for
further details), which was sufficient to ensure independence
(Larsen & Forsyth, 2005). We left traps for 4 days and
rebaited after 48 h, with beetles collected every 24 h
(Edwards et al., 2011). We used reference collections (T.
Larsen) housed at the Forest Research Centre, Sandakan,
Malaysia and Smithsonian Museum, Washington DC, USA
for species determinations.

Data analysis

Species richness, diversity, evenness

and composition

We compared dung-beetle species richness between forested
habitats and oil palm using sample-based rarefaction curves
with 95% confidence intervals and standardized by the total
abundance of individuals in a particular habitat (Gotelli &
Colwell, 2001). To assess the accuracy of our sampling, we
calculated the average of four commonly used abundance
based estimators of species richness (ACE, CHAO1,
JACK1 and Bootstrap) using ESTIMATES v. 8.2 (Univer-
sity of Connecticut, Storrs, CT, USA). We measured species

diversity using the Shannon-Wiener index and calculated
species evenness using Pielou’s evenness index in Vegan
package (Oksanen et al., 2011).

To investigate the change in species composition between
habitats, we used a non-metric multidimensional scaling
ordination (Clarke & Warwick, 2001), using the isoMDS
function with Bray-Curtis dissimilarity measure within the
MASS package (Magurran, 2004). Communities were
standardized as a proportion of the total number of indi-
viduals on each transect. To test for significant differences in
composition, we used a permutational multivariate analysis
of variance (ADONIS function in Vegan; Oksanen et al.,
2011) with 1000 permutations.

Measuring functional diversity

We examined five traits: behavioural guild, diel activity,
body size, diet breath and diet preference (Supporting Infor-
mation Table S1). Behavioural guilds were categorized
into three main groups: rollers (telecoprid), tunnellers
(paracoprid) and dwellers (endocoprid) (for descriptions see
Hanski & Cambefort, 1991). Information on species behav-
ioural guilds and diel activity (diurnal or nocturnal foragers)
were obtained from the literature (Davis, 1999; Krikken &
Huijbregts, 2007; Slade et al., 2007; Qie et al., 2011; Slade,
Mann & Lewis, 2011) and personal observations. We used a
dial calliper to measure body length (pygidium to anterior
margin of pronotum) and elytra width to the nearest
0.01 mm (n = 1–27 individuals per species). Body size was
then calculated as the product of these two variables
(Larsen, Lopera & Forsyth, 2008). We investigated diet
breadth with alternative baited traps: rotting vertebrate
carrion (n = 19 trap days), rotting fruit (n = 18 trap days) or
rotting fungus (n = 16 trap days). Trap design was identical
as for traps baited with dung, beetles were collected every
24 h but traps were left for 48 h. Following Larsen et al.
(2008), we used the number of different baits a species was
attracted to (range = 1–4) as a measure of dietary breadth,
and the bait a species was most frequently recorded on as a
measure of dietary preference, standardized by the number
of trap days (abundance/number trap days) (Supporting
Information Table S2). Functional traits were not highly
correlated (Kendall correlation: τ < 0.54).

Having obtained trait data, we used the formulae of
Villéger, Mason & Mouillot (2008, Villéger et al., 2010,
Villéger, Novack-Gottshall & Mouillot, 2011) to calculate
five complementary measures of functional diversity: (1)
functional richness (FRic), which quantifies the volume of
functional space that a set of species occupies; (2) functional
evenness (FEve), which describes how species’ abundances
are distributed throughout the occupied functional space;
(3) functional divergence (FDiv), which summarizes the
variation in species abundances with respect to the centre of
functional space; (4) functional specialization (FSpe), which
describes how functionally unique a community is relative
to the regional pool of species, and; (5) functional dissimi-
larity (FDis), which indicates the overlap of functional space
between two or more communities. In these methods, traits
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act as coordinates in functional space, thus identifying a
species’ functional niche (Villéger et al., 2008). Traits were
given equal weighting and species were weighted by their
relative abundance. Because our functional traits were a
mixture of variable types, we calculated a distance matrix
using the Gower distance measure, before running a princi-
pal coordinates analysis (PCoA) to calculate a new trait
matrix of transformed coordinates (Villéger et al., 2008).
Four PCoA axes were used to calculate the functional meas-
ures using a multidimensional convex hull to position
species in functional trait space.

