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2Instituto de Ingenieŕıa Biomédica, Universidad de Buenos Aires, Buenos Aires, Argentina
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Background and Objectives. The extensive use of electrocardiogram (ECG) recordings during experimental protocols using small
rodents requires an automatic delineation technique in the ECG with high performance. It has been shown that the wavelet
transform (WT) based ECG delineator is a suitable tool to delineate electrocardiographic waveforms. The aim of this work is to
implement and evaluate the ECG waves delineation inWistar rats applyingWT.We also describe the ECG signal of theWistar rats
giving the characteristics of its spectrum among other useful information. Methods. We evaluated a delineator based on WT in a
Wistar rat electrocardiograms database which was annotated manually by experienced observers. Results. The delineation showed
an “overall performance” such as sensitivity and a positive predictive value of 99.2% and 83.9% for P-wave, 100% and 99.9% for
QRS complex, and 100% and 99.8% for T-wave, respectively. We also compared temporal analysis based ECG delineator with the
WT based ECG delineator in RR interval, QRS duration, QT interval, and T-wave peak-to-end duration. The results showed that
WT outperforms the temporal delineation technique in all parameters analyzed. Conclusions. Finally, we propose aWT based ECG
delineator as a methodology to implement in a wide diversity of experimental ECG analyses using Wistar rats.

1. Introduction

Electrocardiograms (ECGs) are broadly used for diagnosing
many cardiac pathologies as well as for researching on
experimental animals. Since physiological information is
present in ECG intervals and amplitudes, it is essential to
develop delineation algorithms to obtain automatic charac-
teristic wave peaks and boundary ECG points. Indeed, the
performance of the ECG analysis depends on the accuracy
of the technique employed in the electrocardiographic signal
delineation. Moreover, ECG data emerging from long-term
recordings, for example, Holter in humans or experimental
protocols in animals, demand automatic ECG delineation
with a good performance. ECG signal presents patterns with

different frequency contents that repeat cyclically beat-to-
beat. Typically, in the ECG delineation process, the algorithm
firstly detects the QRS complex [1], which is the most
pronounced wave of the heartbeat. Lastly, the delineator
locates the onset, the peak, and the end of the P-wave, the
QRS complex, and the T-wave.

There are several completely automatic methods for the
delineation of ECG waveforms used in the literature, which
are based on the phasor transform [2], mathematical models
[3, 4], Hilbert transform [5], correlation analysis [6], template
matching [7], 𝐾-nearest neighbor [8], artificial neural net-
works [9–11], hidden Markov model, hybrid hidden Markov
models combined with the wavelet transform [12, 13], wavelet
transform (WT) [14, 15], genetic algorithms, fuzzy logic
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methods, support vectormachines, self-organizingmaps, and
Bayesian techniques [16], with each approach exhibiting its
own advantages and disadvantages. Although various tech-
niques have been considered, most of the studies presented
in the literature use the wavelet transform technique, and
researchers claim that this is the best method for extracting
features from the ECG signal [11, 17, 18]. Moreover, analyzing
several techniques mentioned previously [2–8], it can be
observed that the WT technique presents the best results in
terms of robustness and noise immunity [14]. This is because
the WT method allows information extraction from both
frequency and time domains, different from what is usually
achieved by the traditional Fourier transform which permits
the analysis of only the frequency domain.This way, the ECG
can be described at different scales of temporal and frequency
resolution, and thus high frequency waves (such as the QRS
complex) can be distinguished from low frequency waves
(such as P- and T-waves). Moreover, the WT can be easily
implemented with a cascade of Finite-Impulse Response
(FIR) filters [19]. In summary, the wavelet transform based
ECG delineator (WTD) is a suitable tool to detect waveforms
(such asmono- or biphasic P-wave, QRS complex, andmono-
or biphasic T-wave) and is useful in different applications.
Numerous methods, based on the wavelet transform ECG
delineator technique proposed by Mart́ınez et al., have been
proposed [14–24].

