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Small Rho-GTPases are enzymes that
are bound to GDP or GTP, which

determines their inactive or active state,
respectively. The exchange of GDP for
GTP is catalyzed by so-called Rho-
guanine nucleotide exchange factors
(GEFs). Rho-GEFs are characterized by
a Dbl-homology (DH) and adjacent
Pleckstrin-homology (PH) domain that
serves as enzymatic unit for the GDP/
GTP exchange. Rho-GEFs show different
GTPase specificities, meaning that a
particular GEF can activate either mul-
tiple GTPases or only one specific
GTPase. We recently reported that the
Rho-GEF Trio, known to be able to
exchange GTP on Rac1, RhoG and
RhoA, regulates lamellipodia formation
to mediate cell spreading and migration
in a Rac1-dependent manner. In this
commentary, we review the current
knowledge of Trio in several aspects of
cell biology.

Introduction

The Rho-GEF Trio was originally iden-
tified in 1996 as a binding partner of the
transmembrane tyrosine phosphatase
LAR.1 Trio is a large protein of 350 kD
that harbors three domains with putative
enzymatic activity, hence the name Trio.
Trio encodes two Dbl-homology-
Pleckstrin-homology (DH-PH) Rho-GEF
units with different specificities. The N-
terminal DH-PH unit (TrioD1) mediates
GDP to GTP exchange on Rac1 and
RhoG, whereas the C-terminal DH-PH
unit (TrioD2) activates RhoA.1-3 In addi-
tion to the two GEF units, Trio also
includes an N-terminal putative lipid-
transfer SEC14 domain, several spectrin-
repeats, two SH3-domains, an Ig-like

domain and a C-terminal serine/threonine
kinase domain (Fig. 1).4-8 Using DomPred
Protein Domain Prediction Server (freely
available at http://bioinf.cs.ucl.ac.uk/
dompred) and based on the protein
sequence, we predict that Trio has nine
spectrin-repeats at the N-terminus. Shortly
after the discovery of Trio, a closely related
protein was identified that was named
Kalirin.9-11 Trio and Kalirin share 68%
nucleotide and 65% amino acid sequence
identity, but whereas Trio is ubiquitously
expressed, Kalirin expression is mainly
confined to the central nervous system.1,10

Surprisingly, the N-terminal GEF unit is
almost identical between the two proteins,
showing 92% homology at the protein
level, whereas the C-terminal GEF unit
shows 67% homology.

Isoforms of Trio

Several isoforms of both Kalirin and Trio
have been identified. For both proteins, a
single gene is responsible for the expression
of Trio and Kalirin. However, due to
alternative splicing and the use of different
promoters, several isoforms are
formed.12,13 Kalirin-7 (also known as
Duo), -9 and -12 are expressed in the
brain and differ in length at their
C-terminus.13 Several Trio isoforms, Trio
A, B and D, are strongly expressed in the
brain and during development, whereas
Trio C, also known as Solo/Trio8, is
exclusively expressed in the cerebel-
lum.12,14 All these splice variants include
the N-terminal SEC14 and spectrin-
repeats as well as the first DH-PH GEF
domain. A fifth isoform, Trio E, has been
found in neuroblastoma cells and com-
prises the C-terminal GEF unit including
the kinase domain.12 Interestingly, a
sixth isoform named Tgat expresses the
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C-terminal GEF unit only and is found in
patients with adult T-cell leukemia.15

Trio and Regulatory Mechanisms

As mentioned above, Trio is a large
protein that harbors next to the two
GEF and kinase domains several other
domains that may be involved in protein
or lipid interaction. Up to now, the
mechanisms by which the individual
domains of Trio are activated and the
functional consequences of this for Trio
as a single protein are unclear. In this
section we will discuss the potential
contribution of phosphorylation, inter-
and intra-molecular interactions and pres-
ence of two GEF domains with different
specificities.

