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A B S T R A C T

In quantum mechanics, the theory of quantum transitions is grounded on the convergence of a series of time-
dependent perturbation theory. In nuclear and atomic physics, this series converges because the dynamics of
quantum transitions (quantum jumps) are absent by definition. In molecular and chemical physics, on the con-
trary, the dynamics of “quantum” transitions, being determined by the joint motion of a light electron (or elec-
trons) and very heavy nuclei, are present by definition, and the series of time-dependent perturbation theory
becomes singular. An exception is the dynamic problem for stationary states in the Born-Oppenheimer adiabatic
approximation, when the electronic subsystem turns out to be “off” from the general dynamic process and
therefore is not dynamically full-fledged: it only forms an electric potential in which the nuclei oscillate.
Removing the aforementioned singularity can be accomplished in two ways. The first method was consisted of
introducing an additional postulate in the form of the Franck-Condon principle into molecular quantum me-
chanics, in which the adiabatic approximation is used. The second method was proposed by the author and
consisted of damping the singular dynamics of the joint motion of an electron and nuclei in the intermediate
(transient) state of molecular “quantum” transitions by introducing chaos. This chaos arises only during molecular
quantum transitions and is called dozy chaos. Formally, the damping is carried out by replacing an infinitely small
imaginary addition in the spectral representation of the complete Green's function of the system with its finite
quantity. The damping chaos (dozy chaos) leads to the continuity of the energy spectrum in the molecular
transient state, which is a sign of classical mechanics. Meanwhile, the initial and final states of the molecule obey
quantum mechanics in the adiabatic approximation. Molecular quantum mechanics, which takes into account the
chaotic dynamics of the transient state of molecular “quantum” transitions, can be called quantum-classical (dozy-
chaos) mechanics. The efficacy of the damping for the aforementioned singularity was previously shown by dozy-
chaos mechanics of elementary electron transfers in condensed matter, which is the simplest case of dozy-chaos
mechanics, and its applications to a whole number of problems, especially to the optical spectra in polymethine
dyes and their aggregates. This paper provides a regular exposition of this dozy-chaos (quantum-classical) me-
chanics of the elementary electron transfers. The main results of its applications presented in the introduction are
also described.
1. Introduction

1.1. A new theoretical approach to molecular quantum transitions and
their applications

Quantum mechanics is one of the main, if not the most important,
branches of modern theoretical physics. In the 20th century, atomic
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physics, nuclear physics, and solid state physics based on quantum me-
chanics created a fundamental basis for recent and modern technological
progress. Therefore, even in a broad scientific environment, the possi-
bilities of quantum mechanics are considered to be almost limitless. The
applicability of quantum mechanics extends, for example, to the entire
universe (see Refs. [1, 2, 3, 4]) and even the human brain and associated
consciousness (see Refs. [5, 6, 7, 8, 9]). The word “quantum” is very
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1 The simplicity is associated herein with approximating the electron's Green's
function by it in the case of a free electron and considering merely non-local
vibrations of nuclei and disregarding their local vibrations (see above) [11, 18].

V.V. Egorov Heliyon 5 (2019) e02579
fashionable in modern science (see Ref. [4]). In short, in the broad sci-
entific community, there is a very popular view that quantum mechanics
is the last and ultimate word about the essence of nature (see Ref. [9]).
The current paper discusses the limits of the applicability of quantum
mechanics based on an analysis of the internal contradictions that arise
when it is applied unbiased to a wide range of problems in molecular and
chemical physics.

Only a draft of the problem is outlined in the introduction. Later
sections will include a detailed discussion on both the qualitative and
quantitative levels. This section presents the main application results
concerning the new approach proposed by the author in theory. This
presentation differs from the generally accepted style, in which the the-
ory is first presented and then its applications to the experiment are
demonstrated. This is because most new results have already been pub-
lished [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and reported at interna-
tional conferences (see Refs. [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36]). This article is based on publications and reports
demonstrating the success of the new theory in applications to the
experiment to discuss the new problem, that has arisen in physics, at a
deeper physical level and provide a regular exposition of the theory in
elementary electron transfers in condensed matter. There are two main
reasons for simplifying this problem [11, 18]. The first involves
approximating the electron's Green's function by it in the case of a free
electron. The second is related to considering merely non-local vibrations
of nuclei and disregarding their local vibrations.

A new theoretical approach to study of molecular quantum transitions
and elementary electron transfers in condensed matter can be attributed
accordingly to molecular and chemical physics. We call this new
approach in theory dozy-chaos mechanics, or in another way, quantum-
classical mechanics. The introduction of quantum-classical (dozy-chaos)
mechanics into molecular and chemical physics has a forced character
and is associated with the elimination of an essential singularity in the
probabilities per unit time, or in other words, in the rate constants of
quantum transitions in molecular systems. This singularity arises in
quantum mechanics when it goes beyond the adiabatic approximation
and follows from the incomparability of the masses of the electron
(electrons) and nuclei and their joint motion in the process of molecular
quantum transitions. The singularity is eliminated by changing the
infinitesimal imaginary addition iγ in the spectral representation of the
complete molecular Green's function with its finite quantity [10, 11, 12].
The matching of the new theory with experiments shows that the
modulus of this imaginary addition γ is much more than the quantum of
nuclear oscillations ℏω: γ >> ℏω [14, 28, 34]. The value of γ could be
treated as the energy width of the electron-vibrational virtual levels of
the transient state, which provides a multiple exchange of motion and
energy between different vibrational modes of the nuclei and the electron
in the transient state. However, because of the aforementioned exces-
sively large value of γ, this exchange of motion and energy proves to be
crash, and it causes chaos in the motion of both the nuclei and the
electron that undergoes the transition. Since this chaos is absent in the
initial and final states and present merely in the middle of molecular
quantum transitions, it is called dozy chaos [14, 28, 33]. In chemical
physics, the efficacy of the damping method for the aforementioned
singularity was shown by the author with an example of the new
(dozy-chaos) theory of elementary electron-charge transfers in
condensed matter and its applications [10, 11, 12, 14, 15, 16, 17, 18, 19,
28, 29, 34, 35] to the optical spectra in polymethine dyes and their ag-
gregates [37, 38, 39, 40, 41, 42, 43, 44] and its applications [20, 34, 45]
to a number of other basic experimental data [46, 47].

The aforementioned quantum transitions in molecular and chemical
physics (molecular quantum transitions), strictly speaking, are not
quantum transitions, but quantum-classical transitions, since although
their initial and final states are quantum, their transient states are of a
classical nature. The quantum nature of the initial and final states is
manifested in the fact that these states are often described by quantum
mechanics in the adiabatic approximation and as a result of the
2

reorganization of the nuclear subsystem, the structure of the final state of
the molecular system differs markedly from the structure of its initial
state. The latter fact is particularly evident for chemical reactions, which
result in the formation of new molecules. The classical nature of the
transient state of molecular systems is associated with the presence of
chaos (dozy chaos) in the motion of electrons and nuclei involved in the
quantum-classical transition, which leads to a continuous spectrum of
their energies in this transient state [16, 18, 36, 48, 49]. The corre-
sponding theory of quantum-classical transitions is called
quantum-classical mechanics or dozy-chaos mechanics (see above). The
aforementioned dozy-chaos theory of elementary electron-charge trans-
fers in condensed matter is the simplest problem in quantum-classical
mechanics1 and will be described in detail in subsequent sections.

Quantum-classical mechanics provide insights into an entire series of
the fundamental experimental results in chemistry, which in the past
often resisted insight in the scope of the standard quantum mechanics of
electron-nuclear motion. In the framework of quantum-classical me-
chanics, it is possible to explain, for example, experimental data on the
shape of the optical bands of polymethine dyes and their aggregates in
solutions, in which the quantum-classical transitions in their main optical
chromophores can be approximated by elementary electron-charge-
transfer processes in condensed matter [10, 11, 12, 14, 15, 18, 28].
Exciton effects arising in many cases as a result of the aggregation of
molecules somewhat complicate the overall picture of elementary
quantum-classical transitions in dye chromophores, but do not funda-
mentally change it [10, 11, 12, 14, 15, 18, 28].

To model the electronic structure of the basic optical chromophore in
polymethine dyes, their polymethine chain, D€ahne [50] put forward the
concept of an ideal polymethine state, according to which there is a
clearly extended distribution of the density of the π-electron charge along
the quasi-linear polymethine chain. This density varies periodically along
the chain and reallocates alternately along it during optical excitation
(see Ref. [51]). Moreover, for the first excited state, the moment of the
electronic transition is focused on the chain [51]. Therefore, the
elementary electron-charge transfer along the chain can approximate the
electronic transition to the first excited state [10, 11, 12, 14, 15, 18, 28].
The polymethine dyes to be discussed herein can be considered as the
ideal polymethine state of D€ahne.

Since for an ideal polymethine state, the total transfer of the alter-
nating charge along the full chain consists of the acts of elementary
transfer of a small amount of charge over a small distance between
adjacent carbon atoms, the tunneling effects in such an electron-charge
transfer are minor and the Gamow tunnel factor is close to unity [10,
11, 12, 14, 15, 18, 28].

The linearity and sufficient length of the basic optical chromophores
of polymethine dyes and their aggregates, associated with the linearity
and a sufficiently large length of their polymethine chain, lead to the fact
that we can neglect the interaction of the electronic transition with the
motion of the nuclei of the dyes themselves and take into account only its
interaction with environmental nuclei [10, 11, 12, 14, 15, 18, 28].

The most important results are in theoretical optical spectra adjusted
by the author to the fundamental experimental data on polymethine dye
monomers (M) [12, 14, 15, 18, 28, 41, 42, 43] (see Figs. 1 and 2), dimers
(D) [15, 29, 42, 43], H and H* aggregates [16, 18, 29, 42, 43] (see Fig. 2),
and J aggregates [10, 11, 12, 14, 17, 18, 28, 29, 37, 38, 39, 40, 42, 43]
(see Fig. 2) and also theoretical spectra adjusted to the generally known
data on the M–D [15, 29, 42, 43] and M–J aggregate [10, 11, 12, 14, 28,
42, 43] concentration equilibriums.

Among these important results, a special place is occupied by a
theoretical explanation of the nature of the well-known narrow J band
(see Fig. 2), which is determined by the dynamic pumping of an



Fig. 1. Experimental [41, 43] (a) and theoretical [12] (b) monomer's optical absorption spectra dependent on the length of the polymethine chain (thiapolyme-
thinecyanine in methanol at room temperature; ε is the extinction coefficient) [15, 18, 19]. (Original citation) — Reproduced by permission of The Royal Society
of Chemistry.

Fig. 2. Theoretical optical absorption spectra [18, 19, 29, 35] (b) in thiapolymethinecyanines adjusted to the fundamental experimental data (a) on polymethine dye
monomers (M), dimers (D), H-, H*-, and J-aggregates [43].
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electronic transition in the chromophore of J aggregates (a tetramer with
a brickwork-type structure) with weakly chaotic, or in other words,
highly organized motion of nuclei in the environment (the case of weak
dozy chaos) [10, 11, 12, 14, 18, 28]. The role of exciton effects in the
shaping of the J band is insignificant. Conversely, the nature of the
narrow H* band (see Fig. 2) is elucidated by the existence of dozy-chaos
dynamics as well as a reasonably great exciton dynamics, their strong
interference interaction [16, 18, 29]. A competitive interference of the
chaotic dynamics of nuclear reorganization and exciton dynamics in the
chromophore of the H * aggregate, which is the dimer (H * dimer), leads
to a “pumping chaos” from the peak of the optical band of the H * dimer
into its wing, making the peak even narrower and the wing still wider.
This effect is associated with an abnormally strong exciton interaction in
the H* dimer, which is a consequence of the specific structure of the H*
monomers that make up it.

The H * monomers are cyclic bis-thiacarbocyanines that have an
abnormally large area of a planar optical chromophore (see Ref. [42]).
Therefore, there is a strong exciton interaction of the H * monomers in
the H * dimer, which leads to the narrowing of the peak of its optical
band as a result of “pumping chaos” from the peak into the wing of the
band [16, 18, 29].

The striking results of quantum-classical mechanics are also the re-
sults of explaining the resonance behavior of the shape of the optical
band of the polymethine dye monomer as a result of a change in the
3

length of its polymethine chain (see Fig. 1) [12, 15, 18, 19, 41, 43] and a
change in sign of the relative intensity of the two bands closest to the
resonance band (see Fig. 1, n ¼ 3) as a result of a change in the polarity of
the solvent [17, 18, 44]. Other dozy-chaos explanations can be also found
in Ref. [17]. Dozy-chaos (quantum-classical) mechanics of “quantum”

transitions in the discussed organic substance appears fairly sophisti-
cated, but this substance in its facility in dynamical nature rates in
quantum-classical mechanics like a hydrogen atom in structural nature in
quantum mechanics [33b].

All of the results of the optical spectra match generally weak dozy
chaos (γ << E, where E is the so-called reorganization energy introduced
in Section 2.4.1). Strong dozy chaos (γ � E) leads to the elucidation of the
important patterns in the reactions of proton transfer [45, 47] and
comparatively fresh temperature-dependent effects on electron transfers
in Langmuir-Blodgett films [20, 46]. In the case of strong dozy chaos, the
dynamics of quantum-classical transitions become weakly dependent on
dozy chaos, and the electronic component of the complete
electron-nuclear amplitude of transitions can be fitted by the Gamow
tunnel exponential dependent on the transient phonon environment. This
elementarymethod permit us to evade the consideration of the imaginary
additive iγ in the spectral representation of the complete Green's function
and to word the physical nature of the transient state not in the concept of
dozy chaos, but in the concept of a large number of tunnel and
over-barrier energy states providing the “quantum” transition of an



2 One exception is the Lamb shift in atomic spectroscopy [58, 59].
3 Formally, there are no quantum transition dynamics in the Franck-Condon

principle. This principle simply assumes that, as the initial and final states
enter the matrix element of the quantum transition, the wave functions are
considered in the adiabatic approximation. However, this assumption can be
interpreted physically as previously indicated.
4 For example, why do nuclei with substantial inertia follow the new distri-

bution of the electron charge rather than returning the excited electron to the
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elementary charged particle. This method was worked out [52] long
before the development of quantum-classical mechanics [11, 12, 14, 15,
18, 28] (see the subsequent sections), and now we can say that the
concept of a large number of tunnel and over-barrier states is the simplest
version of the concept of dozy chaos.

Grounded on this method [52], in 1990 a theoretical description of
the basic experimental patterns in the Br€onsted relationships [47] for the
reactions of proton transfer (acid-base catalysis) was given [45]. The
Br€onsted relationships was found by Br€onsted and Pedersen in 1924 (see
Ref. [47]). The theory in Ref. [52] is immediately appropriate to the
explanation of electron transfers. To explain the reactions of transfers of
heavy charged particles (proton transfers), the result of thermic fluctu-
ations of the potential barrier transparence must be considered because
of fluctuations of the barrier width. In contrast to the elementary proton
transfer, the electron transfer process is insensitive to small fluctuations
of the barrier width due to the large size of the electronic wave function
in the initial and final states. The analytical formulas for the
proton-transfer rate constants are obtained. In acid catalysis, the
Br€onsted relationship is lgKðacidÞ ¼ α lgKeq þ a, where KðacidÞ is the rate
constant, Keq is the equilibrium constant, and α and a are constants. In
base catalysis, the Br€onsted relationship is lgKðbaseÞ ¼ β lgKeq þ b. The
theoretically obtained Br€onsted coefficients α and β for direct and inverse
reactions meet the generally known empirical equality αþ β ¼ 1. The
experimentally ascertained large extent of linearity of the Br€onsted re-
lationships is elucidated by the concept of a large number of tunnel and
over-barrier states, and by the phonon frequencies dispersion and the
barrier width fluctuations. The kinetic isotope effect (proton, deuteron or
triton transfer) computed using our theory is in agreement with experi-
mental data (see Ref. [45]). In some cases (see Ref. [45]) the regularities
of acid-base reactions are coupled not with the proton transfers, but with
the electron transfers. The criteria for selecting one or another mecha-
nism of reactions are formulated in Ref. [45]. By considering the
generally known similarity of the relationships of Br€onsted and Tafel's
law in electrochemistry, the theory of acid-base catalysis can be adapted
to electrochemical reactions [45].

Ref. [20] provides an explanation for the temperature dependence of
the activation energy Ea ¼ E0ð1�T =T0Þ (where T0 � 350 K) for electron
transfers at high temperatures in Langmuir-Blodgett films, which is
discovered by Naito and Miura [46], as well as an interpretation of the
entire set of these authors' experimental data in a wide diapason of
temperatures. The activation energy Ea reduces and proves to be negative
as temperature T grows because the domain of tunnel states expands on
the energy scale and nears the apex of the electron potential barrier, and
the quantity of over-barrier states grows.

Section 2.1 considers fundamental questions of the theory of molec-
ular quantum transitions.

2. Main text

2.1. Nature of molecular quantum transitions and the concept of dozy
chaos

At the end of the 19th century, most physicists believed that the
physical picture of the world was complete or nearing completion. This
physical picture of the world was based on classical mechanics. However,
the theoretical description of the equilibrium radiation of an absolutely
black body, the problem of the so-called ultraviolet catastrophe, and the
constancy of the velocity of light and its independence from themotion of
the reference frame remained to be elucidated. The theory of relativity
and quantum mechanics emerged as a result.

Quantum mechanics soon led to the development of atomic and nu-
clear physics. Quantum mechanics was also the basis for molecular
physics, which rapidly developed in two directions. The first was asso-
ciated with the theory of the structure of molecules and solids, which was
based on the Born-Oppenheimer adiabatic approximation [53]. The
4

second was associated with molecular optical spectroscopy based on the
Franck-Condon principle [54, 55, 56, 57]. The adiabatic approximation,
in which the motion of light electrons quickly adapts to the slow motion
of heavy nuclei and which often perfectly describes the stationary
(ground) state of molecular systems, is in full compliance with the
principles of quantum mechanics. The Franck-Condon principle assumes
that during optical excitation of a molecule, a light electron makes a fast
quantum jump (transition) to an excited state, and then the whole
configuration of heavy nuclei in the molecular system slowly adapts to
the new distribution of the electron charge in the excited state. This
assumption leads in many cases to a good agreement between theoretical
and experimental results of molecular optical spectra.

Unlike in atomic spectroscopy, where there is no physical meaning,
with a few exceptions,2 in molecular spectroscopy, the dynamics of a
quantum transition are of considerable significance and are already
determined by the Franck-Condon principle.3 Although the Franck-
Condon dynamics of the quantum transition cause a number of a priori
physical objections,4 due to the good agreement of the theory with ex-
periments, for almost 100 years it has been an “unshakable” physical
postulate within molecular quantum mechanics.

