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Abstract: Unmanned traffic management (UTM) systems rely on collaborative position reporting to
track unmanned aerial system (UAS) operations over wide unsurveilled (with counter-UAS systems)
areas. Many different technologies, such as Remote-ID, ADS-B, FLARM, or MLAT might be used for
this purpose, in addition to the direct exploitation of C2 telemetry, relayed though cellular networks.
This paper provides an overview of the most used collaborative sensors and surveillance systems
in this context, analyzing their main technical parameters and performance effects. In addition,
this paper proposes an abstracted general statistical simulation model covering message encoding,
network capacity and access, sensors coverage and distribution, message transmission and decoding.
Making use of this abstracted model, this paper proposes a particularized set of simulation models
for ADS-B, FLARM and Remote-Id; it is thus useful to test their potential integration in UTM systems.
Finally, a comparative analysis, based on simulation, of these systems, is performed. It is shown
that the most relevant effects are those related with quantification and the potential saturation of the
communication channels leading to collisions and delays.

Keywords: unmanned traffic management; unmanned aerial system; Remote-ID; ADS-B; FLARM;
drone telemetry; drone tracking; review; simulation models; collaborative; surveillance

1. Introduction

Unmanned aerial vehicles (UAVs), also known as drones, are becoming increasingly
widespread in our societies due to their affordability, ease of use and the competitive
advantage they provide for some applications [1]. For instance, drone usage is thriving for
infrastructure inspections (such as for railways or power lines [2]), precision agriculture [3]
or for emergency management [4]. Other applications, named urban air mobility [5],
including air parcel delivery or passenger mobility, are incipient and will flourish in the
medium term. As a result, the European commercial drone fleet is expected to grow
rapidly according to the European Drones Outlook Study [6]. This study estimated that
400,000 commercial vehicles and 7 million recreational hulls will be operational in Europe
by 2050. Consequently, unmanned traffic is expected to become prevalent in the low-level
and very low-level airspaces. However, their expansion creates safety concerns including
in-air incidents with manned aviation or flights over unauthorized areas (e.g., people
gatherings, sensitive locations).

In this context, unmanned traffic management (UTM) systems arise as one of the
main enablers for drone usage expansion while guaranteeing the safety of the rest of the
aircraft and citizens [7]. These systems will allow for the efficient, concurrent, and safe
operation of a high number of UAVs and manned aircraft over the same airspace. Formally,
a UTM system is a set of digitized and highly automated services working collaboratively
to ensure that goal. Those services allow the interaction of multiple actors (i.e., drones,
pilots, operators, authorities, etc.) to enable drone operations. Two groups of interactions
can be identified:
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• Pre-flight interactions, consisting mainly of the authorization process that guarantees
operational safety ex ante. This process is initiated at the request of the operator
by sending the description of an operation or flight plan to the UTM system. The
latter verifies that regulation and airspace requirements are met and that there are
no conflicts with other operations (i.e., strategic conflicts between operations). If all
conditions are met, the operation is authorized and registered in the UTM system to
avoid later simultaneous operations in that area.

• In-flight interactions, which aim to assure the safety of ongoing operations. To do so,
UTM systems enable tracking drones’ trajectories and detect conflicting aircraft in real
time, using positioning reports from various sources. Meanwhile, conformance with
the issued authorization and safety rules of all operations is checked, generating real-
time alerts: conformance deviation; tactical conflicts between aircraft. Additionally,
information about the hazardous states of UAS (i.e., loss of control, communications,
navigation, etc.) needs to be rapidly passed on to both authorities and to surround-
ing traffic, potentially impacted by the possibly erratic behavior of the drones in
these situations.

This paper focuses on the later type of (tactical) interactions, which are key to managing
contingency scenarios that might occur unexpectedly. For instance, a strategically safe
operation might incur in unsafe situations inflight due to a deviation from the expected
trajectory (caused by pilot negligence) or the existence of rogue drones in its surroundings.
Likewise, airport tower controllers or critical infrastructure administrators want to closely
monitor nearby traffic to assess if and how they may affect manned aircraft operations, to
act accordingly in case of unauthorized behaviors. To fulfill these workflows, UTM systems
rely on the following sources of information [8]:

• Telemetry. This consists of periodic position reports sent by drones to the ground
control system (GCS), typically relayed to cloud-based UTM services over public
communication networks. This source of information is similar to that provided by
networked remote identification.