As part of several research topics, a wide diversity of
works utilized ECG analysis in small rodents. The rat and
mouse models for research offer advantages with respect to
larger animals such as lower cost, less physiological variabil-
ity, and the possibility of using transgenic models. Normann
et al. [25] analyzed ECG changes in rats during myocardial
necrosis and infarction, both cases induced experimentally.
Sgoifo et al. [26] showed ECG responses to different acute
stressors in healthy rats, computing the heart rate variability
(HRV) scores. Previously, they have implemented a software
package developed to measure RR intervals and to inter-
actively detect rhythm disturbances [27]. Also, telemetry
systems have been widely used in rat experiments to analyze
the relationship between ECG characteristics and behavioral
responses during and after environmental challenges [28, 29].
Kuwahara et al. studied power spectral analysis ofHRV in rats
to assess autonomic nervous activity [30].They developed an
offline ECG analysis in order to detect R-waves and calculate
the HRV. On the other hand, one investigation revealed
that the stability of HRV estimators, for both time and
frequency domain analysis in unrestrained rats, was highly
dependent on the average heart rate (related to physical
rat activity) as well as the length of the ECG records [31].
Moreover, Opitz et al. showed evidence that reperfusion can
improve arrhythmia-related mortality by the prevention of
ventricular fibrillation episodes [32]. They analyzed ECG
offline in a semiautomatic fashion, as previously reported
[33]. A recent work, making use of ECG biomarkers such as
RR interval, QRS complex, andQT interval, showed that con-
comitant administration of trigonelline and sitagliptin pro-
duced a cardioprotective effect in contrast with monother-
apy in diabetic rats [34]. Also, several toxicological studies

showed the usefulness of ECG analysis in small rodents
[35].

The aim of this work is to develop, validate, and pro-
vide a methodology for implementing WTD for Wistar rat
experimental protocols. We offer here a robust and noise-
immune tool to delineate all the characteristic points of the
ECG and not only the one corresponding to the R-wave.
Complete delineation of the ECG allows evaluating not only
the HRV but also the PR interval and P-wave duration in
order to analyze atria activation and QRS complex with the
aim of evaluating ventricular depolarization and QT interval
for measuring ventricular depolarization and repolarization
jointly and T-wave peak-to-end interval to quantify transmu-
ral ventricular repolarization. Also, amplitudes of the P-, R-,
S-, and T-waves are in general all altered in heart diseases.

In this sense, we have focused on the following: (1)
study the ECG signal in Wistar rats and its corresponding
power spectral density, (2) implement and evaluate WTD in
an experimental model widely used in research, specifically
Wistar rats, and (3) make a comparison between two ECG
delineation systems in Wistar rats, such as WTD versus
temporal analysis based ECG delineator (TAD). Finally,
despite the existence of software that detects and analyzes
ECG parameters for different species such as pigs, dogs,
rabbits, guinea pigs, mice, and rats [34, 36–38], to our
knowledge, WTD applied to Wistar rats has not previously
been described.

2. Materials and Methods

2.1. Wistar Rats ECG Database. In order to analyze the WTD
algorithm in small rodent models, a Wistar rat database
(WRDB) was developed. This database was acquired at the
Institute of Medical Research “Alfredo Lanari” that belongs
to the University of Buenos Aires, Argentina. Its contains a
group of 57 Wistar rats, 29 males and 28 females, which were
included in the study. When the measurements were carried
out, this group contained 30 adult animals (424.5 ± 54.5 g)
which were above 4 months of age and 27 young animals
(245.5 ± 43.5 g) which were below 1 month of age. All these
animals were in sinus rhythm at the time of ECG recordings.

After anesthesia with ketamine (75mg/kg) and Rompun
(0,75mg/kg xylazine) administered subcutaneously and once
the animal had been stabilized, the ECG signals were contin-
uously recorded for at least 15 minutes in I-II, V1, V3, and V6
leads.