Thus, the generally accepted theory of molecular quantum transitions
has a long history based on the well-known classical works of Born and
Oppenheimer [53] and Franck and Condon [54, 55, 56, 57], which
appeared immediately after the development of the foundations of
quantum mechanics. Born and Oppenheimer were the first to solve the
quantum-mechanical problem for a system of coupled electrons and
nuclei in the simplest case for molecules [53], offering an effective and
successful physical and mathematical technique, later called adiabatic
approximation. Adiabatic approximation originated from adiabatic in-
variants, which were previously formulated by Ehrenfest [60]. The
effectiveness of adiabatic approximation results from the
Born-Oppenheimer theory of a significant difference in the masses of
electrons and nuclei, which enables the separation of the slow motion of
very heavy nuclei from the rapid motion of light electrons by neglecting
the small nonadiabaticity operator in the Schr€odinger equation to solve
quantum-mechanical problems. The Born-Oppenheimer theory [53] is
the basis of modern solid-state physics and quantum chemistry.

A completely different picture forms in connection with the works of
Franck and Condon [54, 55, 56, 57], the basis of the so-called Franck--
Condon principle. As previously mentioned, due to the significant dif-
ference in the masses of electrons and nuclei, the dynamics of molecular
quantum transitions consists of two stages. In the first stage, under the
influence of an external perturbation, a light electron nearly instanta-
neously passes into an excited electronic quantum state. In the second
stage, a so-called reorganization of the nuclear subsystem of the molecule
occurs, in which the spatial configuration of the heavy nuclei slowly
adapts to the new electron-charge distribution. However, such a picture
raises a serious objection. Namely, due to the significant inertia of the
nuclei, they will not follow the movement of the electron, but simply
return the electron to its original state just as rapidly [14, 28, 33b]. In
other words, proceeding from these general considerations, the proba-
bility (per unit time) of a molecular quantum transition must be zero.
However, if the heavy nuclei suddenly begin to move after a light elec-
tron already in the excited state, then due to the substantial inertia of the
nuclei, they cannot stop in the excited electronic state [14, 28, 33b]. In
initial state? See details below.



5 The usual reasoning is: “It is obvious that the nuclei spend most of their time
near the turning points. Therefore, the probability of the electron and ‘intended’
vertical transition near these points will be maximal.”
6 Since the energy of the rotational quantum is much less than the energy of

the vibrational quantum, for simplicity, hereinafter, we take into account only
the vibrational system of degrees of freedom and ignore the rotational one.
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other words, the probability (per unit time) of a molecular quantum
transition must be infinite. Thus, these simple and general qualitative
considerations demonstrate that there is a singularity in the rates of the
molecular quantum transitions. At one time, these thoughts were either
not discussed or considered, apparently because of the success of the
Franck-Condon principle in its practical applications, which resulted in
the development of modern molecular optical spectroscopy. Neverthe-
less, the question of the validity of the Franck-Condon principle remained
unchanged in theory. In this regard, the Franck-Condon principle should
not be treated as a physical principle, but as an efficient hypothesis that
does not have a thorough theoretical justification.

In addition to the previously mentioned qualitative objections, there
is no formal quantitative substantiation for the Franck-Condon principle
in theory. Proceeding from the first principles of quantummechanics, it is
necessary to quantitatively solve the problem of the dynamics of the
transient state in molecular quantum transitions, at least in some simple
cases. Moreover, such a solution, particularly substantiating the Franck-
Condon principle, should clearly be demonstrated in many diverse ap-
plications. However, such a solution has not been obtained to date.

Returning to the qualitative physical consideration: “Under what
condition is a light electron able to move nuclei with substantial inertia
and thereby allow the reorganization of the nuclear subsystem in molec-
ular quantum transitions?” [14, 28, 33b]. The electron should abandon
attempts to move the nuclei “alone” but somehow provoke the same
nuclei to move. How does this occur if the nuclei in the molecule have at
least vibrational motion and at all temperatures up to absolute zero
(zero-point vibrations)? To shift the equilibrium positions of oscillating
nuclei in space, their vibrational motions must be transformed, at least in
part, into the translational motion of their equilibrium positions during
the molecular quantum transition. This is easy to implement if the motions
of the nuclei are chaotic during the molecular quantum transition. If the
vibrations of the nuclei are chaotic, an electron could easily control their
motion during “quantum” transition. As shown by the formal theory,
which will be discussed later, electrons that bind nuclei (atoms) to mol-
ecules cause chaotic motion in nuclei in a transient state. In other words, a
light electron, through the creation of chaos, organizes the motion of very
heavy nuclei during molecular “quantum” transition, resulting in this
transition (that is, it occurs at a non-zero and non-infinite rate as previ-
ously mentioned). This is the essence of the self-organization of molecular
quantum transitions. This occurs through the creation of chaos by an
electron in a transient molecular state. This is called dozy chaos as dis-
cussed in Section 1. Dozy chaos is the joint effect of the collective chaotic
motion of electrons and nuclei, and their chaotic electromagnetic in-
teractions in the transient state of molecules experiencing quantum tran-
sitions. Dozy chaos is a universal physical phenomenon, because electrons
and nuclei are universal [14, 15, 16, 18, 28, 32, 33, 34, 35, 36, 48, 49].

One can cite some a priori objection to the previously mentioned
qualitative reasoning, from which it follows that there is a singularity
(that is, zero or infinity) in the rates of molecular transitions. This ob-
jection is that the nuclei, even because of their substantial inertia, cannot
return an excited light electron to its original ground state since the
electron is already in a well-defined quantum state from which it cannot
escape because of the presence of an energy gap in the electronic energy
according to quantum mechanics. Therefore, in the excited state, the
electron is forced to slowly adjust the nuclear subsystem to its new charge
distribution. This constitutes the essence of the Franck-Condon principle.
However, our a priori objection and the Franсk-Condon principle itself
are entirely based on the a priori assumption that quantum mechanics
works in this case. As previously mentioned, this assumption has no
formal evidence. Moreover, qualitative considerations about the
continuous energy spectrum in the transient state, which appears due to
the electron provocation of chaos in the vibrational motion of the nuclei
to control their motion in this state (as previously mentioned), indicate
that in reality there is no gap in the electronic energy, and consequently,
quantum mechanics ceases to work in a transient dynamic molecular
state. In other words, the excited electron in principle cannot be
5

“hooked” into the quantum state, which follows from the standard so-
lution to Schr€odinger's equation, and therefore it quickly “rolls” over the
continuous spectrum of energy to the ground state, as discussed in our
initial qualitative reasoning.

Considering quantum mechanics as applied to molecular quantum
transitions, according to the Franck-Condon principle, in optical excita-
tion the electron transition occurs at the turning points of the oscillating
nuclei, that is, at the moment they stop. This “reasonable assumption” in
quantum mechanics5 makes it possible to “switch off” the nuclear sub-
system at this time from a dynamic analysis, just as in the framework of
quantum mechanics the electronic subsystem is “switched off” from a
full-fledged dynamic analysis in a justified procedure to isolate the
nonadiabaticity operator in Schr€odinger's equation and neglecting it in
the adiabatic approximation (see Section 2.3).

The Franck-Condon principle essentially follows from two physical
facts. The first assumes (in general, unreasonable, as previously noted)
that quantum mechanics works in the field of molecular quantum tran-
sitions. The second assumes that, over the course of their classical os-
cillations in an oscillatory potential well, the nuclei spend a majority of
the time near the turning points (see footnote 5). Therefore, the quantum
transition (see the first fact) has an overwhelming probability of occur-
ring at these points, and consequently, it will be vertical or close to
vertical. Thus, the same oscillator behaves in the same elementary mo-
lecular way both as a classical system (near the bottom of an oscillatory
potential well for nuclei, where the probability of a quantum transition is
negligible) and as a quantum system (near the turning points of the
nuclei, where the probability of a quantum transition is maximal).
Therefore, the oscillator is essentially a quantum-classical system (see
also Section 2.5), and the Franck-Condon principle is essentially one of
the most important prerequisites for the creation of quantum-classical
mechanics. During the formulation of the Franck-Condon principle [54,
55, 56, 57], the prospect of creating quantum-classical mechanics was
not noticed, apparently because of the strongest “psychological
confrontation” between quantum and classical mechanics.

The time of the classical behavior of the oscillator near its bottom (or,
equivalently, far from the turning points of the nuclei) is much shorter
than the period of the oscillations of the nuclei. This correlates with the
fact in quantum-classicalmechanics that the time ofmolecular “quantum”

transition or, equivalently, the time of reorganization of the nuclear
subsystem ℏ=E (E is the energy of the reorganization of the nuclear sub-
system as mentioned in Section 1), when, due to chaos in the transient
state, the electron-nuclear system leads like the classical system (see
above), is also much shorter than the nuclear oscillation period ℏ

E << ℑ,
where E ¼ ð1�0:1Þ eV andℑ ffi 10�13s (ð10�15 �10�14Þ s << 10�13 s).

The dynamics of the transient state in molecular quantum transitions
can be approached from the other side, namely, from the characters of
the optical spectra observed in the experiment. The discrete line spec-
trum in atoms is a direct indication of the existence of quantum jumps in
atoms. The nature of molecular spectra differs from that of atomic
spectra: they are striped or often even continuous, as for example in the
case of polymethine dyes and their aggregates (see Section 1). The con-
tinuity of the spectra, observed for polymethine dyes and their aggre-
gates, indicates that the transition from one quantum state to another is
not a quantum jump but a transition through a continuous spectrum of
electron-vibrational states.6 (The continuity of the spectra is also asso-
ciated with the dispersion of the phonon frequencies; see Section 2.9).

In strong dozy chaos (γ � E), quantum-classical mechanics are
compatible with the Born–Oppenheimer [53] and Franck–Condon [54,
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55, 56, 57] quantum mechanics with high precision [11, 12, 14, 15, 16,
18, 28, 34] (see Sections 2.4.9, 2.5, and 2.9). It turns out that in this
particular case, the rates of “quantum” transitions, as in standard mo-
lecular quantum mechanics, depend only on the initial and final states,
since due to strong dozy chaos they do not depend on the dynamics of the
transient state. In other words, dozy chaos often “leaves no trace” in
molecular physics, which is why it took so long to discover it. In these
often practiced cases, standard molecular quantum mechanics gives re-
sults that are consistent with the experiment, despite the fact that they
are based on erroneous concepts [11, 12, 14, 15, 16, 18, 28, 34]. In other
words, the Franck-Condon principle is an effective simulator of strong
dozy chaos, both in the problem of elementary electron transfers in
condensed matter, and, presumably, in all other cases of molecular
“quantum” transitions (see details in Section 2.5).

Extremely strong dozy chaos (γ >> E) leads to standard molecular
quantum mechanics, but with abnormally low rates of “quantum” tran-
sitions. Weak dozy chaos (γ << E) causes a strong dynamic self-
organization of molecular “quantum” transitions and hence their high
rates [11, 12, 14, 15, 16, 18, 28, 34] (see Section 1).
7 In this section and throughout this article, we assign the names of the pio-
neers of the theory of molecules, namely, the names of Born and Oppenheimer,
to the adiabatic approximation, although between the adiabatic theory of Born
and Oppenheimer [53] and the modern interpretation of the adiabatic approx-
imation [65, 66, 67], which we cite here, there are some differences, which are
discussed, for example, in Refs. [66, 67].
2.2. Divergence of a series of time-dependent perturbation theory in
quantum mechanics for molecular quantum transitions

Turning to formal techniques of quantummechanics, we can precisely
indicate the point at which quantum mechanics applied to molecular
quantum transitions ceases to work. As is well known, the theory of
quantum transitions is based on the time-dependent perturbation theory
(TDPT) in quantum mechanics (see e.g. Ref. [61]). The time-dependent
Schr€odinger equation is solved by the standard scheme of the perturba-
tion theory [61]:

iℏ
∂Ψ
∂t ¼HðtÞΨ ; HðtÞ¼H0 þVðtÞ; VðtÞ¼

�
WðtÞ; if 0 � t � τ;
0; if t < 0; t > τ

:

(1)

The series for the transition amplitude Afl is as follows

AflðtÞ¼
X∞
n¼0

hf jInðtÞjli
n!

; (2)

where

InðtÞ¼
�
1
iℏ

�n

P
Z t

0
dt1

Z t

0
dt2:::

Z t

0
dtn ~Wðt1Þ ~Wðt2Þ::: ~WðtnÞ; (3)

P is the Dyson's chronological operator and

~WðtÞ¼ e
i
ℏH0 tWðtÞe� i

ℏH0 t (4)

is the perturbation operator in the interaction representation. The series
of TDPT converges in atomic and nuclear physics, as in the matrix ele-
ments of transitions hf jInðtÞjli in the amplitude (2), due to quantum
jumps, the dynamics of quantum transitions is not contained by defini-
tion, and for many problems it suffices to confine oneself to the first order
of TDPT. The probability of a quantum transition from state jli to state jf i
during the time of the perturbation τ is determined by the formula
(“Fermi's golden rule”, see Ref. [61])

ℑflðτÞ¼
���Að1Þ

fl ðτÞ
���2 ¼ 1

ℏ2

������
Z τ

0
hf j ~WðtÞjlieiωfl tdt

������
2

; (5)

where ℏωfl ¼ Ef � El, Ef and El are the energies of stationary states.
The series of TDPT converges also in the case of molecular quantum

transitions (and electronic transitions in condensed matter), which occur
in accordance with the Franck-Condon principle [54, 55, 56, 57], that is,
when the states jli and jf i in the amplitude (2) are taken in the
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Born-Oppenheimer adiabatic approximation [53]. In other words, the
physical picture of quantum transitions in molecular physics is usually
represented as quantum jumps, which are similar to quantum jumps in
atomic and nuclear physics. (A small parameter that ensures the
convergence of the series is a small perturbation time τ, see Eq. (1).) The
resulting theoretical (Franck-Condon [54, 55, 56, 57]) transition proba-
bilities (per unit time) that follow from Eq. (5) often explain the exper-
imental data well, for example, in molecular spectroscopy (see e.g. Refs.
[62, 63, 64]). However, in chemistry, for example, there are many
experimental data (see e.g. Section 1), which can not be explained within
the adiabatic approximation. This forces us to go beyond the adiabatic
approximation. But such an exit beyond the adiabatic approximation
leads to divergence of the series of TDPT in quantummechanics, which is
associated with the incomparability of the masses of electrons and nuclei,
jointly participating in the dynamics of the transition, which, unlike to
atomic and nuclear transitions, is contained here by definition. To verify
this fact, the divergence of the series of TDPT is enough to demonstrate
by any one example. As such an example, it is convenient to consider the
simplest problem in the theory of quantum transitions, which goes
beyond the adiabatic approximation. Such a simple problem, as it turned
out, is the problem of the theoretical description of the elementary
electron transfers in condensed matter [11, 18]. As previously mentioned
(Section 1 and footnote 1), the simplicity of this problem is related to the
sufficiency of taking into account only the non-local phonons in the
matter and the possibility of approximating the electron Green's function
by the propagator (see Sections 2.4.7 and 2.4.4 below) [11, 18].

Before proceeding the formulation of this simplest theory, that is, a
new theory of elementary electron transfers in condensed matter, the
author believes that for its better understanding it is important to remind
the reader of the essence of the Born-Oppenheimer adiabatic theory.
2.3. The Born-Oppenheimer adiabatic approximation7

The standard base for a general study of electron-vibrational in-
teractions is the adiabatic theory [53, 65, 66, 67], which uses the only
universal small parameter of the molecule — the Born-Oppenheimer
parameter κ ¼ ðμ=MÞ1=4, where μ is the electron mass and M is the
typical mass of the nucleus.

The Hamiltonian bH of a molecule is written as the sum of the kinetic
energy of electrons bTe and nuclei bTN and the total potential energy
U ðq; pÞ of the molecule:

bH ¼ bT e þ bTN þ Uðq; pÞ; (6)

where q and p are the set of electronic and nuclear coordinates. In the
adiabatic approximation the wave function Ψðq; pÞ of the molecule is
searched in the form

Ψ ðq; pÞ ¼ ψðq; pÞ ϕðpÞ: (7)

Substituting Eq. (7) into the stationary Schrӧdinger equation

bHΨ ðq; pÞ¼EΨ ðq; pÞ; (8)

where the Hamiltonian bH is given by Eq. (6), we obtain

ϕbT eψ þ bTNψϕ þ Uψϕ ¼ Eψϕ: (9)

We formally introduce the operator bL defined from the equation:
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bLψϕ ¼ bTNψϕ � ψ bTNϕ: (10)
Substituting bTNψϕ from Eq. (10) into Eq. (9) and dividing both sides
of the equation by ψϕ, we get

1
ψ
bT eψ þ U þ 1

ψϕ
bLψϕ ¼ E � 1

ϕ
bTNϕ: (11)

Let us mark the right part of this equation, which depends solely on
the nuclear coordinates p, through VðpÞ; then from Eq. (11) and this
notation we obtain�bT e þ Uþ 1

ϕ
bLϕ� ψ ¼ Vψ ; (12)

ðbTN þ VÞ ϕ ¼ Eϕ: (13)

Eqs. (12) and (13) are identical to the original Schr€odinger Eq. (8). It
is only rewritten for the new formally introduced functions ψðq; pÞ and
ϕðpÞ in Eq. (7).

The adiabatic approximation agrees with the disregard for the term

ð1 =ϕÞbLϕ in Eq. (12), which is called the nonadiabaticity operator. Hence
the system of adiabatic equations has the form

½bT e þ Uðq; pÞ� ψ f ¼ Vf ðpÞ ψ f ; (14)

�bTN þ Vf ðpÞ
�
ϕfn ¼ Efn ϕfn: (15)

The solution of the electron Schr€odinger Eq. (14) gives a system of
electron wave functions and energy levels that depend on the nuclear
coordinates p as parameters. The electron energy Vf ðpÞ acts as a potential
function for the motion of the nuclei (see Eq. (15)). This function is often
called the electron term. The concept of electron term or potential energy
surface (PES) plays a key role not only in the theory of molecules and
quantum chemistry as a whole, but also in the modern theory of
elementary chemical reactions and elementary processes of electron-
charge transfers. If the use of PESs in the former case is perfectly justi-
fied, then in the latter case, when it comes to quantum transitions in the
PES intersection area (in the transient region), the Born-Oppenheimer
(BO) adiabatic approximation does not work at all. This can be seen if
we write out the corrections to the BO approximation in perturbation
theory with respect to the nonadiabaticity operator:

V ð1Þ
f ¼

D
ψ ð0Þ

f jbTN jψ ð0Þ
f

E
; (16)

V ð2Þ
f ¼

X
f 0 6¼f

�����Dψ ð0Þ
f 0

���bTN

���ψ ð0Þ
f

E
�P

p

ℏ2

M
1
ϕ

∂ϕ
∂p

*
ψ ð0Þ

f 0

�����∂ψ ð0Þ
f

∂p

+�����
2

V ð0Þ
f � V ð0Þ

f 0
(17)

and

ψ ð1Þ
f ¼

X
f 0 6¼f

D
ψ ð0Þ

f 0

���bTN

���ψ ð0Þ
f

E
�P

p

ℏ2

M
1
ϕ

∂ϕ
∂p

*
ψ ð0Þ

f 0

�����∂ψ ð0Þ
f

∂p

+
V ð0Þ

f � V ð0Þ
f 0

	ψ ð0Þ
f 0 : (18)

The BO approximation is violated for the electron energy in the sec-
ond order of perturbation theory and for the electron wave function in
the first order of perturbation theory. It can be seen that the nonadiabatic

corrections V ð2Þ
f from Eq. (17) and ψ ð1Þ

f from Eq. (18) are not minor in the

case when the differences of the electronic terms V ð0Þ
f � V ð0Þ

f 0 , which
8 The adiabatic approximation is often disturbed even in the ground state, for
example, due to vibronic interactions [66, 68, 69] and in non-rigid molecular
systems [70, 71].
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depend on the nuclear coordinates p and which enter into the de-
nominators, turn out to be small.