FSpe was measured as the average distance of a set of
species from the centre of functional space, relative to the
regional pool of all species (Villéger et al., 2010). FDis was
measured as the volume of functional space that two com-
munities share (Villéger et al., 2011). When two communi-
ties overlap completely, FDis is equal to zero, and as the
overlap in functional space is reduced so dissimilarity
increases towards one.

Observed and expected functional diversity

To assess whether disturbance leads to the selection of more
functionally similar species than expected by chance, we
compared the standardized effect size (SES) of our four
functional diversity metrics (FRic, FEve, FDiv and FSpe)
across habitats. We defined SES as [(observed – mean
expected)/standard deviation of expected]. Expected func-
tional diversity metrics were calculated from 1000 random
communities generated from the overall regional species
pool. An independent swap algorithm was used to maintain
species richness and species frequency occurrence in the
random communities (picante package of R) (Gotelli, 2000;
Kembel et al., 2010). We then used one-sample t-tests with
μ = 0 to determine whether the SES of each functional diver-
sity metric was significantly different from zero.

Comparing among habitats

To check that our results were independent of spatial scale
(Hamer & Hill, 2000), each of our species and functional
diversity measures were calculated and compared at a large
scale (the overall habitat) and a small scale (individual
transects). For the latter, we used linear mixed-effect models
(LME), including site as a random effect to account for
repeated measures. Species abundance was square-root
transformed prior to analysis. We also used a Monte-Carlo
permutation test for Moran’s I statistic (moran.mc within
the spdep package), using our model residuals with 1000
repetitions, to test whether or not our transect level results
were influenced by spatial autocorrelation. All analyses
were run in R v.2.13.2 (R Development Core Team, 2011).

Results

Species richness, diversity
and composition

Across the four habitats, we recorded 26 285 individual
dung beetles of 65 species. The four common estimators of
species richness suggest that we sampled ≥ 89% of species in
each of the four habitats (Table 2). There was a decrease in
the overall species richness, diversity, evenness and abun-
dance of individuals in oil palm compared to forest, both
at the habitat scale (Fig. 1; Table 2) and on individual
transects (Table 2; LME: species richness, F3,12 = 18.39,
P < 0.001; abundance F3,12 = 12.51, P < 0.001; species diver-
sity F3,12 = 16.14, P < 0.001; evenness F3,12 = 5.99, P = 0.01).
In contrast, logged forest communities did not differ signifi-
cantly from those in primary forest with respect to species
richness, diversity, evenness or abundance (all P ≥ 0.1)
(Table 2).

Table 2 Summary of taxonomic species metrics in primary forest, once-logged forest, twice-logged forest and oil palm plantations

Measure Primary Once-logged Twice-logged Oil palm

Habitat level:
Abundance 7885 7386 9231 1783
Sobsc 52 43 45 25
Sestd 58 45 48 27
Sobs/Seste 0.89 0.96 0.93 0.93
Species diversityf 2.75 2.67 2.50 1.85
Species evennessg 0.69 0.71 0.66 0.58
Transect level:
Sobs 32 ± 1.10a 27 ± 2.50a 29 ± 1.00a 12 ± 1.30b