The ECG was acquired using EcoSur S.A. equipment
(Buenos Aires, Argentina), digitized at 12-bit resolution with
a sampling frequency of 1 kHz. These recordings were stored
on a computer hard disk with custom-made software for
posterior analysis.

In this work, we have only analyzed the delineation
technique using lead II of the ECG, because it has shown
robust P-, R-, S-, and T-waves. Lead II can be achieved in
the Wistar rat by placement of the negative electrode near
the right shoulder and the positive electrode to the left of
the xyphoid space, in the same way as the Einthoven triangle
(right arm position in the negative electrode and left leg
position in the positive electrode).
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Analysis of the ECGvariableswas carried outmanually by
two experienced observers (Ob#1 andOb#2) using a computer
calibrated cursor. Each ECG recording (57 in total) was
annotated for each expert in 20 beats (1140 beats annotated),
that is, a total of 2280 cardiac beats in order to validate WTD.

This process required manual measurement of 9120 char-
acteristic ECG points by each expert observer in rat ECG
measurement, that is, a total of 18240 electrocardiographic
marks. The background noise level was 20 microV. To verify
the reproducibility of the measurement methodology, 500
randomly selected recordings were analyzed by a third expe-
rienced observer (Ob#3). Animals were cared for according
to Argentina’s National Drug, Food and Medical Technology
Administration Standards (Regulation 6344/96) and the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals (NIH pub. number 85-23, revised 1996).

2.2. Temporal and Spectral Characteristics of the Wistar Rat
ECG Signal. It is important to highlight that Q-wave does
not exist in lead II WRECG [35], and hence we assumed
the QRSon temporal position as the start of the ventricular
depolarization process. We also observed some special elec-
trocardiographic characteristics in WRECG, for example, as
short QT interval, the absence of Q-wave in most ECG leads
(in lead II, it does not exist), and the lack of ST segment. So,
due to the absence of the ST segment inWRECG, we observed
that the beginning of the T-wave was located in the same
position as the end of the QRS complex.

Also, normal ventricular repolarization was character-
ized by a J-wave which was identified as the down-sloping
portion of the ST segment and could be attributed to the
heterogeneity of the ventricular wall, as was described by
Antzelevitch and Fish [39], who explained this phenomenon
by IKto-mediated current present in the epicardium, but not
endocardium.

We calculated the power spectrum of WRECG signals
using 300 beats from six animals. This diagram represented
the QRS complex and P- and T-waves power spectrum
separately (Figure 2(b)). The ECG lead II has been used in
order to plot the ECG power spectrum in Wistar rats. As
far as we know, no results exist regarding ECG spectrum
in Wistar rats. While, in HECG, frequency components are
approximately between 0.05 and 40Hz, the range of WRECG
goes from 4-5 to 120Hz, as we can observe in Figure 2.

The spectral characteristic of a normal P-wave in humans
is usually low frequency, below 10–15Hz. Instead, most of the
energy of the P-wave in rats is in the band between 20 and
60Hz (see Figure 2). The most important frequency content
of the QRS complex in humans is approximately between 5
and 25Hz, while in WRECG, this energy is situated in the
band between 30 and 80Hz. Finally, the T-wave in humans
is similar to a P-wave below 15Hz approximately, but with
higher amplitude than P-wave, while in Wistar rats the T-
wave ranges from 5 to 80Hz.

2.3. Wavelet Transform. The WT provides an alternative to
the short time Fourier transform for the analysis of non-
stationary signals, utilizing short analysis windows at high
frequencies and long analysis windows at low frequencies.