Thus, the PESs, being, as a rule, dynamic (adiabatic) invariants for the
initial and final states of the electron-nuclear system,8 are not dynamic
invariants for the transient state. Therefore, the problem of finding
dynamical invariants for the transient state arises. We will solve this
problem in the simplest case of “chemical transformations”: in the case of
extended electron-vibrational transitions or, in other words, in the case of
elementary electron transfers in condensed matter.
2.4. Quantum-classical mechanics of elementary electron transfers in
condensed matter

2.4.1. Adiabatic approximation for elementary electron transfers
In comparison with the Hamiltonian in the standard theory of many-

phonon transitions (see Ref. [72]), in the theory of elementary electron
transfers the Hamiltonian is complicated merely by a complementary
electron potential well U2ðq�LÞ set apart from the original well U1ðqÞ by
the distance L 
 jLj [11]:

H¼ � ℏ2

2μ
Δq þU1ðqÞþU2ðq�LÞþ

X
ι

UιðqÞ pι þ 1
2

X
ι

ℏωι

�
p2ι �

∂2

∂p2ι

�
;

(19)

where μ is the effective mass of an electron, q is the electron's radius
vector, pι are the normal phonon coordinates (real), ωι are the eigen-
frequencies of normal oscillations, and ι is the phonon index;

P
ι
UιðqÞ pι is

the electron–phonon coupling expression.
In the adiabatic approximation, the solution of the Schr€odinger

equation

H Ψ ¼EH Ψ (20)

for the system “electron þ environment” is sought in the form

Ψ ðq; pÞ ¼ ψðq; pÞ ΦðpÞ (21)

(compare with Eq. (7) in Section 2.3), where the electron ψ-function
satisfies the Schr€odinger equation"
� ℏ2

2μ
Δq þU1ðqÞþU2ðq�LÞþ

X
ι

UιðqÞpι
#
ψðq; pÞ¼EðpÞψðq; pÞ: (22)

If we neglect the nonadiabaticity operator (compare with Eq. (10) in
Section 2.3)

bLΨ 
 bTpψΦ�ψ bTpΦ¼ �
X
ι

ℏωι

�
∂ψ
∂pι

∂Φ
∂pι

þΦ

2
∂2ψ
∂p2ι

�
(23)

 bTp ¼�1
2

P
ι
ℏωι

∂2
∂p2ι

!
in Eq. (20), then

"
EðpÞþ 1

2

X
ι

ℏωι

�
p2ι �

∂2

∂p2ι

�#
ΦðpÞ¼EBO

H ΦðpÞ; (24)

where EBO
H is the approximate eigenvalue of the total Hamiltonian (19).

The index BO in Eq. (24) and beyond indicates that the corresponding
quantity is accepted in the Born-Oppenheimer adiabatic approximation.

The electronic Eq. (22) is solved by perturbation theory with the
perturbation operator

~U 

X
ι

UιðqÞðpι � ~pιÞ; (25)

similar to the perturbation operator of Pekar [73, 74]. It will be shown
below that ~pι are the values of the normal phonon coordinates for which
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the adiabatic potential in Eq. (24) has a minimum.
In the zero order of the perturbation theory with respect to the

operator ~U, for the electron Eq. (22) we have"
� ℏ2

2μ
Δq þU1ðqÞþU2ðq�LÞþ

X
ι

UιðqÞ ~pι
#
ψ sðqÞ¼E0

sψ sðqÞ; (26)

where the index s numbers the states of the discrete and continuous
spectra. It is assumed that the interactionX
ι

UιðqÞ ~pι

at the donor 1 and at the acceptor 2 is the same, that is, by definition

~pι2 ¼ � ~pι1 
 � ~pι ð~pι < 0Þ (27)

and

Uι2ðq�LÞ¼ �Uι1ðqÞ
 � UιðqÞ: (28)

In this wiseX
ι

Uι2ðq�LÞ~pι2 ¼
X
ι

½ � Uι1ðqÞ�½�~pι1� ¼
X
ι

Uι1ðqÞ~pι1 

X
ι

UιðqÞ~pι:

The first order correction to the electron energy E0
s ð~qÞ isZ

dqψ s*ðqÞ~Uðq; pÞψ ðqÞ ¼
Z

dqψ s*ðqÞ
"X

ι

UιðqÞðpι � ~pιÞ
#
ψ sðqÞ

¼
X
ι

Uιsðpι � ~pιÞ;
(29)

where

Uιs 

Z

dqUιðqÞjψ sðqÞj2: (30)

Thus, in the first order of perturbation theory with respect to the
operator ~U, for the electron energy we have

EsðpÞ¼E0
s þ ~UsðpÞ; ~UsðpÞ 


X
ι

Uιsðpι � ~pιÞ: (31)

So, in the presence of an electron (on a donor or on an acceptor), the
operator of nuclear energy in the adiabatic approximation has the form:

EsðpÞþ 1
2

X
ι

ℏωι

�
p2ι �

∂2

∂p2ι

�
¼E0

s þ
X
ι

Uιsðpι � ~pιÞ þ
1
2

X
ι

ℏωι

�
p2ι �

∂2

∂p2ι

�
:

(32)

The role of the potential energy of nuclei is played by the function

FsðpÞ¼E0
s þ
X
ι

Uιsðpι � ~pιÞ þ
1
2

X
ι

ℏωιp2ι : (33)

We find its minimum:

dFs

dpι
¼Uιs þ ℏωιpι;

dFs

dpι
jpι¼pι

¼ 0;
d2Fs

dp2ι
¼ ℏωι > 0;

pι ¼ � Uιs

ℏωι
; (34)

where Uιs are given by Eq. (30). Suppose that UιðqÞ � constant. We
choose this constant in the following form: constant 
 � ℏωι~pι. Then,
takingZ

dqjψ sðqÞj2 ¼ 1;
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we obtain

pι ¼ ~pι; (35)

that is, in the aforementioned assumption, ~pι are the values of the normal
phonon coordinates at which the adiabatic potential of Eq. (24) for the
nuclear wave function ΦðpÞ has a minimum. Thus, the function UιðqÞ is
assumed to be equal to its average over the electron state in the zero
order of perturbation theory with respect to the operator ~U.

The minimum value of the potential energy of the nuclei in Eq. (33) is

FsðpÞjp¼~p ¼E0
s þ

1
2

X
ι

ℏωι~p
2
ι 
E0

s þE 
 Js; (36)

where

E 
 1
2

X
ι

ℏωι~p
2
ι (37)

is the energy of reorganization of the nuclear vibrations due to the
presence of an electron on the donor or the acceptor. The potential en-
ergy of the nuclei is written in terms of the quantities Js in the form

FsðpÞ¼ Js þ 1
2

X
ι

ℏωιðpι � ~pιÞ2: (38)

In the two-level approximation Js 
 � J1;2 < 0: in the initial state the
electron is on the donor 1, and in the final state— on the acceptor 2. The
corresponding potential energy surfaces of the nuclei F1;2ðpÞ are the two
paraboloids of dimension M, where M is the number of vibrational de-
grees of freedom of the crystal, the vertices of which, according to Eq.
(27), are displaced relative to each other by the amount 2j~pj. The oper-
ator of the total energy of nuclei (Eq. (32)) has the form

�J1;2 þ 1
2

X
ι

ℏωι

�
ðpι � ~pιÞ2 �

∂ 2

∂ p2ι

	
: (39)

Its eigenvalues are equal to

EBO
H ¼ � J1;2 þ

X
ι

ℏωι

�
mι1;2 þ 1

2

�
; (40)

and its eigenfunctions are equal to

Φ1;2:::mι1;2 :::ðp� ~pÞ¼
Y
ι

φmι1;2
ðpι � ~pιÞ;

φmι1;2
ðpι � ~pιÞ¼Amι1;2e

�1 =

2ðpι�~pιÞ2Hmι1;2 ðpι � ~pιÞ: (41)

Here HmðpÞ ¼ ð�1Þmep2dme�p2 =dpm are the Hermite polynomials of
degree m (m ¼ 0;1;2; :::), Am is the normalizing factor.

Thus, for the wave function of the “electronþ environment” system in
the Born-Oppenheimer adiabatic approximation (Eq. (21)) and according
to Eq. (26), we have

ΨBO
1;2 ðq; pÞ¼ψ1;2ðqÞΦ1;2:::mι1;2 :::ðp� ~pÞ: (42)

An adiabatic approximation of the type Eq. (42), in which the electron
wave function ψ does not depend on the nuclear coordinates p, is often
called the rough adiabatic approximation.

2.4.2. Technique of Green's functions
In accordance with our aim to discover “successful” dynamic in-

variants for the transient state [12, 13], which would be alternative to the
Born-Oppenheimer adiabatic invariants — potential energy surfaces, we
search for the solution of the Schr€odinger Eq. (20) for the “electron þ
environment” system by Green's function technique. At the initial stage of
constructing this solution, the identical transformations of Eq. (20) in the
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Green's function method can be considered as alternatives to identical
transformations when the non-adiabaticity operator (23) is singled out in
the Born-Oppenheimer method (see Section 2.4.1): if the purpose of the
latter is to separate the slow motion nuclei from the rapid motion of an
electron, the purpose of the former is to maximally preserve the inter-
connection of electronic and nuclear movements.

So, to the Hamiltonian of the “electron þ environment” system of
some general form H ¼ Hðq; pÞ, we add and subtract some, while arbi-
trary, operator ~U ¼ ~Uðq;pÞ:

H
H� ~U þ ~U: (43)

Then the Schr€odinger Eq. (20) can be rewritten in the form

ðH� ~U�EHÞ Ψ ¼ � ~U Ψ : (44)

We consider the right-hand side in Eq. (44) as an inhomogeneity. The
corresponding homogeneous equation has the form

ðH� ~U�EHÞ ~Ψ ¼ 0: (45)

Let us introduce the Green's function GH and G:

ðH�EHÞGHðq;q0
; p; p

0
;EHÞ¼ � Δðq�q

0 ÞΔðp� p
0 Þ; (46)

ðH� ~U�EHÞGðq; q0
; p; p

0
;EHÞ¼ � Δðq�q

0 ÞΔðp� p
0 Þ: (47)

They are connected by the Dyson integral equation

GHðq;q0
; p; p

0
;EHÞ¼Gðq; q0

; p; p
0
;EHÞ

þ
ZZ

dq1dp1Gðq;q1; p; p1;EHÞ~Uðq1; p1ÞGHðq1;q
0
; p1; p

0
;EHÞ (48)

(this can be easily verified by acting the operator ðH�~U�EHÞ on the left
and right sides of the equation). In a symbolic way, the Dyson equation
(Eq. (48)) has the form

GH ¼Gþ G~UGH: (49)

The solution of Eq. (49) is found by successive approximations

GH ¼ G þ G ~U G þ G ~U G ~U G þ :::: (50)

The general solution of Eq. (44) for the wave function Ψ ðr; qÞ of the
“electron þ environment” system has the form

Ψ ðq; pÞ¼ ~Ψðq; pÞ þ
ZZ

dq
0
dp

0
Gðq; q0

; p; p
0
;EHÞ~Uðq0

; p
0 ÞΨðq0

; p
0 Þ: (51)

This integral equation is the Lippmann-Schwinger equation. It is
identical to the original Schr€odinger Eq. (20) or (44) (this can be easily
verified by acting the operator ðH � ~U � EHÞon the left and right sides of
the equation and taking into account Eq. (45)). We rewrite the Lippmann-
Schwinger equation (Eq. (51)) in the symbolic form

Ψ ¼ ~Ψ þ G~UΨ : (52)

We find its solution by successive approximations

Ψ ¼ ~Ψ þ G ~U ~Ψ þ G ~U G ~U ~Ψ þ G ~U G ~U G ~U ~Ψ þ :::
¼ ~Ψ þ ðG þ G ~U G þ G ~U G ~U G þ :::Þ ~U ~Ψ :

(53)

Taking into account the solution of the Dyson equation for GH (see Eq.
(50)), we obtain

Ψ ¼ ~Ψ þ GH ~U ~Ψ : (54)

This wave function Ψ is a formal solution of the original Schr€odinger
Eq. (20) or (44). Our next problem is, by a proper choice of the operator ~U
in the solution (54), to separate the state of elementary transfer of the
electron, which we are interested in, from nonphysical solutions corre-
sponding to other types of electron and nuclear motions. To do this, it is
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necessary to specify the Hamiltonian H ¼ Hðq; pÞ of the “electron þ
environment” system, which figures while in some general form in our
Green's function method.

In the simplest case, we have Hamiltonian (19), which was already
used by us earlier in considering the Born-Oppenheimer adiabatic
approximation. We choose the operator ~U, that figures in our method of
Green's functions, in the form of the operator (25), which we used earlier
(Section 2.4.1) in the Born-Oppenheimer method:

~U¼
X
ι

UιðqÞðpι � ~pιÞ: (25a)

Here, in contrast to Eq. (25), ~pι are some, so far arbitrary, constants.
Then

H� ~U¼ � ℏ2

2μ
Δq þU1ðqÞþU2ðq�LÞþ

X
ι

UιðqÞ ~pι þ
1
2

X
ι

ℏωι

�
p2ι �

∂2

∂p2ι

�
(55)

and the solution of the homogeneous Eq. (45),

~Ψ ðq; pÞ¼ψðqÞΦ0ðpÞ; (56)

corresponds to the lack of interaction of the electron with the vibrations
of the nuclei. In other words, the nuclei vibrate as if there were no
electron in the condensed medium, and the motion of the electron occurs
as if the nuclei were immovably fixed in their equilibrium positions.
Thus, the solution ~Ψ ðq; pÞ does not correspond to either the electron-
transfer state or many-phonon transitions in general. Therefore, it must
be excluded from the general solution (54) as describing an unphysical
state. Consequently, the state of electron transfer is determined by the
solution [79].

Ψ ¼GH ~U ~Ψ : (57)

2.4.3. Electron-phonon wave functions of the initial and final states. On the
convergence of a series of time-dependent perturbation theory in quantum-
classical mechanics

In the solution (57), however, the fact of the “start” of the electron
from the donor 1 is not yet reflected. This fact is taken by substituting the
wave function in the adiabatic approximation (42) into account in the
right-hand side of Eq. (57), which corresponds to the presence of inter-
action of the electron with the vibrations of the nuclei, instead of the
wave function (56), which corresponds to the lack of this interaction.
Formally, this reduces only to a shift in the normal phonon coordinates
by an amount ~p in the phonon part of the wave function. As a result, the
constants ~pι introduced above (Eq. (25a)) acquire the physical meaning
of the shifts of the normal phonon coordinates, which correspond to the
shifts in the equilibrium positions of the nuclei, caused by the presence of
an electron in themedium. In other words, the quantities ~pι in the method
of Green's functions have the same physical meaning as in the Born-
Oppenheimer method. Thus, the state of electron transfer at its “start”
from the donor 1 is described by the wave function [79].

Ψ 1 ¼GH ~U ΨBO
1 : (58)

We recall that in the solution GH (see Eq. (50)) of the Dyson Eq. (49)
the Green's function G is determined by the Hamiltonian (55) with the
separating variables q and p. So, in the Green's function GH it remains to
find only the value of the total energy EH of the system. This energy is
taken in the adiabatic approximation corresponding to the wave function
ΨBO

1 (see Eqs. (24) and (40, 41, 42)). As a result, we obtain the wave
function (58), where the Green's functionGH ¼ GHðEH ¼ EBO

H Þ is expressed
in terms of G ¼ GðEH ¼ EBO

H ; iγ→ 0Þ as a series (50).
The infinitesimal imaginary additive iγ specified in G is ordinarily

written in the spectral representation of the Green's function in order to
escape zero in the energy denominator. In our case, the spectral repre-
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sentation of the Green's function has the form:

G
Gðq; q0
; p; p

0
; H� ~UÞ ¼

X
s

Ψ sðq; pÞ Ψ s*ðq0
; p

0 Þ
EBO
H � 
EsðpÞ � ~UðpÞ�� iγ

; (59)

where Ψ sðq; pÞ are the eigenfunctions of the Hamiltonian (55) and EBO
H ¼

EsðpÞ (see Section 2.4.1); the energy denominator vanishes when
~Usðp¼ ~pÞ ¼ 0 (~UsðpÞ 


P
ι
Uιsðpι � ~pιÞ, see Eq. (31)) and γ ¼ 0. We,

however, ascribe a finite value to the value of γ, as a result of which γ
acquires the physical meaning of the degree of chaos in the reorganiza-
tion of the nuclei of the medium, provoked by the motion of the electron
from the donor towards the acceptor.9 Thus, for the elementary electron
transfers, along with the energy of reorganization E 
 1

2

P
ιℏωι~p2ι (see Eq.

(37)) of the nuclei of a medium, a dissipation energy γ is introduced into
the theory, which characterizes the degree of chaos in the motion of
nuclei in a transient state. The implementation of the finite quantity γ
makes it possible to escape the singularity in the rates of elementary
electron transfers, which is formally associated with the vanishing of the
energy denominator of the complete Green's function of the system at
γ ¼ 0, and which is physically associated with the incomparability of the
masses of the electron and nuclei of the environment,10 and it indicates
physically insertion, to the transient state, of a process for the trans-
formation, at first, of a portion of the vibrational motion of the nuclei into
their translational motion, and after that, in the course of completing the
“quantum” transition, of the emerged translational motion of the nuclei
back into their vibrational motion. Since the chaos in the electron-
nuclear movement is absent in the initial and final states and occurs
merely in the transient state, it is called dozy chaos, and the appropriate
dissipation energy γ can be called the dozy-chaos energy [14, 28].