Species diversity 2.62 ± 0.08a 2.39 ± 0.13a 2.37 ± 0.05a 1.36 ± 0.13b

Species evenness 0.76 ± 0.02a 0.73 ± 0.26a 0.71 ± 0.25a 0.57 ± 0.20b

Means (±1SE) are at the transect level. Superscripts (a,b) represent pairwise differences tested at P ≤ 0.05.
cObserved species richness.
dEstimated species richness.
eProportion of species recorded.
fMeasured using Shannon diversity index.
gMeasured using Pielou’s index.
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Species composition differed significantly between forest
and oil palm (Fig. 2; ADONIS: r2 = 0.54, d.f. = 3,
P = 0.0001), with the three most abundant species in each
forest habitat (Paragymnopleurus sparsus, Sisyphus
thoracicus and Onthophagus cervicapra) replaced in oil palm
by three congeneric species (O. sp. B, O. obscurior,
O. rugicollis). Additionally, 37 of 52 species recorded in
primary forest (71%) did not occur in samples from oil
palm, while a further nine species occurred in oil palm but
not in forest. The species assemblage of primary forest was
significantly different from that of both once-logged
(r2 = 0.20, d.f. = 1, P = 0.001) and twice-logged forest

(r2 = 0.20, d.f. = 1, P = 0.02), but the assemblages in the two-
logged forest treatments did not differ (r2 = 0.08, d.f. = 1,
P = 0.29).

Functional diversity

Functional richness, divergence and evenness did not differ
among the three forest treatments (Table 3; all P > 0.16).
FSpe was significantly higher in primary forest than in once-
logged forest [LME (value ± se): 0.31 ± 0.12, d.f. = 12,
P = 0.03; overall model F3,12 = 50.11, P < 0.001] but not in
twice-logged forest (Table 3). However, all forest treatments
were more functionally specialized than expected from
random community assemblages (Supporting Information
Fig. S2: all P < 0.01). FDis was high between forest and oil
palm (> 98% non-overlap), but was low among all three of
the forest treatments (< 13% non-overlap) (Supporting
Information Fig. S1).

Functional richness, divergence and specialization were
all much lower in oil palm than in any of the three forest
habitats, at both spatial scales (Table 3; LME: FRic,
F3,12 = 11.52, P < 0.001; FDiv, F3,12 = 3.68, P = 0.004; FSpe,
F3,12 = 50.11, P < 0.001). Observed FRic (one-sample t-test:
t7 = −7.90, P < 0.01) and FSpe (t7 = −11.85, P < 0.01) were
also significantly lower than expected from the regional
species pool in oil palm (Supporting Information
Fig. S2a,d). FEve, however, was not significantly different
in oil palm than elsewhere (Table 3; F3,12 = 0.37, P = 0.8).
The functional space occupied by dung beetles in oil palm
showed major constrictions (Fig. 3), indicating a marked
reduction or complete loss of some functional traits. In
particular, telecoprid species (dung-rollers) were abundant
in forest but absent from oil palm, the proportion of noc-
turnal species was lower in oil palm (8%) than in forest
(primary = 25%, once-logged = 30%, twice-logged = 22%),
and the three most abundant species were smaller in oil palm
(body size, mean ± se: 20.83 ± 3.98 mm) than elsewhere
(44.97 ± 26.02 mm). There was no spatial autocorrelation
across transects for model residuals of any of the functional
diversity metrics (Moran’s I test: P ≥ 0.2 in each case).

Discussion
Primary rainforests in Southeast Asia are highly threatened
by rampant logging and the expansion of large-scale oil
palm agriculture (Sodhi et al., 2010; Wilcove et al., 2013),
yet this study is among the first assessments of how land-use
change affects functional diversity in the region. We found
marked reductions in the taxonomic and functional diver-
sity of dung beetles following the conversion of forest to oil
palm. In contrast, however, there was very little evidence of
any such loss within logged forests, despite significant
changes in species composition in comparison to primary
forest and even after repeated rotations of logging. These
data provide evidence for functional redundancy of dung
beetles within primary forest, as also suggested for birds in
Amazonian forests (Hidasi-Neto, Barlow & Cianciaruso,
2012). Our results also emphasize the importance of
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Figure 2 Non-metric multidimensional scaling (MDS) ordination of
community assemblages between unlogged (primary) forest, once-
logged forest, twice-logged forest and oil palm at the transect scale.
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degraded forests as refugia for biodiversity (Edwards et al.,
2011; Woodcock et al., 2011), and highlight the potential
consequences of biodiversity losses for the support of eco-
system processes within agricultural systems.