This can be thought of as the decomposition of a signal in
a set of basis functions, obtained by means of dilation (a)
and translation (b) of a single prototype function wavelet
called 𝜓(𝑡). The WT of a signal 𝑥(𝑡) is defined as𝑊�푎𝑥(𝑏) =
(1/√𝑎) ∫

+∞

−∞
𝑥(𝑡)𝜓((𝑡−𝑏)/𝑎)d𝑡, with 𝑎 > 0. As the scale factor

a increases, the wavelet becomes wider, giving information
about lower frequency components of the signal, and upside
down. The parameters 𝑎 and 𝑏 can be discretized according
to a dyadic grid, being 𝑎 = 2�푘 and 𝑏 = 2�푘𝑙. The transform
is then called dyadic wavelet transform, with basis functions
𝜓�푘,�푙(𝑡) = 2

−�푘/2𝜓(2−�푘𝑡 − 𝑙) with 𝑘, 𝑙 ∈ 𝑍+.
All details of WTD have been extensively described in

[14]; therefore, discrete time implementation is not explained
in this work. The frequency responses of the first five scales
were computed and obtained in the same way as Mart́ınez et
al. did [14].

However, it is important to highlight that the ECG delin-
eation algorithm performs the detection of all characteristic
points of the ECG waves using a quadratic splineWT, which,
at scale 2�푘, is proportional to the derivative of the filtered
version of the input ECG signal with a smoothing function
at the same scale 2�푘.

In this sense, the zero crossings of the WT correspond
to the minimum or maximum of the smoothed ECG signal
at different 𝑘 scales, and the maximum absolute values of
the WT are related to maximum slopes in the smoothed
cardiac electric signal. The local maximum, minimum, and
zero crossings were used at different scales (21 to 25) in order
to identify the characteristic points of the ECG signals.

2.4. WT Based Delineation Technique. In this section, we
explain the delineation algorithms applied to Wistar rat
electrocardiograms (WRECG).

Because a priori we did not know the WRECG spectrum
characteristics, we took the greatest amount of information
that we could get, using a sampling rate of 1 kHz. Our system
has been based on [14, 15]. There, the sampling frequency
of HECG signals was 250Hz. So, as Mart́ınez et al. indicated
in [14], we would normally have to redesign the filters
according to the new sampling frequency and rescale the filter
banks. But as we have mentioned before, WRECG spectrum
bandwidth changed with respect to HECG spectrum and this
balanced the cutoff frequencies in the WT scales, so that
we did not need to change filter bank cutoff frequencies as
described below.

TheWT scales were compressed almost four times when
the sample rate increased in the same order, producing a
relative increase in the cutoff frequencies of each filter.That is,
each curve belonging to a filter or a WT scale remained fixed
(in the absolute sense of the equivalent frequency response)
but changed its cutoff frequency in a relative way due to the
change produced in the sampling frequency.

On the other hand, the input signal changed its band-
width as it has beenmentioned before.TheWRECG signal did
not have the same spectrum as HECG signal and it changed
its maximum frequency, which increased nearly 3 times from
40Hz to 120Hz, compensating this way its frequency situa-
tion regarding the filters or wavelets scales which remained
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Figure 1: ECG beats delineation fromWRDB. In (a), we can observe the QRS complex with its WT at scales 22 and 23 and the peak and QRS
boundaries obtained by the algorithm proposed.The 𝑛𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 positions were located in scale 22, while 𝑛𝑓𝑖𝑟𝑠𝑡 was located in scale 23. In
(b), we can see the P-wave and T-wave with their WT scales 24 and 25 and marks of peaks, onset, and end of characteristics ECG points. The
𝑛𝑝𝑜𝑠𝑡, 𝑙𝑎𝑠𝑡, and𝑚𝑖𝑛𝑇 positions were located in scale 24, while 𝑛𝑙𝑎𝑠𝑡 was located in scale 25.

constant (in absolute terms). The compensatory effect kept
the entire signal spectrum covered by the same number of
filters (or scales) designed previously for validation when
the ECG human sampling rate was four times lower. Finally,
the maximum frequency spectrum of the signal in WRECG
(120Hz) coincided approximately with the cutoff frequency
of a particular filter bank or WT scale (𝑘 = 2).