Along with the objective of damping the singular electron-nuclear
movement, our procedure of introducing a finite magnitude of γ has
extra important objective: it allows us to ensure the parameter of
smallness of the problem [79].

~U G �
~U
γ
� ℏωι

γ
<< 1: (60)

Hence

G >> G ~U G >> G ~U G ~U G >> :::; (61)

and in obedience to the series (50), the Green's function GH is as follows

GH � G: (62)

Thus, in accordance with Eq. (58), we finally have a solution
9 Usually, the quantity γ specifies the rule for bypassing singular points in
contour integration. However, in our theory of charge transfers [11], some
mathematical technique [52, 75] (see Section 2.4.6) manages to perform an
exact summation over the intermediate states that are associated with γ. This
“releases γ from former duties” and lets it to gain a new status. The author's
mathematical technique [52, 75] is a substantial development of the generating
polynomial (generating function) technique of Krivoglaz and Pekar [76, 77],
and the Krivoglaz-Pekar technique [76, 77] in its turn is analogous to computing
the thermodynamic quantities by the Darwin-Fowler technique [72, 78], known
from statistical physics.
10 We note that, in analogy with the standard theory of many-phonon transi-
tions [72], our original Hamiltonian (Eq. (19)) depends on the electronic and
normal phonon coordinates of the system, and in solving this problem on its
basis it is not clear how exactly, because of the incomparability of the masses of
the electron and nuclei, a singularity is “formed” in the observed physical
quantities, the emergence of which follows from the above analysis of the
problem on a qualitative physical level (see Section 2.1). This singularity
manifests itself formally in the observed physical quantities, either as γ tends to
zero (γ → 0) (see Fig. 4 in Section 2.6) or for γ 
 0 in the whole of the original
theory.

10
describing the state of electron transfers:

Ψ 1 � G ~U ΨBO
1 ; (63)

where G ¼ GðEH ¼ EBO
H ; iγ; γ>> ℏωιÞ.

Starting from relationship (60), it is not difficult to understand that
the wave function of the system for an electron localized on the acceptor
2, in order to avoid nullity in the transition amplitude

A12 ¼hΨ 2ðq�L; pÞjWjΨ 1ðq; pÞi; (64)

should be taken no longer in the form of Eq. (63), but in the adiabatic
approximation (Eq. (42)): Ψ2 ¼ ΨBO

2 .11

The series for the transition rate constant, which corresponds to the
Green's function series (Eq. (50)), according to relationship (60) has a
small parameter

ðm1ℏωι=γÞ2 < < 1; (65)

where m1 is the distribution function of Planck.12 Therefore, in our
problem for kBT > ℏωι=2, as a small parameter, we have

ðkBT=γÞ2 < < 1: (66)

So, according to Eq. (60), the parameter for the convergence of the
Dyson series for the Green's function GH (Eq. (50)) is

ℏω
γ

<< 1 (67)

(for simplicity, we assume the vibrational frequency ω¼constant 
 ω).
Therefore, the same parameter (Eq. (67)) ensures the convergence of the
TDPT series (see Section 2.2) for the amplitude of the quantum transi-
tions AflðtÞ (see Eq. (2)), in which the initial (l) and final (f ) states are
determined by the regular wave functions previously obtained: the initial
state— by the dynamic wave function according to Eq. (63), and the final
state — by the wave function taken in the adiabatic approximation (Eq.
(42)).

2.4.4. The simplest electron-phonon Green's function
In Eq. (63), the Green's function Gðq; q0

;L; p; p
0
;EBO

H Þ is given by the
expression following from its spectral representation (59) and the form of
the Hamiltonian (55) with the separating variables q and p:

G


q;q

0
;L; p; p

0
;EBO

H

�¼X
:::mι :::

Ge



q;q

0
;L; ~p;EBO

H � ε:::mι :::

�
Φ0:::mι :::ðpÞΦ0:::mι :::ðp

0 Þ;

(68)

where

Ge



q;q

0
;L; ~p;EBO

H � ε:::mι :::

�¼X
s

ψ sðq;L; ~pÞψ s*ðq0
;L; ~pÞ


EBO
H � ε:::mι :::

�� EsðL; ~pÞ � iγ
(69)

is the Green's function of the extended electron motion associated with
the virtual motion of the nuclei. It follows from the form of the Hamil-
tonian (55) with separating variables q and p that the electronic wave
functions ψ sðq;L; ~pÞ in Eq. (69) are the eigenfunctions of Eq. (26),13 and
the phonon wave functionsΦ0:::mι :::ðpÞ in Eq. (68) are given by Eq. (41) for
11 For optical transitions, the perturbation in Eq. (64) is accepted in the regular
long-wave approximation: W ¼ p, where p is the momentum operator of the
electron (see Ref. [61]).
12 The factor m1 appears from considering the equilibrium distribution of the
population for m1 initial states of phonons.
13 That is, they coincide with the eigenfunctions of the electronic Schr€odinger's
Eq. (22), which are obtained in the zero order of the adiabatic perturbation
theory of Pekar [72, 73] with respect to the operator (25).
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~p ¼ 0 and replacing the indices of the initial and final states 1; 2:::mι1;2:::

by the index of intermediate states 0:::mι:::. The phonon energies in Eq.
(69) are

ε:::mι ::: 

X
ι

ℏωι

�
mι þ 1

2

�
(70)

(compare with Eq. (40) in Section 2.4.1).
The general expression for the electron Green's function (Eq. (69)) has

the form (see Ref. [80])

Ge ¼GðfreeÞ � GðfreeÞbTGðfreeÞ; (71)

where

GðfreeÞ 
GðfreeÞðq; q0
; kÞ¼ μ

2πℏ2

expð  ikjq� q0 jÞ
jq� q0 j (72)

is the propagator or the Green's function of the free motion of an electron

with energy ℏ2k2=2μ, and bT denotes the T-operator (scattering operator).
In our case, in the denominator ofGe (see Eq. (69)), according to Eqs. (40)
and (70), we have the electron energy

EBO
H � ε:::mι ::: � iγ¼ � ðJ1 þℏω1 þ iγÞ; (73)

where
Al

"
J1 þ

X
ι

ℏωιðmι �mι1Þ;L; ~p
#
¼ �ℏωl~pl1

ZZ
dqdq

0
Ge½q; q0

; αð::: mι :::Þ�ψ2 * ðqÞjq
ω1 

X
ι

ωιðmι �mι1Þ: (74)

From here

k¼  i½2μðJ1 þ ℏω1 þ iγÞ�1=2
.
ℏ: (75)

In the problem under consideration, the properties of the T-operator
are determined by the form of the electron potential wells U1ðqÞ and
U2ðq � LÞ. We choose these potentials in the simplest form, namely, in
the form of the zero-radius Fermi potentials [81, 82]. It is clear that in
this case, for not too small distances jLj 
 L, which we have for the
transfer of the electronic charge, the term GðfreeÞ bTGðfreeÞ in Eq. (71) does a
significant part just in such small surroundings of points q ¼ 0 and q ¼ L
(see Ref. [83]), which give a small contribution to the transfer rate
constant [11, 79]. Therefore, for Ge (see Eq. (69)) we have

Ge ffi GðfreeÞ: (76)

Taking into account Eqs. (72) and (75), we obtain

Geðq; q0
; αÞ¼ μ

2πℏ2

expð � αjq� q0 jÞ
jq� q0 j ; (77)

where

α
αð::: mι :::Þ
 αðω1Þ¼ ½2μðJ1 þ ℏω1 þ iγÞ�1=2
.
ℏ (78)

(ω1 is given by the formula (74)). Thus, substituting Ge from Eq. (77) into
Eq. (68), for the simplest electron-phonon Green's function we have
11
Gðq; q0
; p; p

0 Þ ¼
:::mι :::

Ge½q; q0
; αð::: mι :::Þ�Φ0:::mι :::ðpÞΦ0:::mι :::ðp

0 Þ; (79)

X

where the electron Green's function Ge½q; q0
; αð::: mι :::Þ� is given by Eq.

(77), and the phonon wave functions Φ0:::mι :::ðpÞ are given, as previously
indicated, by Eq. (41) for ~p ¼ 0 and replacing the indices of the initial and
final states 1;2:::mι1;2::: by the index of intermediate states 0:::mι:::.

2.4.5. The simplest Green's function of elementary electron transfers
As a result of neglecting the T-operator term in Eq. (71), the simplest

electron-phonon Green's function (Eq. (79)) does not depend on the
distance L between the donor and the acceptor of the electron charge.
The dependence on the distance L arises after integration over co-
ordinates q of the electron in the transfer amplitude (Eq. (64)). Therefore,
the definition of the simplest Green's function for the elementary
electron-charge transfers must include this integration.

Substituting the expression (58) for the wave function Ψ1ðq; pÞ writ-
ten in detail in terms of the Green's function according to Eqs. (68) and
(69) and expression (42) for the wave function Ψ2ðq�L; pÞ in the adia-
batic approximation into the amplitude given by Eq. (64), we obtain

A12 ¼
X
l

X
:::mι :::

Al

"
J1 þ

X
ι

ℏωιðmι �mι1Þ;L; ~p
#
oðml;ml1Þ
rðml;ml1Þ

Y
ι

rðmι2;mιÞrðmι;mι1Þ

(80)

where (taking into account Eq. (35))
Y
ι

rðmι;mι1;2Þ

Y
ι

Z
φmι

ðpιÞφmι1;2
ðpι � ~pιÞdpι

R
¼ Φ0:::mι :::ðpÞΦ1;2:::mι1;2 :::ðp � ~pÞdp; (82)

oðml;ml1Þ
 �
Z

φml1



p
0
l � ~pl

�

p
0
l � ~pl

�
φml



p
0
l

�
dp

0
l ; (83)

where, for their part, φ:::ð:::Þ are the wave functions of the linear har-
monic oscillator (Eq. (41) for ~p ¼ 0 and/or ~p 6¼ 0). The factor jq�Lj in
the integrand of Eq. (81) comes from the perturbation operator W in the
transition amplitude (Eq. (64)), which is accepted in the long-wave
approximation (see Section 2.4.3).

Using the zero-radius approximation [81, 82] for the electron po-
tential wells U1ðqÞ and U2ðq�LÞ (see Section 2.4.4), for the wave func-
tions ψ1ðq0 Þ and ψ2*ðqÞ in Eq. (81) we have

ψ1ðq
0 Þ ¼

�α1

2π

1=2expð � α1jq0 jÞ
jq0 j ; (84)

ψ2 * ðqÞ¼
�α2

2π

1=2expð � α2jq� LjÞ
jq� Lj ; (85)

where

α1;2 ¼ ½2μðJ1;2 � EÞ�1=2
ℏ

; (86)

and E is the energy of reorganization of the vibrations of the nuclei (see

�Ljψ1ðq
0 Þ; (81)
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Eq. (37)), J1 > J2 > E by definition. Substituting Ge½q; q0
; αð::: mι :::Þ�

from Eq. (77) and ψ1ðq0 Þ and ψ2*ðqÞ from Eqs. (84) and (85) into formula
(81) and computing the integral

R
dq

0
:::, we get

Al ¼ � μðα1α2Þ1=2
ð2πℏÞ2 ℏωl~pl1

Z
IðjqjÞexpð � α2jq�LjÞdq; (87)

where

IðjqjÞ¼ 4π½expð�αjqjÞ � expð � α1jqjÞ�
ðα2

1 � α2Þjqj : (88)

As a result, after computing the integral
R
:::dq in Eq. (87), we have

[11, 79].

Al ¼ c12ωl~pl1G
E; (89)

where

c12 ¼ � 8μα2ðα1α2Þ1=2
ℏ

; (90)

the Green's function of the elementary electron transfers is

GE ¼GEðα; LÞ¼ 1
L

"
expð�αLÞ þ f ðα;LÞ
ðα2

1 � α2Þðα2
2 � α2Þ2

#
; (91)

f ðα;LÞ

��

1þ


α2
2 � α2

1

�
L

2α2

	
expð�α2LÞ� expð�α1LÞ

� 

α2
2 � α2

�2
ðα2

2 � α2
1Þ2

�
�
L
2α2

expð�α2LÞ
	

α2
2 �α2

�� expð�α2LÞ; ð92Þ
(92)

and the function α ¼ αðω1Þ is given by formula (78). Thus, the Green's
function of the electron-charge transfers GE ¼ GEðω1; LÞ to the distance L
is given by Eqs. (91) and (92), in which the function α ¼ αðω1Þ is given by
Eq. (78). The values of ℏω1, on which α depends, are the energy levels of
the electron in the transient state, which arise as a result of virtual
Plðmι2;mι1;ω1Þ 

X
:::mι :::

oðml;ml1Þ
rðml;ml1Þ

Y
ι

rðmι2;mιÞrðmι;mι1ÞΔ
"
ω1 �

X
ι

ωιðmι �mι1Þ
#
; (98)
movements of the electron and nuclei.

2.4.6. The general expression for the rate constant of elementary electron
photo-transfers. The technique of generating functions

Taking into account the quasi-discreteness of the phonon energy
spectrum in a condensed matter having a bounded volume, we introduce
an energy unit ℏω so small that all the phonon energies ℏωι are expressed
by integers [72, 76, 77]. The heat energy of elementary electron-charge
transfers is then given by an integer Δ 
 ℏω12 > 0.14 Then, proceeding
according to the rules of quantum mechanics, within the “Golden Fermi
rule”, the rate constant of the elementary electron-charge photo-transfers
(optical extinction) ε for the ω12-phonon act can be formulated in the
following way [72, 73, 74]:
14 Heat energy Δ < 0 matches the acts of luminescence, research of which is
beyond the scope of this article. See also the latest reference in this article.

12
ε¼ 4π2q2MAΩ

3ℏcnref
K (93)
where q is the quantity of electron charge transferred in a quantum-
classical transition, Ω is the circular frequency of the absorbed photon,
MA is the Avogadro constant, c is the speed of light in vacuum, nref is the
refractive index, and the quantity K ¼ Kðω12Þ is

K¼Avðmι1Þ
X
:::mι2 :::

jA12j2Δ
"
ω12 �

X
ι

ωιðmι2 �mι1Þ
#
: (94)

Here, the dependence of the amplitude A12 on all transient (tunneling
and above-barrier) states :::mι::: is determined by Eq. (80) [11, 79], the
external summation is performed over all final states :::mι2::: on the
surfaceX
ι

ωιðmι2 �mι1Þ¼ω12 (95)

in concordance with the law of energy conservation

ℏΩ¼ J1 � J2 þ ℏω12 (96)

(J1 and J2 are the electron binding energies in the initial and final states 1
and 2, see also Section 2.4.1 above), Avðmι1Þ is the average of the initial
states :::mι1::: over the distribution function of Planck. The wavelength λ
(see Section 1 above, Figs. 1 and 2) refers to the frequency Ω in Eq. (96)
by the formula λ ¼ 2πc=Ωnref .

In Eq. (80), let us change the summing over the transient (interme-
diate) states :::mι::: in all modes ι by summing on the surfaceX
ι

ωιðmι �mι1Þ¼ω1 (74a)

(compare with Eq. (74) in Section 2.4.4) and by the sum over all integers
ω1 from �∞ to þ ∞. Then, taking into account Eq. (89), we obtain the
amplitude of electron-charge transfers A12 in the following form:

A12 ¼ c12
X
l

ωl~pl1
X∞

ω1¼�∞
GEðω1;LÞPlðmι2;mι1;ω1Þ; (97)
where the Green's function of the elementary electron transfers GEðω1; LÞ
is given by Eqs. (91), (92), and (78), and Plðmι2;mι1;ω1Þ denotes the
advanced phonon factor, which, due to the completeness of the system of
phonon wave functions Φ0:::mι :::ðpÞ (see Eq. (79)), transforms into a
Franck-Condon type factor

PFC
l ðmι2;mι1Þ¼ oðml2;ml1Þ

rðml2;ml1Þ
Y
ι

rðmι2;mι1Þ ; (99)

if in the Green's function of elementary electron-charge transfers
GEðω1; LÞ entering into Eq. (97), we put the number ω1 ¼ constant:

A12 ¼ c12GEðω1 ¼ constant;LÞ
X
l

ωl~pl1P
FC
l ðmι2;mι1Þ: (100)

The factor Plðmι2;mι1;ω1Þ (Eq. (98)) take appropriately all possible
virtual electron and nuclear movements into account, which create in-
termediate energy levels J1 þ ℏω1 of the electron.