Dung beetle communities in oil palm are compositionally
distinct from those of primary and logged forest (Table 2),
with a shift of numerically dominant species, a loss of numer-
ous forest specialists and the addition of a much smaller
number of new, presumably disturbance-tolerant species
(Figs 2 and 3). These findings support previous work from
western Africa that recorded lower species richness and

diversity of dung beetles in oil palm plantations compared to
logged and primary forests (Davis & Philips, 2005).
However, we found significantly lower abundance of dung
beetles in oil palm than in forest, whereas the opposite was
found in Africa (Davis & Philips, 2005). This variability
highlights the need for a more geographically complete
understanding of the impacts of oil palm as it expands across
tropical regions and replaces both forest and natural grass-
lands (Koh et al., 2011; Garcia-Ulloa et al., 2012). Assessing
the ability of species to persist within remnant forest patches
and disperse across the wider land-use matrix will also be

Table 3 Habitat and transect (mean ± 1SE) scale functional diversity indices in primary forest, once-logged forest, twice-logged forest and oil
palm plantations. FRic, FEve and FDiv are bounded between 0 and 1, and FRic was standardized by a theoretical community of all 65 species
in the regional pool

Functional measure Primary Once-logged Twice-logged Oil palm

Habitat level:
FRicd 1.00 0.87 0.99 0.01
FEvee 0.28 0.31 0.29 0.45
FDivf 0.74 0.68 0.72 0.54
FSpeg 2.17 1.85 2.06 0.87
Transect level:
FRic 0.58 ± 0.07a 0.42 ± 0.07a 0.48 ± 0.09a 0.35 ± 0.09b

FEve 0.42 ± 0.03 0.39 ± 0.02 0.39 ± 0.02 0.37 ± 0.04
FDiv 0.76 ± 0.03a 0.69 ± 0.03ab 0.73 ± 0.02a 0.58 ± 0.05b

FSpe 2.21 ± 0.08a 1.90 ± 0.10b 2.07 ± 0.04ab 0.87 ± 0.01c

Superscripts (a,b,c) represent pairwise differences tested at P ≤ 0.05.
dFunctional richness.
eFunctional evenness.
fFunctional divergence.
gFunctional specialization.
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palm than elsewhere.
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critical to evaluating strategies to enhance biodiversity
within agricultural landscapes (Edwards et al., 2010).

The dramatic decline that we observed in FRic following
conversion of forest to oil palm indicates that the loss of
forest species (Fig. 3) was not counterbalanced by the addi-
tion of new, disturbance-tolerant species that could either
fill vacant functional niches or occupy different functional
roles (Table 3; Fig. 3, Supporting Information Figs S1
and S2a,d). The community changes in oil palm show
strong evidence for environmental filtering (SES < 0,
Fig. S2a,b). In particular, the absence of rollers within oil
palm may have been due to altered microclimatic conditions
including increased soil temperatures (Lucey & Hill, 2012)
decreasing the survival of roller larvae, which typically
occur at shallower depths within the soil (Sowig, 1995;
Larsen, 2012). We also found a higher proportion of small-
bodied species in oil palm, possibly because maximum tem-
peratures in this habitat come closer to exceeding the
thermoregulatory tolerance of larger-bodied species, again
leading to reduced survival (Nichols et al., 2013). In addi-
tion, many dietary generalists (feeding on ≥3 bait types) and
species feeding on dung plus carrion were absent from oil
palm (Supporting Information Table S2), in contrast to pre-
vious work indicating that species with broader diets were
less vulnerable to local extinctions (Qie et al., 2011).