• ATM surveillance is an information interchange used to obtain manned aircraft loca-
tion. This information is typically derived from the integration of measures from a
network of secondary surveillance radars (SSR, recently of the Mode S type), primary
surveillance radars (PSR), wide-area multilateration (WAM) or multilaterarion (MLAT)
systems, and automatic dependent surveillance (ADS-B) stations [9]. These sensors
will not be covered in this paper, except if they are also used for drone surveillance.

• UAS non-cooperative surveillance networks (NCS), which may detect drones perform-
ing operations that have not been authorized and declared with the UTM ecosystem
(non-cooperative drones). This information is key in some use cases, such as detecting
unauthorized flights over critical infrastructures or real-time tactical conflict detection
with cooperative drones or with manned aircraft. The prototypical example of this
type of sensor is radar systems, but visual, acoustical or RF techniques are also used.

• UAS cooperative surveillance networks (CS). UAS positions are derived from messages
sent by the aircraft themselves through a broadcast network. Contrary to the NCSs,
cooperative sensors require the presence of compatible equipment on the aircraft
(cooperative drones) that, being active, periodically and automatically transmits their
kinematic states and some additional state information. Examples of these types of
sensors include ADS-B, FLARM or direct remote identification.

All these information sources are fused within UTM tracking services to provide
“consecutive surveillance observations of the same UAS flight with tracks, including the
current position, heading and speed” [10]. These tracks are then forwarded to interested
actors via traffic information services, which can also use network identification services to
discover the identity of collaborative in-flight UAS [11]. Overall, these information sources
and UTM services ensure real-time situational awareness for all actors.
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At first glance, it could be argued that since NCS is needed for contingency and security
purposes, CS is redundant and unnecessary. However, CS offers several advantages in
terms of cost-efficiency, as a single sensor/technology can cover much greater distances
with much enhanced detection and accuracy performance. It also facilitates functionalities
such as aircraft identification, and subsequently conformance monitoring. In fact, both
technologies complement each other, and a hybrid deployment allows increasing security
by deploying NCS in critical locations (potential targets of unauthorized flights) while
using CS in the rest of the areas, reducing the surveillance costs. Indeed, the coexistence of
both surveillance networks is not novel. As previously described, the concurrent usage of
primary (non-cooperative) and secondary (cooperative) radars is common in traditional
ATM use cases.

As drone usage increases, so does the need for deploying surveillance networks
that support tactical UTM functions by feeding positioning information in real time. To
ensure their effectiveness, deployment planning tools are needed so that coverage in the
target area is achieved while keeping costs low. In addition, it is also required to analyze
their integration within UTM systems and how they affect their performance. However,
no tool focused on UAS surveillance performance analysis was found in the authors’
review. A first step to develop these tools is to model the performance and behavior of
each sensor (technology) so that different alternative deployment scenarios can be tested
using simulations.

The main objective of the present article is to identify a set of models allowing the
simulation of surveillance networks. NCS and CS underlying technologies are radically
different: physical (RF, radar, acoustic, . . . ) signals observation/detection vs. networked
communication. This article focuses on modelling CS, based on a state-of-the-art review
on collaborative surveillance technologies for UAS summarized in Section 2. From it, a
general model to simulate CS behavior and performance (focusing on the impact on UTM
systems) is proposed in Section 3. This general model is used in Section 4 to define specific
simulation models tailored for the surveillance systems found in the literature review.
Finally, Section 5 provides some simulation results in a collection of realistic scenarios. This
is done by using and extending the agent-based UTM evaluation simulator previously
proposed by the authors in [12].