To calculate the factor Plðmι2;mι1;ω1Þ and other similar quantities
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further, we need the Cauchy theorem with respect to the Laurent series:

f ðwÞ¼
X∞
m¼�∞

bmðw� w0Þm; bm ¼ 1
2π i

I
f ðζÞ

ðζ � w0Þmþ1 dζ; (101)

where the contour encircles the point w0, in the particular case w0 ¼ 0.
So, to calculate the factor Plðmι2;mι1;ω1Þ in Eq. (98), we introduce the

generating polynomials

rrðmι2;mι1;uÞ
rðmι2;mι1Þrðmι1;mι1Þþuωι rðmι2;mι1þ1Þrðmι1þ1;mι1Þþ :::

þu�ωι rðmι2;mι1�1Þrðmι1�1;mι1Þþ :::

(102)

and

roðml2;ml1;uÞ
rðml2;ml1Þoðml1;ml1Þþuωl rðml2;ml1þ1Þoðml1þ1;ml1Þþ :::

þu�ωl rðml2;ml1�1Þoðml1�1;ml1Þþ :::;

(103)

where the Condon integrals rð:::Þ and oð:::Þ are given by Eqs. (82) and
(83), correspondingly. Then, using the Cauchy theorem with respect to
the Laurent series (see Eq. (101)), from Eq. (98) we obtain

Plðmι2;mι1;ω1Þ¼ 1
2πi

I
du

uω1þ1

roðml2;ml1; uÞ
rrðml2;ml1; uÞ

Y
ι

rrðmι2;mι1; uÞ; (104)
Rl;l0


ω1;ω

0
1;ω12

�¼Avðmι1Þ 1

ð2πiÞ2
I

du
uω1þ1

I
dv

vω
0
1þ1

X
:::mι2 :::

Δ

"
ω12 �

X
ι

ωιðmι2 �mι1Þ
#
roðml2;ml1; uÞroðml0 2;ml0 1; vÞ
rrðml2;ml1; uÞrrðml0 2;ml0 1; vÞ

Y
ι

rrðmι2;mι1; uÞrrðmι2;mι1; vÞ: (110)
where the contour encircles the point u ¼ 0. Substituting the amplitude
A12 from Eq. (97) into Eq. (94) for the optical absorption K, we have
K¼ c212
X∞

ω1¼�∞
GEðω1;LÞ

X∞
ω
0
1¼�∞

GE *


ω

0
1;L
�X

l

ωl~pl1
X
l0
ωl0 ~pl0 1Avðmι1Þ

X
:::mι2 :::

Plðmι2;mι1;ω1ÞPl0


mι2;mι1;ω

0
1

�
Δ

"
ω12 �

X
ι

ωιðmι2 �mι1Þ
#
; (105)

Rl;l0


ω1;ω

0
1;ω12

�¼Avðmι1Þ 1

ð2πiÞ3
I

du
uω1þ1

I
dv

vω
0
1þ1

I
dw

wω12þ1
rorrðml1; u; v;wÞrrroðml0 1; u; v;wÞ

Y
ι

rrrrðmι1; u; v;wÞ; (111)
where Pl0 ðmι2;mι1;ω
0
1Þ is the advanced phonon factor arising from the

complex conjugate amplitude A12*. By the same method that we got the
result (104), we get

Pl0


mι2;mι1;ω

0
1

�¼ 1
2π i

I
dv

vω
0
1þ1

roðml0 2;ml0 1; vÞ
rrðml0 2;ml0 1; vÞ

Y
ι

rrðmι2;mι1; vÞ: (106)

The quantity

Avðmι1Þ
X
:::mι2 :::

Plðmι2;mι1;ω1ÞPl0


mι2;mι1;ω

0
1

�
Δ

"
ω12 �

X
ι

ωιðmι2 �mι1Þ
#
(107)
13
in Eq. (105) will be hereinafter referred to as Rl;l0 ðω1; ω
0
1;ω12Þ. This

function describes the electron-phonon dynamics for the individual
levels ω1 and ω

0
1 and the phonon modes l and l0 , which is due to the

virtual electron-phonon coupling. Note that the quantityX
l

ωl~pl1
X
l0
ωl0 ~pl0 1Rl;l0



ω1;ω

0
1;ω12

� 
 ϕ


ω1;ω

0
1;ω12

�
(108)

(see also the result for the function ϕðω1;ω
0
1;ω12Þ in Eq. (120) below)

describes the electron-phonon dynamics for the individual levels ω1 and
ω

0
1, which is caused by the virtual electron-phonon coupling, taking into

account all the phonon modes.
So, using the function Rl;l0 ðω1; ω

0
1;ω12Þ, the formula (105) for the

optical absorption K is rewritten as follows:

K
Kðω12Þ¼ c212

�
X∞

ω1¼�∞
GEðω1; LÞ

X∞
ω
0
1¼�∞

GE *


ω

0
1; L
�X

l

ωl~pl1
X
l0
ωl0 ~pl0 1Rl;l0



ω1;ω

0
1;ω12

�
(109)

Substituting the factors Plðmι2;mι1;ω1Þ and Pl0 ðmι2;mι1;ω
0
1Þ, expressed

in terms of contour integrals and polynomials (Eqs. (102) and (103)),
from Eqs. (104) and (106) into the expression (107), we have
Further, in Eq. (110) we perform summation over all final states 2,
using, as in the derivation of Eq. (104), the Cauchy theorem with respect
to the Laurent series (see Eq. (101)). For l 6¼ l

0
we get
where the contours encircle the points u ¼ 0, v ¼ 0 and w ¼ 0, corre-
spondingly; the generating polynomials entering here are determined in
the following way:

rrrrðmι1; u; v;wÞ
 rrðmι1;mι1; uÞrrðmι1;mι1; vÞ
þwωι rrðmι1 þ 1;mι1; uÞrrðmι1 þ 1;mι1; vÞþ :::

þw�ωι rrðmι1 � 1;mι1; uÞrrðmι1 � 1;mι1; vÞ þ :::;

(112)

rorrðml1;u; v;wÞrrrrðml1; u; v;wÞ
 roðml1;ml1; uÞrrðml1;ml1; vÞ
þwωl roðml1 þ 1;ml1; uÞrrðml1 þ 1;ml1; vÞ
þ :::þw�ωl roðml1 � 1;ml1; uÞrrðml1 � 1;ml1; vÞ þ :::

(113)
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and

rrroðml0 1;u; v;wÞrrrrðml0 1; u; v;wÞ
 rrðml0 1;ml0 1; uÞroðml0 1;ml0 1; vÞ
þwω

l
0 rrðml0 1 þ 1;ml0 1; uÞroðml0 1 þ 1;ml0 1; vÞþ :::

þw�ω
l
0 rrðml0 1 � 1;ml0 1; uÞroðml0 1 � 1;ml0 1; vÞ þ ::::

(114)

For l ¼ l0 , the function Rl;l0 ðω1;ω
0
1;ω12Þ is formulated as
Rl;l



ω1;ω

0
1;ω12

�¼Avðmι1Þ 1

ð2πiÞ3
I

du
uω1þ1

I
dv

vω
0
1þ1

I
dw

wω12þ1
roroðml1; u; v;wÞ

Y
ι

rrrrðmι1; u; v;wÞ; (115)
where the generating polynomials

roroðml1;u; v;wÞrrrrðml1; u; v;wÞ
 roðml1;ml1; uÞroðml1;ml1; vÞ
þwωl roðml1 þ 1;ml1; uÞroðml1 þ 1;ml1; vÞþ :::

þw�ωl roðml1 � 1;ml1; uÞroðml1 � 1;ml1; vÞ þ :::;

(116)

and the generating polynomials rrrrðmι1; u; v;wÞ are provided by Eq.
(112). The total electron-phonon dynamics due to the virtual electron-
phonon coupling is taken into account by the sum over all transient
(intermediate) levels of the electron energy ℏω1 (and the sum over all
phonon modes l) in the optical absorption K. After the substitution of the
functions Rl;l0 ðω1;ω

0
1;ω12Þ and Rl;lðω1;ω

0
1;ω12Þ from Eqs. (111) and (115)

into Eq. (109) for K, we obtain finally [11, 79].
K¼ c212
X∞

ω1¼�∞
GEðω1;LÞ

X∞
ω
0
1¼�∞

GE *


ω

0
1;L
� 1

ð2πiÞ3
I

du
uω1þ1

I
dv

vω
0
1þ1

I
dw

wω12þ1
Avðm1Þ½Pðm1; u; v;wÞRðm1; u; v;wÞ�; (117)
where the generating polynomial

Pðm1; u; v;wÞ

X
l

X
l0 6¼l

ωlωl0 ~pl1~pl0 1rorrðml1; u; v;wÞrrroðml0 1; u; v;wÞ

þ
X
l

ω2
l ~p

2
l1roroðml1; u; v;wÞ (118)

and the generating polynomial

Rðm1; u; v;wÞ 

Y
ι

rrrrðmι1; u; v;wÞ; (119)

the generating polynomials rrrrðmι1; u;v;wÞ, rorrðml1; u;v;wÞ, rrroðml0 1; u;
v;wÞ and roroðml1; u; v;wÞ are provided by Eqs. (112), (113), (114), and
(116), respectively (see also the polynomials in Eqs. (102) and (103)
above). Note that the result for the function ϕðω1; ω

0
1;ω12Þ, which de-

scribes the electron-phonon dynamics for the individual levels ω1 and ω
0
1

because of the virtual electron-phonon coupling (with allowance for all
phonon modes) and being determined above according to Eq. (108), is
the following:

ϕ


ω1;ω

0
1;ω12

�
ϕ


ω1;ω

0
1; T ;ω12

�
¼ 1

ð2πiÞ3
I

du
uω1þ1

I
dv

vω
0
1þ1

I
dw

wω12þ1
Avðm1Þ

� ½Pðm1; u; v;wÞRðm1; u; v;wÞ�;

(120)
14
where T is the absolute temperature. Finally, in the resulting Eq. (117)
for the optical absorption K, the Green's function of elementary electron
transfers GEðω1; LÞ is given by Eqs. (91), (92), and (78), and the constant
c12 is given by Eq. (90).

2.4.7. The case of non-local phonons
For simplicity, we do not take into account local vibrations, and so we
consider below the average of the initial states :::m1::: over the distri-
bution function of Planck,

Avðm1Þ½Pðm1; u; v;wÞRðm1; u; v;wÞ� (121)

(see this term in Eq. (117)), merely for non-local vibrations of nuclei
(crystal lattice phonons). In this case, we can take advantage of the fact
that

~pι � M�1=2; (122)

whereM is the amount of multipliers in the generating polynomial Pðm1;

u; v;wÞRðm1; u; v;wÞ (see Eqs. (118) and (119)), which is equal to the
amount of vibrational degrees of freedom in a condensed medium. Being
mindful of the limiting transition M → ∞ in the final result, it suffices to
hold terms in the polynomial Pðm1; u; v;wÞRðm1; u; v;wÞ pending order
M�1 inclusively. The Condon integrals in Eqs. (82) and (83) are easily
computed by expanding in powers of ~pι, and we obtain

rðmι1;mι1Þ¼ 1� ~p2ι
2

�
mι1 þ 1

2

�
þ :::; rðmι1 þ 1;mι1Þ¼ ~pι

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mι1 þ 1

2

r
þ :::;

rðmι1 � 1;mι1Þ¼ � ~pι

ffiffiffiffiffiffiffi
mι1

2

r
þ ::: ; (123)

oðml1;ml1Þ¼ ~pl
2
þ :::; oðml1 þ 1;ml1Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml1 þ 1

2

r
þ :::;

oðml1 � 1;ml1Þ¼
ffiffiffiffiffiffiffi
ml1

2

r
þ ::: : (124)

Considering Eqs. (122), (123), and (124), it is readily seen that
transitions at which one of the phonon occupation numbers changes by
over 1 do not contribute to the polynomial Pðm1; u; v; wÞRðm1; u; v; wÞ.
Substituting the results (123) and (124) into the polynomials (102) and
(103) and then substituting the polynomials (102) and (103) into the
polynomials (112, 113, 114) and (116), we have the following results for
generating polynomials of three variables:
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rrrrðmι1; u; v;wÞ¼ 1� 
~p2ι1 þ ~p2ι2
�

mι1 þ 1
2

þ 1
2
~p2ι1½ðmι1 þ 1ÞðuvwÞωι
� �
þmι1ðuvwÞ�ωι � þ 1

2
~p2ι2½ðmι1 þ 1Þwωι þmι1w�ωι �

� 1
2
~pι1~pι2½ðmι1 þ 1Þðuωι þ vωι Þðwωι � 1Þ

þmι1ðu�ωι þ v�ωι Þðw�ωι � 1Þ�;

(125)

rorrðml1; u; v;wÞrrrrðml1; u; v;wÞ¼ ~pl1
2
½1þðml1 þ 1ÞðuvwÞωl �ml1ðuvwÞ�ωl �

� ~pl2
2
½ðml1 þ 1Þuωl ðwωl � 1Þ�ml1u�ωl ðw�ωl � 1Þ�;

(126)

rrroðml1;u; v;wÞrrrrðml1; u; v;wÞ¼ ~pl1
2
½1þðml1 þ 1ÞðvuwÞωl �ml1ðvuwÞ�ωl �

� ~pl2
2
½ðml1 þ 1Þvωl ðwωl � 1Þ�ml1v�ωl ðw�ωl � 1Þ�

¼ rorrðml1; v; u;wÞrrrrðml1; v; u;wÞ
¼ rorrðml1; v; u;wÞrrrrðml1; u; v;wÞ;

(127)

roroðml1; v; u;wÞrrrrðml1; u; v;wÞ¼ 1
2
½ðml1 þ 1ÞðuvwÞωl þml1ðuvwÞ�ωl �:

(128)

By virtue of the relation (122) and in accordance with Eqs. (125),
(126), (127), and (128), the generating polynomial Pðm1; u; v;wÞRðm1; u;
v;wÞ (Eqs. (117, 118, 119)) can be formulated as the product of M → ∞
statistically independent multipliers that are linearly dependent on m1.
Consequently, the operation of averaging Pðm1; u; v;wÞRðm1; u; v;wÞ is
reduced to replacement of all mι1 and ml1 by their average equilibrium
values mι1;l1 (Planck's distribution function):

mι1;l1 ¼ ½expðℏωι;l

�
kBTÞ � 1��1

: (129)

As a result, the generating functions Rðm1; u; v;wÞ and Pðm1; u; v;wÞ
and optical absorption K [11, 79] are expressed as follows:
K¼ c212
X∞

ω1¼�∞

X∞
ω
0
1¼�∞

GEðω1; LÞGE *


ω

0
1;L
� 1

ð2π iÞ3
I

du
uω1þ1

I
dv

vω
0
1þ1

I
dw

wω12þ1
Pðm1; u; v;wÞRðm1; u; v;wÞ; (130)
Rðm1; u; v;wÞ¼ exp

(
�
X
ι

~p2ι ð2mι1 þ 1Þþ 1
2

X
ι

~p2ι ½ðmι1 þ 1Þðuωιvωι þ 1Þwωι

þ mι1ðu�ωιv�ωι þ 1Þw�ωι �g;
(131)
K¼ c212
��GEðJ1; LÞ

��2P½m1; u¼ expð�tÞ; v¼ expð�tÞ;w¼ 1� 1
2πi

I
dw

wω12þ1
R½m1; u¼ e

15
Pðm1; u; v;wÞ¼ 1
(X

ωl~p
2
l ½1þ ðml1 þ 1ÞðuvwÞωl � ml1ðuvwÞ�ωl �

)2
4 l

þ 1
2

X
l

ω2
l ~p

2
l ½ðml1 þ 1ÞðuvwÞωl þml1ðuvwÞ�ωl �: (132)

We note that for simplicity, the small terms ~pι1~pι2∝1
L and ~pl1~pl2∝1

L,
related to the phonon correlations, are neglected in the generating
functions Rðm1; u; v;wÞ and Pðm1; u;v;wÞ.

2.4.8. The analytical result for the shape of the optical absorption band
In the expression (130, 131, 132) for the optical absorption K, we

expand the logarithm of the Green's function of electron transfers
GEðω1; LÞ 
 GEðJ1 þℏω1; LÞ (see Eqs. (91) and (92) in Section 2.4.5) with
respect to the intermediate levels of the electron energy ℏω1 in the vi-
cinity of the donor level J1. Restricting ourselves to the linear approxi-
mation, we have

GEðJ1 þℏω1;LÞ � GEðJ1; LÞexpð� tω1Þ; (133)

t¼ � ½∂lnGEðJ1 þ ℏω1;LÞ
�
∂ω1�ω1¼0: (134)

Substituting the approximate expression (133) into the exact result
(130, 131, 132) and applying the Cauchy theorem with respect to the
Laurent series (see Eq. (101)), we get [11, 79].

K¼ c212
��GEðJ1;LÞ

��2 1
2πi

I
dw

wω12þ1
P½m1; u¼ expð�tÞ; v

¼ expð�tÞ;w�R½m1; u¼ expð�tÞ; v ¼ expð�tÞ;w�: (135)

It goes without saying that the application of the linear approximation
to ln½GEðJ1 þℏω1; LÞ� (Eq. (133)) imposes restrictions on the problem
parameters; however, it can be shown that these restrictions are not se-
vere [52].

Methods for calculating the contour integral in Eq. (135) are
similar to those applied in the standard theory of many-phonon tran-
sitions (Ref. [72]). In Eq. (135), the generating function
R½m1; u¼ expð�tÞ; v¼ expð�tÞ;w� (Eq. (131)) is exponential with
respect to the variable w, while the generating function
P½m1; u¼ expð�tÞ; v¼ expð�tÞ;w� (Eq. (132)) is a power function in w.
Consequently, in a greater in modulus thermal effect ℏω12, when the
phonon frequencies

ωι;l < < jω12j; (136)

we can put ωl equal to zero in quantity wωl , which appears in P½m1; u ¼
expð� tÞ;v ¼ expð� tÞ;w�.15 Thus, P is not now dependent on w, and in
Eq. (135) it can be brought outside the integral character in the pointw ¼
1 [11, 79]:
xpð�tÞ; v ¼ expð�tÞ;w�: (137)

15 Inter alia, the restriction (136) here means that we neglect the well-known
zero-phonon line (on zero-phonon lines, see Refs. [65, 66, 84]).



Fig. 3. The dynamics of quantum-classical transitions in the neighborhood of
the singular point ðΩ¼ 1; θ0 ¼ ∞Þ [ðΔ ¼ E; γ ¼ 0Þ] is demonstrated by the
behaviour of the quantity t ¼ tðΩ; θ0Þ (see Eq. (144)) [11]. For simplification, it
is formally assumed here that J2 � J1 ¼ 0. Then Θ�1 ¼ ℏΩ=E 
 Ω. The
following system parameters are used: J1 ¼ 5 eV, E ¼ 1 eV, μ ¼ me, ω ¼ 5�
1013 s�1 and L ¼ L* � 0:44 nm (transferon resonance, Eq. (161)).
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Within the framework of Einstein's model of the vibrations of nuclei
ωι ¼ constant 
 ω, in Eq. (137) the contour integral is calculated exactly.
In order to obtain the result, one can use, for example, the well-known
expansion in a series [85]:

exp
�
AzþB

z

�
¼
X∞
n¼�∞

zn
�
A
B

�n
2

In
�
2
ffiffiffiffiffiffi
AB

p 
; (138)

where Inð:::Þ is the modified Bessel function. Applying once again the
Cauchy theorem with respect to the Laurent series (see Eq. (101)), from
Eq. (137), taking Eq. (138) into account, we get

K¼ c212
��GEðJ1;LÞ

��2P½m1; u¼ expð�tÞ; v¼ expð�tÞ;

w¼ 1�exp
�
� 2E
ℏω

cth βT þð βT � tÞω12

ω

	
Iω12

ω

�
2E ch t
ℏω sh βT

�
;

(139)

where βT 
 ℏω=2kBT. Further, using the well-known asymptotic formula
[85, 86]

IκðuÞ� 1ffiffiffiffiffiffiffiffi
2πu

p exp
�
u� κ2

2u

�
; u> > 1; κ � u; (140)

as a result, we have optical absorption K, which is entirely expressed
in elementary functions [10, 11, 12, 79]:

K¼K0 expðYÞ; (141)

Y ¼ 1
2
ln
�
ωτ sinh βT
4π cosh t

�
� 2
ωτ

�
coth βT �

cosh t
sinh βT

�
þðβT � tÞ 1

ωτ Θ

� sinh βT
4ωτ Θ2cosh t

; (142)

1< <
1

ωτ Θ
� 2cosh t

ωτ sinh βT
; (143)

where

t¼ωτe
θ

"
AC þ BD
A2 þ B2

þ 2ΘðΘ� 1Þ
ðΘ� 1Þ2 þ ðΘ=θ0Þ2

þ θ0
2

θ0
2 þ 1

#
; (144)

jθ0j > >
E
2J1

; (145)

θ
 τe
τ
¼ L E

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2J1=m

p ; Θ 
 τ
0

τ
¼ E

Δ
; θ0 
 τ0

τ
¼ E

γ
; (146)

τe ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffi
2J1=m

p ; τ ¼ ℏ
E
; τ

0 ¼ ℏ
Δ
; τ0 ¼ ℏ

γ
: (147)

Here, we use the notation

A¼ cos
�
θ

θ0

�
þΛþ

�
1
θ0

�2

ν; B¼ sin
�
θ

θ0

�
þ 1
θ0

μ; (148)

C¼ θ

�
cos
�
θ

θ0

�
� 1� ξ2

2θ0
sin
�
θ

θ0

�	
þ μ; (149)

D¼ θ

�
sin
�
θ

θ0

�
þ 1� ξ2

2θ0
cos
�
θ

θ0

�	
� 2
θ0

ν; (150)

ξ 

�
1� E

J1

�1=2

ðJ1 >E by definitionÞ; (151)

and where we finally have
16
Λ¼ �ðΘ� 1Þ2εþ ðΘ� 1Þθ
ρ

þΘðΘ� 2Þ ε
1�ρ
1�ξ; (152)
� 	

μ¼ 2ΘðΘ� 1Þε�
�ð2Θ� 1Þθ

ρ
þ 2ΘðΘ� 1Þ

	
ε
1�ρ
1�ξ; (153)

ν¼Θ

24Θε��θ
ρ
þΘ


ε
1�ρ
1�ξ

35; (154)

ε
 exp
�

2θ
1þ ξ

�
; ρ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ 2 þ 1� ξ 2

Θ

s
: (155)

The factor K0 becomes

K0 ¼Ke
0K

p
0; (156)

where

Ke
0 ¼

2τ3J1
m



A2 þ B2

�
ρ3Θ4ξ

θ2
"
ðΘ� 1Þ2 þ

�
Θ
θ0

�2
#2"

1þ
�

1
θ0

�2
# exp�� 4θ

1� ξ2

�
(157)

and

Kp
0 ¼

1
ωτ

�
1þ sinhðβT � 2tÞ

sinh βT

	2
þ coshðβT � 2tÞ

sinh βT
: (158)

Conditions (143) and (145) are not any significant restrictions on the
characteristics of the system and associated with points of regular ap-
proximations done in the computations [11, 79]. Inequalities (143)
follow from conditions in formula (140). Inequality (145) follows from
the expansion of the radical in a series by smallness of jγj =J1 in the
Gamow exponent (see Section 2.4.4, formula (78) for ω1 ¼ 0), which is
limited to the zero-order approximation. The scaling times offered by Eq.
(147) regulate the chaotic dynamics of quantum-classical transitions. We
consider them at length in another place [12, 13, 14, 28, 79]. Here, they
are discussed in a few words.