2.4.1. QRS-Complex Detection. We built a vector containing
maximum and minimum values above a certain threshold of
scale 2 in WRECG and afterward a window of 15ms in steps
of 2ms was shifted. Whenever a maximum following a lower
maximum in that window is found, we call 𝑛𝑝𝑟𝑒 to the first
maximum and 𝑛𝑝𝑜𝑠𝑡 to the second maximum. Then (in the
modulus of scale 2) the minimum or lowest value between
𝑛𝑝𝑟𝑒 and 𝑛𝑝𝑜𝑠𝑡 was considered as the R-wave position in
WRECG (see Figure 1(a)).

2.4.2. QRS-Complex Delineation. The algorithm started from
the R-wave previously detected, which had to be flanked by
a pair of maximum moduli at |𝑊22𝑥(𝑛)| in WRECG that were
called 𝑛𝑝𝑟𝑒 and 𝑛𝑝𝑜𝑠𝑡 (see Figure 1(a)).

From the position of maximum value 𝑛𝑝𝑜𝑠𝑡, we have
searched to the right within a window size of 15ms until
a maximum was found in |𝑊23𝑥(𝑛)| (see Figure 1(a)); this
maximum corresponds to the end of the S-wave which
also corresponds to the end of the QRS complex, so-called
QRSend.

For the onset of the QRS complex, we search in |𝑊23𝑥(𝑛)|
from the R-wave previously detected but to the left within

a window of 15ms long until a maximum was found; this
point was called 𝑛first. Note that the Q-wave is not present in
the rat signal, so from that position we searched a new point
that conforms to a lower value with respect to the following
threshold:

𝜉QRSon = 0.35
𝑊23𝑥 (𝑛first)

 . (1)

2.4.3. T-Wave Delineation. For each R-wave position previ-
ously detected, we applied an analogous procedure to that
applied in the QRS-complex boundaries detection. This way,
we found the maximum after that corresponding R-wave,
but this time in the scale |𝑊24𝑥(𝑛)| we call it 𝑛𝑝𝑜𝑠𝑡 (see
Figure 1(b)). Note that, due to the absence of the ST segment
in WRECG, we observed that the beginning of the T-wave
was located in the same position as the end of the QRS
complex. Starting from this 𝑛𝑝𝑜𝑠𝑡, we searched to the right
for a maximum within a window size of 100ms. Once this
maximum was detected, we searched to the right in another
window size of 100ms to find a minimum; we call it 𝑀𝑖𝑛𝑇
(see Figure 1(b)). The peak location of the T-wave had to be
2ms before𝑀𝑖𝑛𝑇. From the location of the aforementioned
minimum, we searched the following maximum so-called
𝑛last. Finally, having found that point, 𝑛𝑙𝑎𝑠𝑡, we searched in
a new window of 100ms until we found a point in |𝑊25𝑥(𝑛)|
(see Figure 1(b)) that was lower than the following threshold:

𝜉Tend = 0.45
𝑊25𝑥 (𝑛last)

 . (2)

This value corresponds to the T-wave end position.
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Figure 2: Representative power spectrum of ECG in human beings (a) and ECG in Wistar rats (b). The location of spectral contents in the
P-wave, the QRS complex, and the T-wave can be observed.

2.4.4. P-Wave Delineation. The algorithm of P-wave delin-
eation was analogous to the T-wave algorithm previously
detailed (see Figure 1(b)). In this case, we searched to the
left of the R-wave. The search windows to detect maximums
and minimums were 40ms of maximum length and the
thresholds to detect the onset and offset of the P-wave were

𝜉Pon = 0.6
𝑊24𝑥 (𝑛first)

 ,

𝜉Pend = 0.9
𝑊24𝑥 (𝑛last)

 .
(3)

2.5. TA Based Delineation Technique in WRECG. In order to
extend the WRDB analysis, we compared the WTD technique
versus the TAD technique [40] using clinical ECG parameters
such as RR interval, QRS duration, QT interval duration, and
T-wave peak-to-end duration. Below, we briefly explained the
TAD technique as was described in the software LabChart 7
Pro v7.3.1, ADInstruments, Sydney, Australia [40].