2. State of the Art on Cooperative UAS Surveillance

Cooperative UAS surveillance technology is still under development and standardiza-
tion. Initially, due to the quick emergence of drones and the lack of purpose-built technolo-
gies, traditional aviation surveillance protocols such as ADS-B (discussed in Section 2.1)
or FLARM (covered in Section 2.2) have been adopted (and in the latter case adapted) for
UAS surveillance. However, some authors argue that this approach may not be suitable as
a long-term solution due to the limited available bandwidth and the high drone density
expected in the coming decades [13].

In parallel, real-time telemetry transmission to the UTM system (described in Section 2.3)
via public communication networks has become the de facto approach to provide infor-
mation on cooperative drones. This approach per se is not complete for federated UTM
deployment (multiple UTM services providers working jointly over a same airspace [14])
projected in many countries. Federated deployment is favored due to its expected economic
advantages due to competitiveness. On the other hand, the lack of common protocols
and data models among UTM providers would oblige drone operators and manufactures
to adapt their aircraft/GCSs for each service provider. Additionally, gateways among
them would be necessary to provide full situational awareness to all actors and therefore
guarantee safety.

To simplify this problem, a standardized and purpose-crafted solution for UAS col-
laborative surveillance is needed. This standardization effort is still ongoing, with similar
regulations in the United States [15] and Europe [16] requiring the “Remote Identification”
of drones, defined as “the ability of a drone in flight to provide identification and location
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information that can be received by other parties” [17]. The requirements defined in these
regulations are the base for the development of some existing technical standards such as
ASTM F3411—19 or AD-STAN prEN 4709-002 that will be discussed later in Section 2.4.

Although the previous legal requirements and technical standards set the path for the
near future, discussion on how to implement cooperative UAS surveillance is still ongoing,
as will be shown in Section 2.5. First, a discussion exists as to whether broadcast-based
alternatives (position reports broadcasted through a physical channel in an area around the
drone) would be preferred over networked approaches (the drone directly sends position
reports to the UTM system over the internet). Second, privacy concerns with regards to
how a drone must be identified or who shall have access to that surveillance information
are still unresolved. Next, we will describe some of the most prevalent solutions.

2.1. ADS-B

ADS-B [18] is the acronym of Automatic Dependent Surveillance-Broadcast. It is a
surveillance technology based on the periodic broadcast of on-board navigation (typically
GNSS) technologies position estimation. The system is “Automatic” because it does not
require any interrogation signals from the ground, and it is “Dependent” because the
quality of the position detected depends on the sensors installed on the aircraft. Since
the signal is broadcasted, it can also be received by nearby aircrafts to provide situational
awareness and allow self-separation, without the intervention of other entities. Apart
from the benefits directly derived from its technical features (specifically, high accuracy
and integrity), one of the other main benefits is the reduced cost of the system: ground
stations are significantly cheaper than primary and secondary radar systems used by air
traffic control.

The system may work on two different carrier frequencies: 1090 MHz, which is the
default frequency, and 978 MHz, preferred for flying altitudes below 18,000 feet with the
aim of reducing the congestion on 1090 MHz at the lowest altitudes.

ADS-B relies on two avionics components aboard each aircraft: a high-integrity satellite
navigation source (i.e., a certified GNSS receiver) and a datalink (the ADS-B unit). The
ADS-B unit defines the equipage class category of the aircraft or of the ground system. Class
A units provide the interactive capability among aircrafts, Class B units only broadcast the
information, and Class C units are reserved for the ground receiver systems. Classes A and
B are divided into four subclasses depending on their antenna: Classes A0 and B0 have the
lowest transmission power and the lowest sensitive antennas, while A4 and B4 have the
highest transmission power and the most sensitive receivers. Depending on the antenna
diversity, each subclass can also provide a different set of features in addition to the basic
ones. Class C has three subclasses, named C1 to C3, each of them with different sensitive
receivers and different surveillance capabilities.