16 Condition (145) does not allow us to make this limit in our result (141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158)
as the gamma tends to infinity (γ → ∞). However, this condition is not funda-
mental and is related only to routine simplification of calculations, namely it is
connected, as previously indicated, with the expansion of the radical into a
series of smallness jγj =J1 in the exponent of the Gamow exponent, which is
limited to the zero-order approximation. If this simplification is refused, then
the result of the limiting transition under discussion is the same as here:
Kðγ→ ∞Þ → 0. In this connection, the rejection of the aforementioned expan-
sion would lead to an unjustified complication of the result, which is significant
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A crucial component in the dynamics of quantum-classical transitions
is a numerical correlation between the time

τe ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffi
2J1=m

p (159)

and the time

τ¼ ℏ
E
; (160)

that are elements in Eqs. (141), (142), (143), (144), (145), (146),
(147), (148), (149), (150), (151), (152), (153), (154), (155), (156),
(157), and (158) for computing optical absorption spectra (Eq. (147)).
The time τe is the specific time of an electron movement between the
donor and the acceptor, set apart by distance L. The time τ is the specific
time of the environmental nuclear reorganization. In the case

ð2τeÞ�1 ¼ τ�1 (161)

the so-called transferon resonance [12, 13] occurs between the respective
frequencies ð2τeÞ�1 and τ�1. We considered one of the implications of the
resonance under discussion as an example in Ref. [18], Section 2.4 (op-
tical absorption spectra as solution-dependent [17, 44]). Other its impacts
are considered in Refs. [10, 11, 12, 14, 17, 28]. Farther, in Eq. (147), the
time τ0 ¼ ℏ

Δ is the specific time of transformation of the energy ℏΩ of light
into the excitation energy J1 � J2 of electron and the heat energyΔ 
ℏω12

in elementary electron-transfer processes (see Eq. (96)), and the time τ0 ¼
ℏ
γ is the specific time of transformation of a movement (energy) of electron

into a movement (energy) of nuclear reorganization (γ > 0) and/or of the
reverse acts (γ < 0) in the transient dozy-chaos state (the sign of γ is
discussed below). The non-dimensional parameters θ, Θ, θ0 (Eq. (146))
are related to the aforementioned specific times τe, τ

0
, τ0, which are

divided by the specific time τ (Eq. (160)). The quantities Λ ¼ Λðθ;ΘÞ, μ ¼
μðθ;ΘÞ and ν ¼ νðθ;ΘÞ (see Eqs. (152), (153), and (154)), being inde-
pendent of the parameter θ0 and the dozy-chaos energy γ, do not involve
the chaos of the electron-nuclear movements in the transient state and
describe merely the regular motion of the electron and nuclei. The func-
tions A ¼ Aðθ;Θ;θ0Þ, B ¼ Bðθ;Θ;θ0Þ, C ¼ Cðθ;Θ; θ0Þ and D ¼ Dðθ;Θ; θ0Þ
(see Eqs. (148), (149), and (150)), being dependent on the parameter θ0,
already involve the chaos of the electron-nuclear movements in the
transient state. The Eqs. (144), (145), (146), (147), (148), (149), (150),
(151), (152), (153), (154), (155), and (157) are independent of the
parameter βT 
 ℏω=2kBT and the absolute temperature T, therefore, they
do not include the averaging over the equilibrium distribution of the
initial states in the ensemble of the donor-acceptor systems. By contrast,
the Eqs. (142) and (158), being dependent on the parameter βT 

ℏω=2kBT, already include the averaging over the equilibrium distribution
of the initial states. All donor-acceptor systems in the ensemble have their
own values of the parameter Θ, the corresponding thermal effect Δ and
absorption frequencyΩ of light (see Eq. (96)). These values, togetherwith
the other parameters of a donor-acceptor system in the ensemble, deter-
mine the position, width, intensity and shape of optical absorption bands.
From the formula τ

0 ¼ ℏ
Δ for the specific time of transformation of the light

energy ℏΩ (see Eq. (147)) and from the law of energy conservation (see
Eq. (96)) it follows that the dynamics of producing the shape of optical
bands is fastest in the high-frequency tail of the optical bands and is
slowest in their low-frequency tail. Lastly, in Eq. (157),
exp½�4θ =ð1�ξ2Þ� 
 expð�2L =aÞ is the Gamow tunnel factor (a 

ℏ=

ffiffiffiffiffiffiffiffiffiffiffi
2mJ1

p
).

The quantity K ¼ KðΘ; θ0Þ (Eq. (141)) and the corresponding optical
extinction (Eq. (93)) have a singularity at the point ðΔ¼ E; γ¼ 0Þ or ðΘ ¼
1; θ0 ¼∞Þ. The nature of this singularity is controlled by singularities of
the functions t ¼ tðΘ; θ0Þ in Eq. (144) and Ke

0 ¼ Ke
0ðΘ; θ0Þ in Eq. (157).

The singularity in the function Ke
0 ¼ Ke

0ðΘ; θ0Þ is removable:
17
Ke
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In the function t ¼ tðΘ;θ0Þ, the singularity at the point ðΘ¼ 1; θ0 ¼ ∞Þ
is irremovable. The behavior of the function t ¼ tðΘ; θ0Þ in the neighbor-
hood of ðΩ
 Θ�1 ¼ 1; θ0 ¼ ∞Þ is shown in Fig. 3. Must be noted that the
result (141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,
154, 155, 156, 157, 158) is invariable if you change the sign of γ. The
invariancy is consistent with the physical case that both the virtual acts of
transformation of electron movement (energy) into nuclear reorganization
movement (energy) and the reverse acts occure in the transient dozy-chaos
state [14, 15, 18, 28, 79]. For definiteness, we set γ > 0 in Fig. 3 and
hereinafter.

2.4.9. Limit to standard result
The limiting transition from the optical absorption K given by Eqs.

(141), (142), (143), (144), (145), (146), (147), (148), (149), (150),
(151), (152), (153), (154), (155), (156), (157), (158), and (96) to the
corresponding result given by the standardmany-phonon theory [72] can
be a priory implemented by tending the dozy-chaos energy γ to either
zero or infinity,16 but the quantity K turns out to be infinity for γ → 0 and
zero for γ → ∞. The physical meaning of Kðγ→ 0Þ → ∞ beyond the
adiabatic approximation is interpreted as a consequence of the incom-
parability of masses of the electron and its environmental nuclei (see
Section 2.4.3). The physical meaning of Kðγ→ ∞Þ → 0 (see Fig. 4 in
Section 2.6 below) is determined by the failure of electron transitions
coupled to nuclear reorganizations when in the transient state the motion
of nuclei is absolutely chaotic (random), hat is, when in the electro-
n–nuclear system the internal friction is infinite. Given this, we can
remove γ from Eqs. (141), (142), (143), (144), (145), (146), (147), (148),
(149), (150), (151), (152), (153), (154), (155), (156), (157), (158), and
(96) and get the standard result by tending γ to infinity in the equation for
t (t → 0; Fig. 3, where θ0 ¼ E=γ under Eq. (146)) and to zero in Ke

0 (Eq.
(162)). The standard type equation for K (kBT > ℏω=2) is thus obtained
[11]:

K¼ a2ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλrkBT

p exp
�
�2L

a

�
exp

"
� ðΔ� λrÞ2

4λrkBT

#
; (163)

where λr 
 2E. A formula of this type was obtained by Marcus in his
electron-transfer model [87, 88, 89, 90, 91, 92] and is often called the
Marcus formula, and the energy λr is called the reorganization energy of
Marcus. Similar and more general formulas were previously obtained in
the theory of many-phonon transitions (see Refs. [65, 72]) for optical
transitions by Huang and Rhys [93] and Pekar [73, 74, 86] (see also Lax
[94] and Krivoglaz and Pekar [76]) and for nonradiative transitions by
Huang and Rhys [93] and Krivoglaz [77].

2.4.10. Quantum-classical mechanics as applied to both solids and liquids
Although the basic principles of the quantum-classical mechanics of

elementary electron transfers were given in this article in terms corre-
sponding to solids, nowhere was the regular periodic configuration of
only in an uninteresting, from the perspective of applications, asymptotic
parameter range (that is, in the region Kðγ→ ∞Þ → 0).



Fig. 4. Singularity in the rate of molecular “quantum” transitions: a potential box with a moveable wall (a) and the optical absorption band shape dependant on the
dozy chaos accessible to a certain “quantum” transition (b); the pronounced peak (J-band) matches the least dozy chaos [15, 18]. (Original citation) — Reproduced by
permission of The Royal Society of Chemistry.
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atoms (nuclei) assumed. It was assumed only that the atoms make har-
monic oscillations around some still equilibrium states. But such a con-
dition also occurs in liquids for quite long periods of time until shaking
happens due to a strong statistical fluctuation of the oscillations and new
equilibrium states of the atoms are set up. Since the shaking time τT ffi ℏ=
kBT greatly exceeds the elementary electron transfer time τffiτ ¼ ℏ=E
(Section 2.4.8, Eq. (160)), because of the irresistible condition kBT << E
(at room temperature kBT ¼ 1=40 eV and E ¼ ð1�0:1Þ eV), our theory,
such as the standard theory of many-phonon transitions [72, 73, 74], can
be applied to both solids and liquids [11]. A clear confirmation of this is,
for example, our successful theoretical explanations for the optical
spectra in polymethine dyes and their aggregates in liquid solutions
(Section 1).
17 The incomparability of the masses of electrons and nuclei is present in the
Franck-Condon picture and “substantiates” it, but here, first of all, we start in
our reasoning from the internal inconsistency of the Franck-Condon picture it-
self, when the incomparability of the masses of electrons and nuclei recedes into
the background.
18 For a system with M nuclear coordinates, this intersection occurs on an (M –

1)-dimensional surface.
2.5. Internal inconsistency of the Franck-Condon principle

As mentioned in Section 2.1, just as in quantum-classical mechanics,
the transient state in the standard Franck-Condon picture is essentially
classical: the classical motion of the nuclei is carried out to the turning
point, or in other words, “towards the quantum transition.” In the stan-
dard theory, this qualitative Franck-Condon picture of the dynamics of
the transient state does not have a formalized description. When we
attempt to formalize this picture within the framework of quantum me-
chanics, we immediately obtain a singularity in the rates of molecular
quantum transitions. This is because we use only quantum mechanics to
describe molecular “quantum” transitions, whereas in the qualitative
Franck-Condon picture, in addition to the quantum transition, we also
have the classical motion of the nuclei “towards it.” Therefore, to elim-
inate the singularity, a certain paradigm of classicality must be intro-
duced, in one way or another, into quantummechanics. The simplest way
to do this in the formal apparatus of quantum mechanics is to replace the
infinitesimal imaginary additive in the energy denominator of the spec-
tral representation of the total Green's function of the system by its finite
value and thus come to quantum-classical mechanics. In the
18
aforementioned reasoning, we did not have to resort, as we did earlier in
the text of the article, to the argument that the mass of the nuclei is
incomparably larger than the mass of the electrons (in this regard, see
footnote 10 in Section 2.4.3). It was sufficient to refer to the internal
inconsistency of the Franck-Condon picture, which is related with the
fact that in theory, the qualitative Franck-Condon picture of the dynamics
of the transient state does not have an adequate mathematical
formulation.17

We previously discussed the internal inconsistency of the Franck-
Condon principle related to the inability to formalize, within the
framework of quantum mechanics, the qualitative quantum-classical
picture of optical transitions in molecules, which the Franck-Condon
principle offers. A similar internal inconsistency is inherent in the
Franck-Condon principle when it is used in the standard theory of non-
radiative elementary electron transfers in condensed media, namely, in
Marcus' theory. In the qualitative picture of Marcus, it is assumed that the
electron energy on the donor and on the acceptor in each individual
donor-acceptor pair is equalized due to fluctuations in the classical mo-
tion of the nuclear subsystem (due to thermal fluctuations of the nuclear
coordinates) before the quantum transition (transfer) of an electron oc-
curs from the donor to the acceptor [91, 92]. In other words, the quantum
transition occurs at the “point” of intersection of the electronic terms of
reagents and products,18 which is achieved as a result of the classical
reorganization of the nuclear subsystem, and each individual
donor-acceptor pair immersed in the medium acts, as in the case of
transitions in individual molecules, as a simple quantum-classical system.
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An attempt to formalize the qualitative picture of Marcus in the frame-
work of quantum mechanics, which we essentially undertook at the
initial stage of building quantum-classical (dozy-chaos) mechanics, leads
to a singularity in the rates of transitions (transfers). Damping this sin-
gularity, that is, introducing chaos into the transient state of each indi-
vidual donor-acceptor pair, we obtain the quantum-classical
(dozy-chaos) mechanics of elementary electron transfers in condensed
matter, which is formulated in Section 2.4. The result of the rate constant
in Marcus' theory is obtained from the result of the rate constant in
dozy-chaos mechanics when we turn to strong chaos [11] (γ � E; see also
the limiting transition in Section 2.4.9). It follows that in the problem of
elementary electron transfers, the Franck-Condon principle acts as an
effective simulator of strong dozy chaos, just as in the problem of
“quantum” transitions in molecules, and the Marcus model acts as an
effective simulator of quantum-classical mechanics of electron transfers
in strong dozy chaos.

2.6. Explanation for “pedestrians” why quantum mechanics ceases to
work in molecular and chemical physics

Quantum mechanics was invented in the last century to explain the
quantum jumps of an electron in an atom. Let's assume that the atom can
be schematically modeled by a one-dimensional potential box (Fig. 4a).
Then, what is the model of a molecule in this scheme [49]? In a molecule
in the process of a quantum transition from one state to another state, the
nuclear subsystem is reorganized, that is, the equilibrium positions of the
nuclear vibrations are adjusted to the new distribution of the electron
charge in the final state. What does this adjustment or reorganization
correspond to in the scheme of the one-dimensional potential box [49]?
Obviously, this reorganization corresponds to the motion of at least one
of the twowalls of the potential box during the quantum transition. There
are only two options of the motion of this wall chosen by us. The first
option: the wall moves freely, that is, without friction. The second option:
the wall moves with friction [14, 15, 18, 28, 49].

Initially, consider the first option. In the course of the electron tran-
sition, for example, from the ground state, where the probability of
finding the electron is greatest in the middle of the box, to the first
excited state, where this probability becomes larger both near the sta-
tionary and movable walls, the electron pressure on the walls arises. This
pressure sets the free wall in motion. Due to the very rapid motion of the
free wall, the width of the potential box increases very rapidly and
unlimitedly. As a result, the energy level of the excited state falls very
rapidly straight down to coincidence with the energy level of the ground
state; this obviously leads to a singularity (to infinity) in the quantum
transition rate [14, 15, 18, 28, 49]. From this schematic analysis it fol-
lows that, within the framework of quantum mechanics, the full-fledged
joint motion of an electron and nuclei in a molecule can not be regular,
but it can only be singular. (In the adiabatic approximation [53] (see
Section 2.3) in molecular physics and quantum chemistry, the motion of
electrons is not dynamically full-fledged: they only form an electric po-
tential in which the nuclei make their oscillations.)

Let us now turn to the second option, in which the wall of the po-
tential box moves with friction. In this case, in the process of a quantum
transition, because of the presence of friction, the wall will not have time
to go to infinity, and therefore the rate of the electron transition becomes
a normal finite value. In a real molecule, this friction corresponds to
chaos, which provokes a very light electron in the oscillatory movements
of massive nuclei “with the aim” to control their movements during
molecular quantum transitions. As previously mentioned (Sections 1, 2.1,
and 2.4.3), this chaos is called dozy chaos [14, 28], since it arises merely
in a transient state and is absent in the initial and final states. Because of
chaos (dozy chaos) in the transient dynamic state, a continuous spectrum
of energy in this state appears (see also Sections 1 and 2.1), which is a
sign of classical mechanics [16, 18]. In other words, the whole theory of
molecular quantum transitions ceased to be quantum mechanics.