TheR-wavewas identified as themost positive value in the
neighborhood of the cardiac beat selected.QRSon andQRSend
were determined by searches on each side of the R-wave for
regions where the slope, computed as dV/dt, decreased to
sufficiently low values. Moreover, the isoelectric level was
computed as the median of all data values preceding QRSon.
In this sense, Ppeak was the point of the greatest absolute
deviation from the isoelectric level, in an interval from pre-P-
wave to just beforeQRSon.TheP-wavewas detected only if the
peak exceeded a measure of uncertainty (the mean absolute
deviation) in the isoelectric value. Pon was determined from
a straight line fitted by least squares to points preceding Ppeak
(those points in the range 15–60% of the peak were used).The
intersection of this line with the isoelectric level was Pon; the
search Pend was analogous to Pon.

With respect to the T-wave delineation, searching was
carried out for the first significant peak of either sign, starting

from a point after QRSend. When T-wave was selected, the
starting point was close to QRSend. If it was not selected, the
starting point was further to the right. If a suitable peak was
found, a straight line was fitted by least squares to the tail of
the wave, over a data range 70–30% of Tpeak. Finally, Tend was
found as the intersection of this line with the isoelectric level.

2.6. Validation and Evaluation of WTD. The evaluation in
WRDB was done between the reference ECG annotations
provided by two experienced observers (gold standard) and
WTD implemented. We calculated the sensitivity as Se =
Tp/(Tp + Fn) and the positive predictive value as 𝑃+ = Tp/(Tp
+ Fp). Tp (true positive) detection was considered when the
ECG characteristic point was annotated and the algorithm
detects its presence within a window < 25ms in WRDB. Fn
(false negative) detectionwas computedwhen the delineation
algorithm located an ECG characteristic point which was
not annotated by the expert. Lastly, a Fp (false positive) was
calculated as the number ofmisdetections (the algorithm fails
to locate the annotated characteristic ECG point within the
abovementioned tolerance).

When there was no annotation of the ECG characteristic
point, it was not possible to knowwhether the expert decided
that there were no ECG characteristic points to mark or
simply was not confident to mark it [14, 23]. Whatever the
reasonwas, the𝑃+ valuewas computed under the assumption
that each absent mark meant that there was no waveform.
Therefore, the computed 𝑃+ was interpreted as a lower limit
so-called 𝑃+min (see Table 1).

The mean value “Me” of the errors was computed as the
temporal position difference between reference annotation
and automatic delineation, and the average standard devia-
tion “SD” of the error was computed by averaging the intra-
ECG recording standard deviation (see Table 1).
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2.7. Statistical Analysis in Comparison with Temporal Tech-
nique. Firstly, D’Agostino-Pearson’s normality test was ap-
plied with the aim of quantifying the discrepancy between
the ECG indices (RR interval, QRS duration, QT interval,
and TPE duration) and ideal Gaussian distributions for
each case. Secondly, because distribution variables were non-
Gaussian, we applied the two-sided Mann–Whitney 𝑈 test
in unpaired samples and the Wilcoxon signed rank test in
paired samples. Finally, in order to determine the statistical
significance of ECG indices between temporal analysis and
wavelet transform based ECG delineators, nonparametric
tests were applied. When the 𝑝 value was <0.05, differences
were considered statistically significant.

3. Results

Figure 1 shows representative ECG beats obtained from
WRDB. In (a), we can observe one beat with its QRSon, Rpeak,
and QRSend points detected, and their WT at scales 22 and 23
used for that purpose. Likewise, Figure 1(b) shows one beat
with its Pon, Ppeak, Pend, Tpeak, and Tend characteristic points
detected, and their WT at scales 24 and 25 utilized during the
delineation process.