The typical information provided by the ADS-B is the identification of the aircraft, the
current position (longitude and latitude), altitude and velocity. Other information may be
transmitted and are described in the standard, such as weather or flight information. Mes-
sages (called “squitters”) are typically broadcasted once every 2 s, but the data contained in
the packets are updated at different rates depending on the information (e.g., the position
is updated at most every 0.2 s, the velocity at most every 1.3 s, etc.) and the broadcast
frequency can be increased up to two messages per second. The packets have a size of
56 bits or 112 bits. Short squitters are packets of 56 bits which only contain 8 bits of packet
information, 24 bits of aircraft identification and 24 bits of parity. Long squitters (112 bits)
have 8 bits of packet information, 24 bits of aircraft identification, 56 bits of data and 24 bits
of parity. Since the packets are only 56 or 112 bits, a lot of effort has been devoted to
compressing as much information into the packets as possible. No medium access protocol
is implemented, packets can interfere, but the very short messages (max 120 µs), the low
frequency of broadcast permitted (max 2 Hz) and the large number of receivers reduce the
probability of collision and increase the probability of a reception. ADS-B is also currently
susceptible to attacks and security issues, not providing any authentication and encryption
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features. Data fusion and other techniques may be implemented to reduce the impact of
these issues. A summary of the discussed technical characteristics of ADS-B is shown in
Table 1.

Table 1. ADS-B main technical characteristics.

ADS-B Main Technical Characteristics

General features
Communication type Broadcast, message based

Transmitter location UAS

Physical layer

Transmission frequency (MHz) 1090 (978 preferred below 18.000 feet)

Maximum transmission power (dBm)

A0: 48.5–51.5

A1/A2: 51–54

A3: 53–56

Maximum physical bit rate (kbps) 1000

Medium Access Protocol None. The packets can interfere, alleviated deploying a
large number of distributed receivers

Modulation Pulse position modulation (PPM)

Message codification

Message types Short squitter (56 bits) for identification, long squitter
(112 bits) for identification + data

Information encoding resolution High-integrity GNSS

Message frequency 0.5 Hz (up to 2 Hz)

Other features

Authentication No

Encryption No

Error detection Yes

Error Correction Yes

Nowadays, ADS-B is incorporated in most manned aircrafts and the operators are
encouraged to install ADS-B equipment. It is a good surveillance method for the flights
over areas not covered by traditional radar. In the context of the UAS, ADS-B transceivers
on small UAS are no longer limited by payload and power capabilities (e.g., the transceiver
in [19] has a size of 50 × 25 × 17 mm and a weight of 20 g), and they represent promising
opportunities for the regulated operation of small UAS at a reduced cost. However, the use
of ADS-B on UAS is still under study. The lack of a medium access protocol could represent
a limitation for UAS, where a huge number of aircrafts can potentially fly in a relatively
reduced space. In [13,20], the authors analyze this scenario through several simulations,
coming to the conclusion that it will probably be necessary to balance the demand of air
space occupation to provide a good safety level to all the aircrafts. In [21], a similar scenario
was studied, also considering the current regulatory practices of the U.S. National Airspace
System, and the authors finally reported that ADS-B should be used along with some other
system, especially optical sensors for collision avoidance. Other works were focused on the
simulation of the ADS-B mounted on UAS to evaluate performance at low altitudes [22] or
to propose collision-avoidance algorithms based on the ADS-B information [23].

2.2. FLARM

Traditionally, Flight Alarm (FLARM) was a traffic awareness and collision avoidance
technology designed for the needs of light aviation (i.e., gliders, helicopters, etc.), similar
to ADS-B. Based on this technology, an electronic identification system was released in
2018, known as “FLARM UAS Electronic ID” [24]. FLARM broadcasts a secure electronic
identification and 3D position of a given UAS via a radio frequency digital message.

The FLARM system consists of a GNSS receiver for localization and timing, a processor
to manage the protocol and a RF physical transmitter. The transmitter broadcasts the
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protocol messages over the unlicensed 868.4 MHz band using a digital modulation scheme.
Carrier-sense multiple access is used for medium access, listening for other transmissions
on the channel and deferring the transmission a random time if it has been used. Therefore,
packet collisions and transmission delays might occur.