Consider the issue in more detail. So, the singularity in the rate
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constants of electron–nuclear(–oscillatory) transitions, exemplified here
by elementary electron transfers in condensed matter, can be elucidated
by a potential box with a moveable wall (Fig. 4a) [14, 15, 18, 28, 49].
The wall is attached to the abscissa axis by an easily moveable hinge and
can shift along the axis with some friction or without friction. Suchlike a
wall imitates the nuclear reorganization of the environment in the
elementary electron transfers, where dozy chaos acts as friction. In the
theory [10, 11, 12, 13, 14, 15, 28, 79], this results in the displacement of
the dozy-chaos dependent optical absorption band to the red spectral
region and its narrowing (Fig. 4b). The width and the intensity of the
optical band (see Fig. 4) are controlled by the proportion θ0 ¼ E=γ (see
Eq. (146)), where E is the reorganization energy and γ is the dozy-chaos
energy. The smaller the magnitude of γ is, the sharper “spike” in the
dynamic function t ¼ tðΩ; θ0Þ (see Fig. 3, γ << E or θ0 >> 1), the higher
the level of organization of the elementary electron transfer, and the
smaller the width and larger the intensity of the optical band (see Fig. 4).
The red maximum drift in Fig. 4b can be directly understood by
considering the potential box with a moveable wall (Fig. 4a). This drift
can be also realized from the band shape behavior with the change
(decrease) in the nuclear reorganization energy in the standard theory, if
the reorganization energy is thought of as a complex quantity, and the
dozy-chaos energy γ acts as its imaginary part (see details in Ref. [15]).

Consider the basics of quantum mechanics from another point of
view. Molecules and atoms are similar to each other. Their similarity lies
in the fact that the structural elements of both microsystems are nuclei
and electrons. The main difference between these microsystems is the
number of nuclei: atoms are electron-nuclear microsystems that have
only one single nucleus, while molecules are electron-nuclear micro-
systems that generally have a large number of nuclei (at least two). It is
this well-known and trivial fact that ultimately serves as the divide be-
tween quantum and quantum-classical mechanics. Quantum mechanics
was created at one time to describe the electronic structure of atoms and
quantum transitions of electrons between different states of this struc-
ture. In stationary states of atoms, due to the massive and single nucleus,
the electronic structure is formed as a result of the movement of electrons
in the electric field of this single nucleus. In stationary states of mole-
cules, compared with atoms, due to the presence of several massive
nuclei, the dynamic roles of electrons and nuclei change places. Here, not
the only heavy nucleus, being “turned off” from the full-fledged dynamics
of the entire atomic system, is the “main” source of the electric field that
forms the electronic structure of the microsystem. In molecules, such a
“main” source of the electric field is the subsystem of light valence
electrons, which creates an adiabatic potential that forms the nuclear
structure of the microsystem and in which the nuclei make their oscil-
latory movements. In other words, in the adiabatic approximation, these
electrons themselves are “turned off” from the full-fledged dynamics of
the entire molecular system. It is this fact of “switching off” in the
adiabatic approximation of the valence electron subsystem from full-
fledged dynamics that is the condition for the applicability of quantum
mechanics to molecular systems. Going beyond the adiabatic approxi-
mation leads to the need to consider the full-fledged dynamics of not only
nuclei, but also valence electrons. However, due to the incomparability of
their masses, in the framework of quantum mechanics this joint dy-
namics, as shown by the author on the example of elementary electron
transfers in condensed matter, becomes singular. In other words, in
molecular physics, quantummechanics works only within the framework
of the adiabatic approximation and ceases to work when it goes beyond
its framework. The same statement applies to chemical physics, which
studies the dynamics of elementary chemical reactions, or in the simplest
case, the dynamics of elementary electron transfers in condensed matter,
which we consider in this article.

The aforementioned singular dynamics arises, for example, in the
process of transitions between the adiabatic ground and first excited
states of molecules, as a result of “an attempt by light electrons to reor-
ganize the structure of a very heavy nuclear subsystem only within the



Fig. 5. Distribution function of black light ϕðλ;TÞ (Eq. (165)).
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framework of quantum mechanics”, so that the structure of the nuclear
subsystem would adapt to a new electron charge distribution in an
excited adiabatic (or nearly adiabatic) state. The presence of a singularity
in the rates of quantum transitions in molecular quantum mechanics is
also indicated by the internal inconsistency of the Franсk-Condon prin-
ciple, which was discussed above in Section 2.5 and which is associated
with the inability to give a mathematical description of the qualitative,
and essentially quantum-classical, Franck-Condon picture of the dy-
namics of a molecular transient state. Therefore, in theoretical physics,
the discussed singularity must be damped, which was done by the author
on the simplest example of elementary electron transfers in condensed
matter [10, 11, 12] by introducing chaos (dozy chaos) into the quantum
dynamics of the transient state. However, as a result of such damping by
introducing chaos, the energy spectrum of moving electrons and nuclei in
the transient state becomes continuous [16, 18]. This means that the
proposed new dynamic theory is no longer quantum mechanics, but
quantum-classical mechanics. Quantum states are the initial and final
states in the adiabatic approximation, which are quite sharply different in
the electron-nuclear structure, and the transient state is similar to the
classical state. The discovery of a new dynamic theory —

quantum-classical mechanics, means the discovery in physics of a new
fundamental property of an electron. This property appears in an electron
as a result of its binding of atomic nuclei into molecular systems and
consists in its ability to provoke the necessary chaos in the transient
dynamic state of these systems. This new property of an electron makes it
possible to eliminate the discussed singularity in the quantummechanics
of molecules and, as a result, to ensure the very possibility of “quantum”

transitions in molecular systems. Thus, an electron, being exclusively a
quantum microparticle in atoms, where it makes quantum jumps be-
tween discrete energy levels, in molecules and condensed matter it be-
comes a quantum-classical microparticle with a continuous spectrum of
energy in the transient state [15, 16, 18, 35, 36, 48, 49].19
2.7. Dozy chaos and quanta: analogy being in their discovery in physics
and perhaps in life

It follows from the previous sections that dozy chaos is introduced
into theoretical physics as a new physical substance for eliminating the
19 We are only talking about the outer electrons that are involved in the cre-
ation of chemical bonds between atoms. Internal electrons, like in atoms, are
tightly bound by their single nucleus.
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singularity in the rate constants of quantum transitions which occurs in
molecular quantum mechanics when going beyond the adiabatic
approximation. In theoretical physics, a similar procedure for intro-
ducing a new physical substance, namely, quanta, was carried out at the
very beginning of the last century to eliminate the singularity in the
distribution function of blackbody radiation at high frequencies. As is
known from the history of physics, this singularity is often referred to as
an ultraviolet catastrophe. Let me remind you the reason for ultraviolet
catastrophe. Classical physics assumes that each mode of blackbody ra-
diation, regardless of its frequency, has on average the same amount of
energy, namely energy (by kBT=2 for the electric and magnetic wave
energy). In fact, the average energy per mode ε depends on its frequency
Ω and decreases exponentially with increasing Ω:

ε¼ ℏΩ
expðℏΩ=kBTÞ � 1

; ðℏ→ 0; ε¼ kBTÞ: (164)

This fact leads to the elimination of the singularity in the distribution
function of black light

f ðΩ;TÞ¼ ℏΩ3

4π2c2
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(165)

(see Fig. 5) and, as first shown by Planck [95], is a consequence of the fact
that the absorption and emission of energy of electromagnetic waves is
not continuous, but occurs in the form of quanta ε ¼ ℏΩ.

The hypothesis of quanta was conflicting to classical mechanics, and
in due time, it was entirely beyond the conventional physical concept,
but implications of the discovery of quanta proved to be truly breath-
taking. As a matter of fact we can say that quantum mechanics, origi-
nating in the hypothesis of quanta, underlies the modern science and
technological progress. The quantum-classical mechanics under discus-
sion, based on the hypothesis of dozy chaos, provides an understanding
of a series of experimental results in chemistry (see Section 1), which for
a long time could not be explained within the framework of the standard
quantum mechanics of electron-nuclear motion. From general physical
considerations it follows that dozy chaos is the cause not only of mo-
lecular quantum transitions, but also of the whole variety of chemical
reactions, and as a consequence, it is the physical origin of the evolution
of molecular matter, up to the emergence of living matter and the person
himself [32b, 33a, 33b]. Therefore, there is every reason to believe that
the implications of the discovery of dozy chaos and quantum-classical
mechanics in our life will be no less impressive in comparison with the
implications of the discovery of quanta and quantum mechanics. From



21 Nevertheless, the erroneous Franck-Condon picture for simulation of the
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general considerations it follows, for example, that dozy chaos consti-
tutes the physical basis for the effective functioning of the brain, which is
the main “receptacle” of dozy chaos in the living organism [32b, 33a,
33b]. Since the onset of cancer is usually associated with damage to the
genes in cells, for example, by radiation, then the radiation of dozy chaos
of the living brain in its pathological functioning, for example under
stress, is one of the main physical causes of the natural onset and
development of cancer [32b, 33a, 33b].

2.8. Outlook for the account of local vibrations in quantum-classical
mechanics

The physical picture of molecular quantum transitions (MQT), which
was previously discussed, does not at all exclude the presence of quantum
jumps in general in the entire dynamics of MQT, in spite of the fact that
these quantum jumps are absent in our theory of elementary electron-
charge transfers [36, 96]. In our theory, this absence is due to taking
into account only the simplest dynamics of MQT, namely, the dynamics
that is associated with the interaction of the electronic transition with
non-local phonons of the environment; a more complex dynamics of the
interaction of the electronic transition with local vibrations is neglected
there.20 Taking the latter into account will lead to the account in theory,
along with the chaotic dynamics of the transient state of
electron-vibrational transitions, as well as vibrational quantum jumps.
When, together with the reorganization of the nuclear subsystem, the
change in the electronic state during the electron transition to the final
state is already completed, but in the molecular system there is still some
small energy defect, determined by the energy conservation law, then
there will be a rapid quantum jump in the vibrational energy of the
nuclei, that being already in the final adiabatic electronic state (more
precisely, in a state close to adiabatic, if we are talking about the optical
excitation of the molecule), in order to eliminate this energy defect. In
other words, the quantum jump or transition in the local vibrational
mode in the entire process of a molecular “quantum” transition occurs at
its final stage, namely, at the moment of transition of a molecule or
molecular system from chaotic (dozy-chaos) dynamics to adiabatic (or
nearly adiabatic) dynamics. In the experiment, this effect is manifested in
the presence of striped spectra and discrete narrow lines in the
electron-vibrational spectra that are well-known from the literature (see
Refs. [62, 63, 64]).

Within the framework of quantum-classical mechanics, the well-
known small line widths corresponding to local oscillations can easily
be justified by an estimate that uses our result for the shape of the optical
absorption band corresponding to the case of non-local oscillations (see
Eqs. (141), (142), (143), (144), (145), (146), (147), (148), (149), (150),
(151), (152), (153), (154), (155), (156), (157), and (158) in Section
2.4.8). We assume that the shape of the optical line for local oscillations is
close to the Gaussian form known from the standard theory [72], and
which in our theory corresponds to the case when the dozy-chaos energy
γ is equal to or of the order of the reorganization energy E: γ ffi E. In the
standard theory [72], the half-width of the optical line (see Eq. (163) in
Section 2.4.9) is determined, in particular, by the reorganization energy
λr 
 2E and is calculated from the following equation

w1=2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λrkBT

p
: (166)
20 For non-local vibrations of nuclei (crystal lattice phonons), the many-
phonon transitions with phonon occupation numbers changing by over 1 do
not contribute to the result for the rate constant of quantum transitions and can
be neglected. In the case of localized phonons (local vibrations), the many-
phonon transitions with all phonon occupation numbers varying from zero
“ad infinitum”make the contribution to the result and hence many of them must
be taken into account. About the difference in the interaction of the electronic
transition with non-local and local phonons, you can see Section 2.4.7 and a
review by Perlin [72].
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It follows from Eq. (37), which determines the energy of reorgani-
zation E ¼ 1

2

P
ιℏωι~p

2
ι , that, other things being equal, its value for one non-

local or local mode of oscillations of nuclei is much less than its value for
a large number of the modes of oscillations of nuclei interacting effec-
tively with the electronic transition. From this and from Eq. (166), small
line widths follow, which must be obtained within the framework of
quantum-classical mechanics in the future in the case when only local
oscillations of the nuclei are taken into account.

Thus, in the general case (that is, taking local vibrations into account)
in our picture, just as in the Franck-Condon picture, MQT occur in two
stages. However, while in the Franck-Condon picture the rapid quantum
jump (in the electron energy) precedes the slow process of nuclear
reorganization, in our picture, on the contrary, the quantum jump (in the
vibrational energy of the nuclei) occurs when the reorganization of the
nuclei, as a result of the electronic transition, has already been
completed. The construction of an adequate mathematical technique for
the accurate description of such a physical picture is a separate and rather
complex problem, the solution of which will require the collective efforts
of the scientific community in the future. Until this solution is obtained,
one can continue to use successfully the standard and essentially erro-
neous Franck-Condon explanation given in the existing literature (see
Refs. [62, 63, 64]).21

The elementary transfer of electron charge in condensed media, when
in theory only non-local phonons are taken into account, traditionally
refers to chemical physics. In other words, in this article we have
demonstrated, strictly speaking, only the fact that quantum mechanics
stops to operate in chemical physics and the need to introduce chaos
(dozy chaos) in the transient state of elementary electron transfers. In
molecular physics, where local phonons must be taken into consideration
in theory, this demonstration, as previously mentioned, has yet to be
realized. However, more recently, the emergence of chaos in the problem
of excitation of a hydrogen molecule under the influence of a periodic
external force was theoretically proved [97].
2.9. Quantum-classical mechanics as non-mesoscopic physics

Mesoscopic systems are those that are in between the quantum and
classical mechanical states. Therefore, the question arises: “How do
quantum-classical mechanics reconcile with mesoscopic physics?”

Mesoscopic physics is a phenomenological approach, that is, such an
approach when we build ad hocmodels to account for quantum effects in
macroscopic and classical systems. For example, when we consider
dimensional quantization (quantum confinement) in nanoparticles, or
when we introduce quantization of classical chaos, we obtain quantum
chaos. Various examples of mesoscopic physics problems can be found,
for example, in Ref. [98], and, in particular, on quantum chaos and its
connection with mesoscopic physics, for example, in Ref. [99].

The author's approach is a movement in the opposite direction: this
is when we are trying to solve honestly a priori quantum problem for a
fairly complex physical system.22 In contrast to the phenomenological
approach in mesoscopic physics, our approach can be called a micro-
scopic approach. An example of such a microscopic approach is the
transient state of MQT can continue to be used even after the correct solution of
the MQT problem will also be obtained in the general case taking local vibra-
tions into account. For example, in our daily life we successfully use the erro-
neous idea that every day the Sun rises in the East and sets in the West, although
in reality it is not about the motion of the Sun in the sky, but the rotation of the
Earth around its axis. However, when we go beyond the surface of the Earth into
Space, the use of the correct physical picture becomes absolutely necessary. In
the simplest case of MQT, this “entry into Space” corresponds to the construc-
tion of the theory of the shape of the optical bands in polymethine dyes and their
aggregates (see Section 1).
22 An a posteriori quantum-classical problem.



23 More precisely, in quantum mechanics energy γ is an infinitely small value.
24 As a rule, these theoretical approaches do not demonstrate clear applications
to the experiment.
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standard theory of many-phonon processes [72], which describes
quantum transitions and spectra of luminescence and optical absorption
in F-centers [73, 86, 93]. In this theory, the initial and final states of the
system are considered in the adiabatic approximation. Because of using
the adiabatic approximation there, it is possible to obtain a result for the
rate constants of quantum transitions in the framework of quantum
mechanics, which contains a dependence on temperature as a conse-
quence of averaging over the equilibrium (Planck) distribution of the
initial states in the “molecular” ensemble, in particular, in the ensemble
of F-centers. The reason for the success of this approach in explaining
optical bands in F-centers is determined by the fact that the standard
theory of many-phonon transitions [72] is essentially a special case of
quantum-classical mechanics, the case for strong dozy chaos (see Sec-
tions 2.4.9 and 2.5). An attempt to go beyond the adiabatic approxi-
mation in quantum mechanics, in the theory of many-phonon
transitions, leads to a singularity in the rates of quantum transitions.
Expressed in a different way, going beyond the adiabatic approximation
in quantum mechanics automatically leads to the theory of
many-phonon transitions beyond quantum mechanics. Solving this
situation is allowed by the natural damping of the singularity, which is
described in detail in Section 2.4. Although this natural and forced
damping of the singularity does not return the theory of many-phonon
transitions to the realm of quantum mechanics, it does provide a
physical (non-singular) result for the optical spectra (Section 2.4.8), and
a much more general one than given by the standard theory of
many-phonon transitions (Figs. 1, 2, and 4b). The reason for going
beyond quantum mechanics is, ultimately, to take into account the
dynamics of the transient state, which, as it turns out, is chaotic. This
chaos in the motion of optical electrons and associated atomic nuclei in
the transient state leads to a continuous energy spectrum of the entire
“electron þ nuclear environment” system for a short time (order ℏ=E) of
the transition between its initial and final states. That is to say, for a
short transition time, the “electron þ nuclear environment” system
becomes similar to the classical system. In this case, the initial and final
stationary states continue to be quantum states, that is, such states that
can be described with sufficient success in the adiabatic approximation.
Hence the terminology “quantum-classical mechanics.”