Our results suggest that the transition from primary or
logged forest to oil palm results in such environmental
stresses, particularly due to microclimatic changes, that
large subsets of forest species are driven to local extinction
irrespective of their dietary breadth or specialization. The
absence of rollers within oil palm is particularly important
in functional terms, given that they are highly abundant in
forests and are behaviourally distinct from tunnellers and
dwellers, moving nutrients and seeds away from concen-
trated dung piles and burying dung balls at shallower
depths. In addition, dung removal rate, tunnel depth and
volume of dung buried are all positively related to body size,
and so the smaller species occurring within oil palm are
likely to bury less dung and at lower depths (Slade et al.,
2007; Nichols et al., 2008). Changes in the diversity and
abundance of nocturnal versus diurnal species may also lead
to longer exposure of dung at the surface, resulting in higher
gaseous losses of nitrogen (Yamada et al., 2007). Conse-
quently, our results suggest that the functional ability of
dung beetles in oil palm is likely to be compromised.

The much lower taxonomic and functional diversity of
dung beetles in oil palm also highlights the potential losses
that could arise from further degradation of logged forests,
for instance through wildfires, which can also act as strong
environmental filters and alter microclimatic conditions
within the forest (Peres, Barlow & Haugaasen, 2003; Slik &
Van Balen, 2006; Lindenmayer et al., 2009; Brodie, Post &
Laurance, 2012). Measuring additional functional traits
could help in predicting the longer-term impacts of logging
and forest conversion. For instance, measures of
endothermy and fecundity could aid our understanding
of the impacts of microclimatic changes and the likelihood
of extinction lags caused by disturbance.

In conclusion, we provide new data on the impacts of
land-use change on tropical dung beetles. Contrary to our
expectations, even repeated timber harvests did not simplify
the functional structure of dung beetle assemblages in
Bornean rainforests, despite significant changes in species
composition, highlighting the importance of protecting
these degraded, logged-over forests. However, conversion of
forests to oil palm greatly reduced both species and func-
tional diversity. We suggest ecosystem functioning will be
negatively impacted in oil palm, but quantifying the precise
consequences across all habitats remains a major knowledge
gap. For instance, the retention of forest patches and ripar-
ian strips within oil palm estates could support ecosystem
services such as nutrient recycling within plantations, but
data are needed to address this issue. Our results support
previous findings that traditional metrics such as species
richness and composition can hide important information
about the impacts of land-use change on species traits and
functional ecology. The two approaches provide different
but complementary mechanisms for understanding human
impacts on biodiversity, which can contribute to future con-
servation and agricultural management decisions (Loyola
et al., 2008; Vandewalle et al., 2010; Hidasi-Neto et al.,
2012).
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Figure S1. Functional dissimilarity measured as the overlap
of species within functional space. Species are plotted within
four-dimensional functional trait space. (a) Axes 1 and 2:
primary and twice-logged forest (light grey), once-logged
forest (mid-grey) and oil palm (dark grey), and (b) Axes 3
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and 4: primary, once-logged and twice-logged forest (light
grey); oil palm (dark grey).
Figure S2. The mean standardized effect size (SES) of
functional diversity metrics: (a) functional richness; (b)
functional evenness; (c) functional divergence; (d) func-
tional specialization in each habitat. SES = [(Observed −
mean Expected)/SD Expected]. Expected functional metrics
are calculated from 1000 randomizations of the regional
pool of species in which species frequency occurrence and
species richness are maintained. SES > zero indicates
greater functional diversity than the regional species pool.

Table S1. Broad trait categories. Scale indicates the type of
trait, functional trait shows how the trait is measured and
functional importance suggests the impacts of the trait for
ecosystem functioning.
Table S2. Abundance of species in each habitat, abbrevia-
tions: primary forest (P), once-logged forest (1L), twice-
logged forest (2L) and oil palm plantation (OP), the
functional traits used: the abundance of species visiting
dung, carrion, fruit and fungi bait types, the average body
size (measured to the nearest mm), the guild and the diel
activity of species.
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