Two different messages are to be transmitted over this physical layer: UAS identifica-
tion messages and operator identification messages, indicating the identity and position
(longitude, latitude and MSL/WGS84 altitude) of the UAS and its operator, respectively, at
a given time. By default, messages are transmitted once every 3 s. The protocol uses the
manufacturer serial number as the drone identification.

Messages consist of a preamble, a sync word, a partially encrypted payload with the
message information, a CRC code for integrity and an optional message signature for UAS
authentication. Using this last field, the protocol describes a public-private key mechanism
to ensure transmitter (UAS) identity using a registration service for verification. Table 2
summarizes the main technical features of the protocol:

Table 2. FLARM UAS Electronic ID main technical characteristics.

FLARM UAS Electronic ID Main Technical Characteristics

General features
Communication type Broadcast, message based

Transmitter location UAS

Physical layer

Transmission frequency (MHz) 868.4

Maximum transmission power (dBm) 14

Maximum physical bit rate (kbps) 50

Medium Access Protocol
CSMA without collision detection (random initial wait of
0–1000 ms, random wait after transmission detection of

15–150 ms)

Modulation 2-Gaussian Frequency Shift Keying (GFSK)

Message codification

Message types UAV eID message, operator eID message

Message format and size (in bytes) Preamble (4B) + Sync (3B) + Payload (24B) + CRC (2B) +
Optional signature

Information encoding resolution

Timestamp 2 s

Latitude 0.000025◦

Longitude 0.000025◦

Altitude 1 m (MSL or WGS84)

Message frequency 0.33 Hz (or 1 Hz if position deviation is greater than 30 m)

Other features

Authentication Optional with external unspecified registration service

Encryption Symmetric encryption (same key for all devices)

Error detection Yes

Error correction No

Multiple commercial products exist implementing the FLARM electronic identification
protocol (often along with other technologies described also in this review). For instance,
the Atom UAV [25] dongle from FLARM includes a FLARM transceiver, an ADS-B receiver
and an ASTM F3411-19 emitter. Droniq HoD [26] also implements a FLARM transceiver
along with ADS-B IN and telemetry transmission over LTE. Commercial ground receivers
(sensors) also exist such as GBSAS stationary from Droniq [27] with up to 20 km range for
FLARM and 100 km range for ADS-B.
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2.3. Direct Telemetry Reporting

As previously stated, periodic telemetry reporting is currently the main procedure to
provide real-time position information to UTM systems. It consists of using public mobile
networks (i.e., 3G, LTE) to directly relay messages to the UTM system over the internet.
Thus, it inherits the physical limitations (i.e., coverage, latency, speed, etc.) of the used
networks. Although the physical layer in this approach is inherently standardized, no
uniform protocol currently exists for defining data models or expected interactions. Thus,
each UTM provider (e.g., AIRMAP, Altitude Angel, Droniq, Unifly. . . ) defines its own
data models through well-defined API that are distributed to drone manufacturers and
developers. As a result, this approach requires adaptations in the connected device (usually
an on-board dongle or the GCS) for each provider.

AIRMAP provides a mobile SDK for iOS and Android to abstract developers and
manufacturers from the internal transmission protocol. The idea is to develop a compan-
ion GCS app (for instance, one developed using DJI Mobile SDK for DJI drones) that is
integrated into the AIRMAP UTM ecosystem using its own SDK. A series of utilities are
then available within the SDK [28] to easily publish telemetry data (position, attitude and
speed) to the UTM system. Internally, the SDK translates the high-level API into a series of
remote procedure calls (using gRPC) that transmit the telemetry information encoded into
protobuf, (a serialization protocol for structured data) messages [29].

Similarly, Altitude Angel also provides a well-defined API to send telemetry informa-
tion to the UTM system [30]. In this case, a REST interface is used to send JSON messages.
Each position report includes a timestamp, the UAS position, altitude, ground and air veloc-
ity, accelerations and heading. In addition, Altitude Angel has also defined an open-source
hardware and software architecture aimed at developing drone-attachable dongles that
transmit a drone’s position. The architecture, named Scout [31], is based on on-the-shelf
components and can be used by any drone developer to integrate a drone into any UTM
system (although the provided code is developed for the Altitude Angel API).