The question can be raised whether the ensemble and with it the
temperature, which, as a rule, determine the experimental reality,
brings an element of classicality into the quantum system, regardless
of whether the chaotic dynamics of the transient state in individual
molecules is taken into account. The answer is yes, because in the
standard theory of many-phonon transitions, we already obtain the
result for the shape of the optical band as a continuous function (as
a result of the dispersion of phonon frequencies [72]), rather than
discrete lines, as in atomic physics. In this experiment, we have the
same shape of the optical band as a continuous function. However,
by applying the adiabatic approximation, this result for the shape of
the optical band as a continuous function in the standard theory of
many-phonon transitions is obtained completely within the frame-
work of quantum mechanics. This fact allows us to consider
many-phonon transitions in the standard theory as “purely” quantum
transitions, and not as quantum-classical transitions, as we do in the
new theory, where classicality already arises in the transient state of
each single molecule (each donor-acceptor couple in the case of
electron transfers) in the ensemble, and to consider the most stan-
dard theory of many-phonon transitions not as a theory belonging to
mesoscopic physics, but as a quantum-mechanical theory. Concomi-
tantly, it is essential that taking into account only the ensemble of
molecules and the associated temperature to simulate an experi-
mental situation, without introducing chaos into the transient state
of each single molecule, does not solve the problem associated with
the appearance of a singularity in the transition rates in the case of
going beyond the adiabatic approximation. In short, classicality,
which is introduced into quantum mechanics by an ensemble of
molecules and temperature, is not capable of damping the essential
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singularity in the transition rates.
The physical nature of the singularity is discussed in this article in

several aspects: 1) the incomparability of the masses of electrons and
nuclei in the presence of full-fledged dynamics of both nuclei and elec-
trons (Sections 2.1 and 2.4.3); 2) quantum transitions in a potential box
with a moveable wall (Section 2.6); and 3) internal inconsistency of the
Franck-Condon principle (Section 2.5). For example, consider the aspect
due to the internal inconsistency of the Franсk-Condon principle. This
internal inconsistency is associated with the impossibility in the frame-
work of quantum mechanics to formalize the qualitative picture of the
transition proposed by the Franсk-Condon principle, which assumes that
in the adiabatic approximation, the same oscillator behaves like a clas-
sical and quantum system in the same transition act. Namely, according
to the Franck-Condon principle, in the oscillator there is a classical
movement of the nuclei to the turning point at which the quantum
transition to a new electronic state occurs. Therefore, the Franck-Condon
principle with its quantum-classical paradigm is a precursor to the cre-
ation of quantum-classical mechanics with its dozy chaos in the transient
state of an individual molecule. In the new theory, which gives new
physical results in the cases of weak and medium dozy chaos, the Franck-
Condon principle acts as an effective simulator of strong dozy chaos.
Thus, the new theory of quantum-classical mechanics is not another
section of mesoscopic physics with its phenomenological approach, but a
natural generalization of the quantum-mechanical theory of many-
phonon transitions [72], where the dozy-chaos energy γ 
 0,23 in the
case of γ 6¼ 0, that is, taking into account the chaotic dynamics of the
transient state in elementary electron transfers in condensed matter, and
also in molecules [65] (see Section 2.8) and supramolecular systems in
the future. This is a generalization similar to the broad meaning in which
Schr€odinger's equation as a postulate in quantum mechanics is a gener-
alization of the Hamilton-Jacobi equation for action in classical me-
chanics, and in general, quantum mechanics is a generalization of
classical mechanics, where Planck's constant ℏ 
 0, in the case of ℏ 6¼ 0
(see Section 2.7). Comparisons between quantum-classical mechanics
and other theoretical approaches, where mixing quantum and classical
mechanics is undertaken (see e.g. [100, 101, 102]), will be given
elsewhere.24

2.10. Dozy chaos as compared to quantum chaos

In modernmesoscopic physics (see e.g. Refs. [98, 99]), there is an idea
of the so-called quantum chaos, which has been actively studied, mainly
theoretically, for several decades now (see Refs. [103, 104, 105, 106,
107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119]). Dozy
chaos differs fundamentally in physical nature from quantum chaos. The
term “quantum chaos” is generally understood to comprise all problems
concerning the quantum mechanical behavior of classically chaotic sys-
tems [103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119]. In other words, systems, whose underlying classical
dynamics is chaotic due to nonlinear interactions [120, 121, 122, 123],
exhibit signatures of the chaos in their quantum mechanics. The quan-
tization of a classical dynamical system with chaos is a restriction on
chaos, and hence this quantization leads only to a less pronounced
(inferior) chaos. Therefore, Berry [104, 105] urged at one time to speak
not of quantum chaos, but of quantum chaology, and Chirikov [107] used
the term “quantum pseudochaos”. Nevertheless, the term “quantum
chaos” has remained generally accepted (see e.g. Refs. [103, 108]). One
of remarkable results of the theory of quantum chaos are the Heller's
scars [106].

As for dozy chaos, in the case of classical mechanics it simply ceases to
exist, since in this case molecular quantum transitions, the dynamics of



25 The remark in parentheses does not apply, for example, to elementary
electron-charge transfers or elementary chemical reactions, in which “quantum”

transitions from one adiabatic ground state to another adiabatic ground state
take place.
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which dozy chaos determines only, cease to exist. Hence, dozy chaos,
which provides a classical character of any transient state in molecular
quantum transitions, is a purely quantum phenomenon in physical na-
ture, in the sense that it does not exist by definition, in contrast to
quantum chaos originating from classical chaos, in the field of classical
phenomena. Such a dualistic nature of dozy chaos— its existence only in
the field of quantum phenomena and the functional role being in
providing, due to chaos, a classical character of any transient state in
molecular quantum transitions — is a generalization (in the case of en-
ergy γ 6¼ 0) of the wave-particle dualism in quantum mechanics (γ ¼ 0),
which is associated with the statistical nature of physical meaning of the
wave function.

Dozy chaos, as compared to quantum chaos, is not associated with
nonlinear interactions in a molecular system: dozy chaos appears in a
linear problem (see the linear term

P
ιUιðqÞpι responsible for the

electron-phonon interaction in the Hamiltonian in Eq. (19)). In addition,
in contrast to the “inferiority” of quantum chaos, because of the classical
nature of the transient state of molecular “quantum” transitions, dozy
chaos, like classical chaos, is a full-fledged chaos.

Thus, while the analogue of quantum chaos is classical chaos, there is
no analogue for dozy chaos in the field of classical phenomena. As pre-
viously mentioned, dozy chaos is the original and universal physical
substance, the universal to the same extent to which the electrons and
nuclei themselves, the dynamic interactions of which it provides in any
“quantum” transition from one of their bound state to another, are
universal.

As is clear from the foregoing, the concept of quantum chaos is con-
structed, by definition, so as to preserve the standard paradigm of
quantum mechanics and not to seek a review of its basis in connection
with the inclusion of chaos in quantum dynamics. Vice versa, the concept
of dozy chaos is constructed, by definition, in such a way that requires a
revision of the basis of quantum mechanics, to incorporate the chaotic
and classical in nature dynamics into the transient state of molecular
quantum transitions.

Summarizing, we can say that the emergence of quantum chaos, for
example, in elementary chemical processes, is theoretically considered
within the framework of quantum mechanics [112, 113, 114, 115, 116,
117, 118, 119], and quantum chaos becomes a classical chaos when the
transition from quantum mechanics to classical mechanics occurs. (Note
that in this case of elementary chemical processes with quantum chaos,
no clear explanations for or comparisons with the experiment were dis-
cussed.) In other words, quantum chaos in quantum mechanics is some
analog of classical chaos in classical mechanics. In contrast, there is no
analogue of dozy chaos, which is associated with the specific property of
an electron to provoke chaos in the vibrations of nuclei, in classical
mechanics. In other words, dozy chaos is a “purely quantum” phenom-
enon related to the specific property of a dynamically active electron in a
molecule. We also note that the emergence of quantum and/or classical
chaos is associated, as is well-known, with some nonlinear interactions in
physical systems, whereas the emergence of dozy chaos occurs in a sys-
tem with a linear interaction. More detailed comparisons between dozy
chaos and quantum chaos will be given elsewhere.

2.11. Mathematical techniques and perspectives in quantum-classical
mechanics

The formal mathematical techniques are discussed in this section. It is
well-known that the standard theory of many-phonon transitions [72]
extensively uses the following techniques [11, 12, 14, 28, 79]: the
generating polynomial (generating function) technique of Krivoglaz and
Pekar [76, 77], which is similar to the Darwin-Fowler method [72, 78]
from statistical physics (see Section 2.4.3, footnote 9), the operation
calculus of Feynman and Lax [94, 124], the density matrix technique of
Kubo and Toyozawa [125, 126], and the quantum field theory technique
(see Ref. [72]). Among all methods, the simplest and physically trans-
parent method is the technique of generating functions of Krivoglaz and
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Pekar. The simplicity and transparency of this technique is due to the fact
that it is formulated in terms of the wave function. However, this tech-
nique takes into account only the main effect of the electron-phonon
interaction — shifts of normal phonon coordinates. The change in the
phonon frequencies during electronic transitions and other less signifi-
cant effects can be taken into account on the basis of the remaining
aforementioned techniques. Since the processes of elementary
electron-charge transfers in condensed matter and other electron-phonon
transitions, in which the dynamics of the transient state must be taken
into account, are much more complicated than the standard case of
electron-phonon transitions, it is obvious that a generalization of the
standard theory of many-phonon transitions should be started, using the
simplest technique of Krivoglaz and Pekar. In my technique [11, 12, 52,
75, 79] that generalizing the technique of Krivoglaz and Pekar, as pre-
viously shown (Section 2.4.6), all of the intermediate electron-phonon
states arising during elementary electron-charge transfers are precisely
taken into account. The use of a more sophisticated formal technique, for
example, the technique of Feynman path integrals [127], would greatly
complicate the whole problem rather than simplify it. I believe that the
next main stage in the development of the quantum-classical mechanics
of elementary electron transfers [11, 12, 15, 79] will be based on a
generalization of the Kubo-Toyozawa density-matrix technique or the
quantum field theory technique.
2.12. Quantum-classical mechanics and quantum information

This section discusses once again the role of dozy chaos in the elim-
ination of the aforementioned singularity in molecular quantum transi-
tions [15, 34]. In this section, we want to emphasize the fact, which is
associated with the elimination of this singularity, that the chaotic nature
of the interaction of very light electrons and heavy nuclei in the transient
state of molecular “quantum” transitions is the reason for their
self-organization. As a result of electron provocation of chaos in the
vibrational motion of nuclei, part of the vibrational motion is trans-
formed into the translational movement of their equilibrium positions to
new positions that correspond to a new distribution of electron charge. In
the process of completing the formation of this new distribution of the
electron charge in the final state, the resulting translational motion of the
nuclei is transformed back into their vibrational motion, but near the new
equilibrium positions.

Thus, as the driver of the reorganization process of the nuclear sub-
system in a molecule in addition to the electronic motion, which by
creating chaos starts the process, the very vibrational motion of the
nuclei acts, which is transformed into a chaotic motion, performing in
effect the very process of reorganization of the nuclei. (Vibrations of the
nuclei in a molecule are always present, even at absolute zero and zero-
point oscillations of the nuclei.) Moreover, the motion of the electrons
and nuclei in a molecule in the process of a quantum transition (for
example, excitation of an electron-vibrational transition) is undergoing a
dramatic change in its nature. Namely, the quantum motion in the
adiabatic ground state dies as a result of the launch of the chaotic process
of a “quantum” transition and again revives as a result of the completion
of this process in the excited adiabatic (or nearly adiabatic) state.25 The
motion of the electrons and nuclei in the transient state of a molecule has
a paradoxical classical nature at first glance.

Above, we described a new mechanism of electron-vibrational tran-
sitions as if the electron has free will. In fact, we are discussing the dy-
namic self-organization of complex molecular systems, which is
presented here on the simplest example of the dynamic self-organization
of electron-vibrational transitions in molecules. Similar issues are widely
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discussed at present in such fields of physics as quantum information and
cybernetic physics (see Refs. [128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140] and references therein). In a chaotic molecular
transient state, there is essentially an intense exchange of information
between a very light electron and heavy nuclei about their current en-
ergies and states of motion. The consequence of this exchange of infor-
mation is the regular, but not singular, dynamics of the transient state
[14, 28].

3. Conclusions

This article focuses on the regular exposition of dozy-chaos mechanics
or quantum-classical mechanics of elementary electron transfers in
condensed matter, which are the simplest cases of molecular quantum
transitions. For the theoretical description of molecular quantum tran-
sitions, quantum-classical mechanics arises in molecular and chemical
physics instead of quantum mechanics as a consequence of a critical
examination of the Franck-Condon principle, widely known and popular
in optical molecular spectroscopy, which was introduced in optical
spectroscopy as an external addition to quantum mechanics almost 100
years ago. Quantum-classical mechanics allows, for example, carrying
out a theoretical examination of the shapes of optical bands in poly-
methine dyes and their aggregates, which can only be explained if the
Franck-Condon principle is abandoned in principle. According to the
arguments given in this article, the Franck-Condon principle remains to
date an unsubstantiated hypothesis, despite its successful application to
explain a substantial number of experimental facts. The dynamics of the
molecular quantum transition, which is given by the Franck-Condon
principle, does not stand up to criticism on the basis of general phys-
ical considerations (see Sections 2.1 and 2.5). The main critical circum-
stance is the fact that up to the present, in the framework of quantum
mechanics, there is no distinct quantitative solution to the problem of the
dynamics of the molecular transient state, at least in some simplest cases,
which would confirm the Franck-Condon principle and/or the Franck-
Condon dynamics of the transient state. Moreover, the study of the dy-
namics of the molecular transient state has a physical meaning only when
going beyond the Born-Oppenheimer adiabatic approximation, since in
this approximation, the full-fledged dynamic role of the electronic sub-
system is absent, and the role of the electronic subsystem is reduced
solely to the formation of the adiabatic potential in which the nuclei
move. However, as shown by the author in the example of a new theory
of elementary electron transfers in condensed matter, going beyond the
adiabatic approximation leads to a singularity in the rate constants of
“quantum” transitions (see Section 2.4.3), which agrees with the general
qualitative physical considerations in Section 2.1. At a qualitative level, a
vivid physical demonstration of this singularity is given in Section 2.6 in
the example of a potential box with a moveable wall. Therefore, to
correctly consider the dynamics of the molecular transient state, this
singularity must be damped. In other words, we are forced to introduce
into molecular quantum mechanics some additional assumption or
postulate that this damping would provide, similar to how quantum
mechanics was in due time forced to be supplemented from the outside
by the Franck-Condon principle.

In the example of the problem of elementary electron transfers in
condensed matter, the specified singularity is easiest to dampen if the
infinitesimal imaginary additive in the energy denominator of the spec-
tral representation of the total Green's function of the system is replaced
by its finite value. In other words, for the first time the problem of the
dynamics of a molecular transient state was solved quantitatively by the
example of the problem of elementary electron transfers in condensed
matter, that is, the solution to the problem was found as discussed in
Section 2.1. A successful quantitative explanation, based on this new
theory, of the basic set of experimental data on the shape of the optical
bands in polymethine dyes and their aggregates showed that the absolute
value of the new imaginary additive in the energy denominator of the
total Green's function of the system significantly exceeds the magnitude
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of the quantum of nuclear vibrations. This additive could be interpreted
as the energy width of the electron-vibrational virtual levels of the
transient state, which provides a multiple exchange of motion and energy
between different vibrational modes and the electron in the transient
state. However, because of the aforementioned excessively large value of
this additive, the exchange of motion and energy between different
vibrational modes and the electron in the transient state proves to be so
intense that it leads to chaos both in the motion of the medium nuclei and
in the motion of the electron that undergoes an elementary transfer.
Moreover, from the physical perspective, this can be interpreted in such a
way that it is the electron, as very light and mobile, rather than the
surrounding nuclei, that provokes chaos in a transient state. The electron
provokes chaos to be able to easily control the movement of very heavy
nuclei in a transient state. This involves the discovery of a new and
universal property of an electron, namely, the property of creating chaos
in the motion of nuclei in a transient state during a molecular quantum
transition. Electrons acquire this universal property when they bind
atomic nuclei to molecules. This is called dozy chaos, since it is not
present either in the initial or final states and arises only during molec-
ular quantum transitions. The presence of strong chaos (dozy chaos) in a
transient state easily explains why the Franck-Condon principle is often
so effective in applications. In strong dozy chaos, as previously shown
using the example of elementary electron transfers, the rate constants of
molecular quantum transitions cease to depend on the dynamics of the
transient state (see Section 2.6, Fig. 4b, where the case of strong dozy
chaos corresponds to the blue low-intensity Gaussian-like curve). They
depend only on the initial and final adiabatic states of the molecular
system, with which the Franck-Condon principle essentially only deals.
Apparently, this is why dozy chaos has eluded the attention of re-
searchers for so long.

Since according to the Franck-Condon principle, the same oscillator
behaves in the same elementary molecular act both as a quantum system
(near the turning points of the nuclei) and as a classical system (near the
bottom of the potential well for the nuclei), then the Franck-Condon
principle is essentially one of the most important prerequisites for the
creation of quantum-classical mechanics (see Sections 2.1 and 2.5), the
simplest implementation of which is demonstrated in this article.

When dozy chaos is not strong enough to be simulated by applying
the Franck-Condon principle, elements of dynamic self-organization
manifest themselves in the chaotic dynamics of the molecular transient
state. It is to this case that electronic transitions occur in polymethine
dyes and their aggregates in solvents. Taking into account these elements
of dynamic self-organization in theory allowed the author to quantita-
tively explain the optical band shapes in polymethine dyes and their
aggregates (Section 1). The dynamic self-organization of the transient
state is most clearly manifested in the case of J aggregates, where the
elementary transfer of the alternating electron charge along the quasi-
linear optical chromophore is facilitated by a quasi-synchronous mo-
tion of the environmental nuclei (Section 1). This fact manifests itself in a
very narrow and intense optical J band, and in this connection J aggre-
gates are widely used in a variety of applications (see Refs. [14, 28] and
references therein). An overview of other cases of successful applications
of dozy-chaos mechanics is briefly provided in the introduction to this
article (Section 1).

Quantum-classical (dozy-chaos) mechanics of the elementary elec-
tron transfers in condensed matter, which was earlier used to quantita-
tively explain the optical band shapes in polymethine dyes and their
aggregates (Section 1), allows for only non-local phonons and neglects
local phonons. As a consequence, this leads to a relatively simple tran-
sient state with a continuous spectrum of electron-vibrational energies,
that is, during molecular “quantum” transition — elementary electron-
charge transfer, the quantum system — “electron þ environment” —

becomes a classical system. This provides (together with the dispersion of
phonon frequencies [72]) the continuous optical spectra of polymethine
dyes and their aggregates, which were discussed in Section 2.1. Taking
into account local phonons is a much more complicated problem than
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considering non-local phonons, and the solution will require consider-
able efforts from researchers in the future. This account will also lead to a
complication of the transient state, in which, along with the chaotic
classical dynamics of the electron-nuclear motion, quantum jumps in the
vibrational energy of the nuclei at the final stage of the molecular
“quantum” transition appear, that is, after the reorganization of the
entire nuclear subsystem has already been completed (see Section 2.8).
As a result of this account, in the theoretical optical spectra, along with
continuous bands corresponding to non-local phonons, striped spectra
appear corresponding to both non-local and local phonons. The domi-
nance of any particular local modes in the molecular system should lead
to well-defined discrete and narrow vibrational lines in the theoretical
and experimental optical spectra (see Section 2.8).

The methods for calculating the shape of the optical bands in poly-
methine dyes and their aggregates, based on the quantum classical me-
chanics of electron transfer, can easily be extended to a wide range of
other similar objects studied in organic chemistry, for example, styryl
dyes and charge-transfer complexes. Generalization to more complicated
cases of quantum-classical transitions than electron transfer, due to the
large cumbersomeness of the mathematical apparatus arising here, will
require the collective efforts of the scientific community.

To confirm the new physical picture of molecular quantum transi-
tions, based on the concept of dozy chaos, it is of great interest to carry
out experiments on its direct detection [15, 18, 33, 34, 35, 36, 96]. In this
regard, it would be interesting, for example, to register the loss of reg-
ularity of the structure of a molecule in its chaotic transient state [96],
using modern X-ray free electron lasers [141].

In conclusion, future research should focus on quantum-classical
mechanics and its application to luminescence spectra of J aggregates
and their comparison with absorption spectra [142].
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