Trio and phosphorylation. Our recent
work suggests that during cell spreading
Trio is activated upon the engagement of
integrins, in particular integrin β1, since in
our studies the cells were plated on
fibronectin-coated surfaces in serum-free
conditions.16 Research by the group of Der
showed that for the exchange factor Vav1,
tyrosine phosphorylation by Lck is crucial
for its GEF function in vitro.17 However,
although Trio harbors several tyrosine
residues, it is not known if tyrosine
phosphorylation is required for Trio-
mediated GTP exchange.

Medley and colleagues showed that the
kinase domain of Trio, known to interact
with LAR, is constitutively phosphorylated
on tyrosine residues.6 The levels of
phosphorylation were further increased
when FAK was co-expressed. Trio inter-
acted with FAK through two distinct
regions: the SH3-Ig-like region and the
serine/threonine kinase domain (Fig. 1).
The authors furthermore showed that

upon phosphorylation, Trio shifted to a
more detergent-insoluble fraction.6 This
indicates that Trio tyrosine phosphoryla-
tion may trigger its interaction with the
actin cytoskeleton. However, it remains
unclear if FAK affects the GEF activity of
Trio.

Trio interaction partners. Although the
molecular mechanism of the activation of
the TrioD1 GEF domain is thus far
unclear, its ability to activate Rac1 was
shown to be regulated by interactions with
several proteins. Rac1 activation by Trio is
negatively regulated by interactions with
the F-actin capping protein CARMIL,18

the motor protein Myosin II19 and the F-
actin binding protein Tara.20 In contrast,
association of the integral membrane
protein Kidins220/ARMS (kinase-D-
interacting substrate of 220 kDa/ankyrin
repeat-rich membrane spanning) with the
spectrin-repeats of Trio was demonstrated
to promote Rac1 activation.21 In addition,
the F-actin cross-linker protein Filamin
interacted with the PH-domain of the
TrioD1 GEF unit and was required for
TrioD1-induced membrane dynamics.22

In another study by Bellanger and collea-
gues, they showed that the PH domain of
TrioD1 is involved both in regulating the
catalytic activity of TrioD1 and in deter-
mining the sub-cellular localization of its
associated DH domain.23 Thus, the N-
terminal PH domain of Trio may serve as
a cytoskeletal targeting signal. Since Rac1
has also been shown to bind to the actin-
binding protein Filamin,24-26 Filamin may
function as a scaffold for Trio-mediated
Rac1 activation in a similar manner as has
been reported for the interaction of filamin
with the GEF Vav2.26

Trio and the SEC14 domain. Trio,
together with the Rho-GEFs Kalirin and

Dbs, are the only Rho-GEFs in the family
of . 80 Rho-GEF members that comprise
a SEC14 homology domain (Fig. 1).27

Proteins encompassing a SEC14 domain
are widely expressed in plants, yeast,
invertebrates and mammals, suggesting
that this domain is highly conserved.28

SEC14 domains, also known as CRAL-
TRIO domains, were shown to mediate
the interaction between proteins and
specific phospholipids,8,29,30 such as
PtdIns, PtdCho, PtdSer and a number of
different phosphorylated forms of PtdIns.
Work by the group of Whitehead showed
that removal of the SEC14 domain of Dbs
induced Dbs distribution to the periphery
of the cell, whereas full length Dbs was
found in peri-nuclear regions and co-
localized with Golgi markers.31 Thus, the
SEC14 domain in Rho-GEFs may pro-
mote membrane targeting and thereby
determine local Rho-GEF activity. The
authors furthermore showed that the
SEC14 homology domain forms intracel-
lular contacts with the PH-domain of Dbs.
Next, they showed that these contacts
must be released to achieve full trans-
formation activity by Dbs.31 Whether the
SEC14 domain of Trio plays a similar
regulatory role in the activity of the N-
terminal DH-PH domain of Trio is
unknown.