Figure 2 presents the HECG (a) and WRECG (b) power
spectrum characteristics. This diagram serves as a rough
guide of where to locate the spectral components despite
variations between beats of different leads, origins, and
subjects.

The results obtained in WRDB are given in Table 1; we
observe the “overall performance” of WTD, which has been
calculated as amean representative value of Se and𝑃+ in each
electrocardiographic wave, that is, one unique value for P-
wave, T-wave, and QRS-complex, respectively (see Table 1).
Also, in this table, we show interobserver (Ob#1 versus Ob#2)
annotation differences expressed as mean and SD, which
were calculated over the same 1140 cardiac beats selected for
manual measurement.

The purpose of Figure 3 is to compare two delineation
techniques, namely, temporal analysis based ECG delineator
(TAD) and wavelet transform based ECG delineator (WTD),
for measuring ECG parameters with clinical utility, such as
RR interval, QRS duration, QT interval duration, and T-wave
peak-to-end duration. Box and whiskers plots of the mean
value and the standard deviation of both WTD (Section 2.4)
and TAD (Section 2.5) techniques are reported.

4. Discussion

The ECG waves delineation in Wistar rats provides fun-
damental features such as amplitude and duration of each
cardiac beat. This information can be utilized in order to
evaluate pathologies, behavior, and/or drug effects [35]. In
this sense, it is necessary to achieve very good performance
to detect characteristic waves, peaks, and boundaries of ECG
points.

4.1. The WTD Performance in Wistar Rats. We have imple-
mented WTD in signals obtained from WRDB, as we can

see in Table 1. We observed very good sensitivity and
positive predictive values with respect to both experienced
observers (Ob#1 and Ob#2) in P-wave, QRS complex, T-
wave delineation, and QRS detection. Taking into account
the delineation of the onset, the peak, and the end, we
observed that Se values were higher than 99% in the P-
wave, equal to 100% in the QRS complex and T-wave, and
likewise 100% in the QRS detection. Regarding the positive
predictive value, it ranged from 82% up to 87% in the P-
wave delineation and was approximately 100% in the QRS-
complex and T-wave delineation. Also, in the QRS detection,
it was approximately 100%. We did not observe statistically
significant differences between the results presented by both
observers (𝑝 = NS). In conclusion, we observed a high
performance to delineate WRECG signals regardless of the
observers, that is, Ob#1 or Ob#2. Also, in order to verify
the reproducibility of the measurement methodology, 500
randomly selected ECG recordings were analyzed by a third
observer (Ob#3). The interobserver differences between both
Ob#1 versus Ob#3 and Ob#2 versus Ob#3 were not significant
(NS).

The difference in performance between sensitivity and
positive predicted value in the data is presented only in the
detection of the P-wave, but not in the rest of the waves, and
is due to different factors, such as the absence, low amplitude,
M-shape, and/or biphasic morphology of the P-wave. This
leads to having more false positives (Fp) than false negatives
(Fn), which finally explains the difference in performance.

4.2. Comparison with Temporal Techniques. In order to ana-
lyze the delineation performance in WRECG, we compared
WTD proposed in this work with the commercial soft-
ware LabChart 7 Pro version 7.3.1 (ADInstruments, Sydney,
Australia, [40]); the latter was based on TAD technique.
Electrocardiographic parameters such as RR interval, QRS
duration, QT interval duration, and T-wave peak-to-end
duration were computed from both methods named above
using frontal ECG lead II.

In Figure 3, we can observe box and whisker plots of the
mean (a) and standard deviation (b) of the mean values of 57
Wistar rats (40 beats processed for each animal) for relevant
ECG parameters.