Trio and the spectrin-repeats. Spectrin-
repeats are three-helix bundle structures
that occur in many different proteins,
either as single copies, for Dbs, or in
tandem repeats, for Trio and Kalirin.32

These repeats can act in a structural way,
by coordinating cytoskeletal interactions
with high spatial precision, as well as an
intermediary for interactions with several
regulatory proteins.32 For Kalirin, it is
known that the spectrin-repeats bind to

Figure 1. Schematic representation of the structure of Rho-GEFs Trio and Kalirin. Trio and Kalirin both express two DH-PH units (green/red) and a serine-
kinase domain (yellow). Both DH-PH units are flanked by a SH3 domain (lime/rose). Trio and Kalirin harbor a SEC14 domain (royal blue) and spectrin-
repeats (sky blue) at the N-terminus.
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the cytosolic part of peptidylglycine a-
amidating mono-oxygenase (PAM).10

Later, PAM was also found to interact
with the spectrin-repeats of Trio.33 PAM is
a secretory granule membrane protein and
overexpression results in reduced filopodia
and cortical actin in AtT-20 cells.34,35

Recently, a second protein Disrupted-in-
Schizophrenia 1 (DISC1) is found to bind
to the first part, i.e., the amino-half, of the
spectrin-repeats of Trio.36 Interestingly, by
binding of DISC1 to Trio, the N-terminal
GEF domain is relieved from intramole-
cular inhibition and able to activate Rac1.

Neubrand and colleagues showed that
Kidins220/ARMS binds to the spectrin-
repeats of Trio.21 The authors additionally
showed that Kidins220/ARMS can also
bind to Kalirin. They hypothesized that
Kidins220/ARMS mediates the cellular
distribution of Trio in neuronal cells.

As with the SEC14 domain, the
relevance of the Trio spectrin-repeats is
still largely unclear, although the study of
Chen and coworkers suggest that the
repeats may bind to the first GEF domain
and thereby preventing GTPase activa-
tion.36 To fully understand its working
mechanism, future studies are required.

Trio and its two GEF domains. Trio
and its close relative Kalirin are unique in
that they can activate both Rac1 and RhoA
with two separate GEF units within the
same molecule. Since overexpression of a
full-length Trio construct induces prim-
arily Rac1- and RhoG-dependent pheno-
typical changes,16,37 it is likely that the
activation of RhoA by the TrioD2 GEF
domain is tightly regulated within the Trio
molecule. Indeed, the PH-domain that is
adjacent to the TrioD2 DH-domain was
shown to negatively regulate RhoA activa-
tion.23 This auto-inhibition was shown to
be relieved by binding of the Gaq-subunit
of heterotrimeric G-proteins to a C-
terminal extension of the PH-domain
resulting in RhoA activation.38,39

However, it remains unclear why Trio
expresses two catalytic GEF domains that
target small GTPases with apparent ant-
agonistic downstream effects, i.e., RhoA
and Rac1. At this point one can only
speculate about their function. It is
broadly accepted that Rho-GEFs deter-
mine local activity of downstream
GTPases. Therefore, it may be that the

activity of Rac1 and RhoA are required at
the same location but not at the same
time. Recently, it became clear that Rac1
and RhoA are both activated at the leading
edge of a migrating cell.40,41 Using bio-
sensor techniques for Rac1 and RhoA
revealed that first RhoA and then Rac1 is
activated.42 In such a situation, it may be
efficient to have only one GEF present
with two distinct GEF domains that can
activate both GTPases in a spatially and
temporally coordinated manner. However,
future experiments are needed to prove
such hypothesis.

For Kalirin, it has been reported that
Kalirin7 localizes to postsynaptic densities
(PSD),43 where it is tyrosine phosphory-
lated by EphB2 tyrosine kinase receptor.44

Although the phosphorylation does not
affect the GEF activity, it does change the
distribution of Kalirin and thereby changes
its mode of action. The Rho-GEF Trio
may be regulated in a similar way. Debant
and colleagues indicated that Trio may be
phosphorylated on serine and threonine
residues.1 However, it is unclear if changes
in phosphorylation status of Trio affect its
distribution or activity. Another interest-
ing feature of Kalirin is its ability to bind
specifically to iNOS, preventing dimeriza-
tion of iNOS, resulting in inhibition of
iNOS activity.45 This is an example of
Kalirin acting as a scaffold protein. The
group of Debant showed that Trio targets
Filamin in order to regulate the actin
cytoskeleton.22 Thus, Rho-GEFs such as
Trio and Kalirin cannot only act as
proteins with enzymatic activity but may
also be used by other proteins for correct
cellular targeting.

Trio and Neuronal Development

Upon the finding that UNC-73, an
important regulator of axon guidance
during nervous system development in
C. elegans, is an ortholog of mammalian
Trio,46 several studies followed dem-
onstrating a role for Trio in axon guidance
and neuronal development in Drosophila
and mammals.37,47-51 Trio was shown to
mediate Rac1 and/or RhoG activation
during neuronal growth cone migration
and axon guidance downstream of
several guidance receptors, including the
Netrin receptor,52-54 Notch,55,56 SAX-3/

ROBO18,57 and the NGF receptor.21,37 In
addition, Trio was demonstrated to be an
essential regulator of skeletal muscle
development.51,58,59 Mice deficient for
Trio died between embryonic day E15.5
and birth and showed, besides aberrant
organization of the hippocampus and
olfactory bulb, defects in secondary myo-
genesis.51 Trio was later demonstrated to
interact with M-cadherin and to regulate
myoblast fusion by mediating Rac1 activa-
tion downstream of M-cadherin engage-
ment.58 These latter findings indicate that
Trio may also be involved in regulating
cell-cell contacts.

Trio and Cancer

Seipel and coworkers have shown that the
N-terminal GEF domain of Trio induces
migration in 3T3 fibroblast cells and
promotes anchorage-independent growth.4

Our recent data underscore these find-
ings.16 Together with the knowledge that
Rac1 is involved in transformation and
tumor progression,60 these data suggest
that the ability of Trio to activate Rac1
and induce cell migration is linked to
tumor progression.

Trio was found to be highly expressed in
glioblastoma,61 breast tumors,62,63 soft tis-
sue sarcomas64 and urinary bladder
tumors.65 In addition, Trio levels are also
significantly increased in breast cancer
patients with poor predictive outcome.64

Moreover, Salhia and coworkers showed
that reduction of Trio using siRNA
perturbed the migration capacity of glio-
blastoma cells in vitro.61 These studies show
that the expression of endogenous Trio is
increased in several types of cancer, but do
not clarify if Trio activity is also hampered.

Tgat, an alternative splice variant
encoding only the DH domain of the
TrioD2 GEF unit of Trio, was identified
in patients with adult T-cell leukemia and
was demonstrated to induce cell trans-
formation and tumor formation,15,66,67

indicating that also the C-terminal GEF
domain of Trio may potentially regulate
cancer progression.

Although Trio may potentially be an
interesting target in anti-tumor therapy, it
remains to be proven if increased protein
levels or mutations indeed lead to changes
in Trio activity.
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Trio and Leukocytes

Since Trio controls spreading and migra-
tion of HeLa cells, its role in these pro-
cesses may potentially also be extrapolated
to other types of migratory cells, such as

leukocytes. Upon analysis of Trio expres-
sion in different types of leukocytes, we
were unable to detect endogenous, full-
length Trio protein in freshly isolated
neutrophils, monocytes and naïve lym-
phocytes (Fig. 2). Interestingly, we did

detect Trio in several leukemic cell lines of
both myeloid and lymphoid origin, cor-
relating Trio expression also with leukemic
cancers (Fig. 2). Trio was also detected in
immature dendritic cells that were differ-
entiated from primary monocytes (Fig. 2).
The expression of Trio in cell lines does
not prove that Trio is involved in
leukemia. However, it is an intriguing
hypothesis that Trio expression is
increased in these cell types and may
promote the exchange rate on Rac1, RhoG
and/or RhoA. Future studies will be
required to show if Trio is a potential
regulator of leukemic cell migration.
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