When we compared the WTD technique with the TAD
technique, we observed that our algorithm outperforms
clearly the temporal technique when the standard deviation
values were computed. Moreover, statistically significant
differences between both delineation techniques can be
observed.

4.3. ECG Variables in Normal and Anesthetized WRs.
Recently, the ECG time intervals (registered in lead II) have
been presented in unanesthetized WRs [41]. Representative
values, the mean, and the range from the minimum to the
maximum values included between square brackets were
shown in [41] as seen below: HR 460 [228–600] bpm, P 13
[10–16]ms, PR 40 [33–50]ms, QRS 17 [12–26], and QT 66
[38–80]ms.

In order to compare our results with [41], we have com-
puted the average values mean ± SD of the animals used
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Figure 3: Box andwhisker plots showing themean (a) and standard deviation (b) values for different ECGparameters inWistar rats.TheECG
parameters measured were the RR interval (RR), QRS duration (QRS), QT interval duration (QT), and T-wave peak-to-end duration (TPE).
The temporal analysis based ECG delineator (TAD) was represented with clear boxes and the wavelet transform based ECG delineator (WTD)
was represented with dark boxes. ∗𝑝 < 0.05, †𝑝 < 0.001, and ‡𝑝 < 0.0001 indicate statistically significant differences of ECG parameters
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in the present work, which are detailed below: HR 251 ±
22 bpm, P-wave 24.5 ± 2.0ms, PR interval 54.7 ± 5.3ms, QRS
complex 17.9 ± 1.6ms, and QT interval 83.3 ± 4.0ms. It can
be observed that the major discrepancy was in the P-wave
definition. Moreover, representative amplitude values, mean,
and range were reported in [41] as seen below: P 110 [20–200]
uV, Q 0 uV, R 1060 [220–1500] uV, S 200 [0–500] uV, and T
150 [50–300] uV. Also, we have calculated the average values
mean± SD, which are presented below: P-wave 93.8±40.6 uV,
Q-wave 0 uV, R-wave 610.8 ± 140.1 uV, S-wave −385.2 ±
152.3 uV, and T-wave 163.8 ± 58.4 uV. The values obtained
in this work do not present discrepancy with unanesthetized
WRs presented in [41]. We emphasize that normal variants
presented in [41] cannot be considered abnormal. Finally, it
has been concluded that the values of the ECG parameters in
anesthetized WRs did not change rhythm or morphology in
any way or affected the results of the delineation.

5. Conclusions

There are a lot of experimental works which have shown
the utility of ECG in small rodents in order to discern the
mechanisms of action of drugs, infer disturbances of the
cardiac rhythm and electrical conduction, detect the pres-
ence of ischemic injury, and analyze behavioral responses,
among others. In spite of being a useful tool, it is not
sufficient as a standalone methodology to describe abnormal
electrophysiological mechanisms. However, when combined
with other electrophysiological techniques that can only be
carried out in animal models, the ECG analysis may be used
to obtain a more complete understanding of the electrical
cardiac mechanism. Also, it is important to highlight that
replacement of printed ECG with digitized ECG, as well
as delineation algorithms with high performance values, is
collectively streamlining ECG assessments in experimental
protocols.

In the present work, we have shown and validated the
capability to perform QRS detection and location of ECG
wave boundaries using WTD in ECG Wistar rats. Also,
the methodology implemented has provided reliable and
accurate delineation in the ECG in comparison with the
TA technique delineation. Finally, due to the importance
of having a high performance in the ECG delineated stage,
we propose the use of WTD during experimental protocols
which use Wistar rats.

Acronyms

ECG: Electrocardiogram
HECG: Human being electrocardiograms
𝑃+: Positive predictive value
Se: Sensitivity
TA: Temporal analysis
TAD: Temporal analysis based ECG delineator
WRDB: Wistar rats database
WRECG: Wistar rats electrocardiogram
WT: Wavelet transform
WTD: Wavelet transform based ECG delineator.
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