Finally, other UTM service providers have developed custom, proprietary, on-board
dongles to send telemetry information from the drone via LTE. That is the case of the
aforementioned Dronic HoD [26] or Unifly BLIP [32].

2.4. Remote Identification

European drone regulations ruled in 2019 that all UAS over 250 g must have the
means to provide direct remote identification functionality (unless physically tethered). In
particular, drones must be able to perform “real time [. . . ] direct periodic broadcast using
an open and documented transmission protocol [. . . ] in a way that can be received directly
by existing mobile devices within the broadcasting range” [16]. This broadcast consists
of a unique (manufacturer-provided) UAS serial number, a UAS operator registration
number, the geographical position of the drone with its height above the take-off point,
the course and speed of the drone, its emergency status and the geographical position
of the operator. A later amendment of the said European regulation [33] also introduced
optional network remote identification, transmitting the same information as in the direct
(broadcast) remote identification. Identification information is expected to be processed in
a “network identification service” in UTM systems [11]. Thus, authorized users (including
general population in the flight area and competent authorities) must be able to access the
remote identification information of in-flight drones.

A similar regulation enacting the need for broadcasting remote identification has
recently been endorsed in the United States [15]. UAS must broadcast (themselves or using
a remote identification broadcast module) the following information: UAS identification,
the latitude/longitude, altitude, and velocity of the UAS, the latitude/longitude and
altitude of the control station, emergency status and a time mark. This broadcast must be
performed using a protocol compatible with existing personal wireless devices. To ensure
UAS operation privacy, the UAS identification can use a temporal session id, which can
only be correlated with the registration database by authorities. Contrary to European
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regulations, network-based remote identification is not considered. In addition, the rule
also prohibits the use of ADS-B as a means of meeting remote identification requirements.
Regulators argue that its usage shall be limited (prior authorization) when large UAS are
operating in controlled airspace.

The foregoing regulations prompt the need to develop open and standardized broad-
cast transmission protocols that can be received using mobile devices. This limits the
possible physical layers to mainly Wi-Fi and Bluetooth (although protocols such as LoRa
have also been explored [34]). Currently, one RemoteID protocol is already established
mainly inspired on US regulations: ASTM F3411-19 [35]. In parallel, at least two other
standards are under development. On one hand, ASD-STAN is developing the prEN
4709-002 standard inspired by European regulations, seeking compatibility with the ASTM
standard [36]. On the other, the IETF drip group [37] is also developing a RemoteID
protocol leveraging existing internet protocols.

Focusing on the ASTM standard, the broadcasting of identification messages is per-
formed using existing broadcast frames (usually used as advertisements to establish con-
nections) within the Bluetooth (legacy or 5.x LE) and Wi-Fi protocols. The idea is to use
the payload of these frames to transmit a short ad hoc id message, thus eliminating the
need to extend physical protocols. Two main compulsory message types are considered:
a static one broadcasted every 3 s with drone identity, and a dynamic one broadcasted at
least each second with UAS location. Additionally, the protocol also provides a set of op-
tional messages that can be used for operator identification, operator location transmission,
transmitter authentication. Table 3 summarizes the main technical specifications of the
ASTM standard.

Table 3. ASTM F3411-19 main technical characteristics.

ASTM F3411-19 Main Technical Characteristics

General
features

Communication type Broadcast, message based

Transmitter location UAS

Physical layer

Physical protocol Legacy BT BT 5.x long range WiFi

Physical frame/message
supporting RemoteID

payload

Beacon broadcast
message

Extended
advertisements (with

FEC for x4 range)

Service discovery frame based on neighbor
awareness networking

Physical frame overhead [B]

23 35 21
(ASTM standard [35] defines how the RemoteID payload is to be inserted within each physical

frame. The protocol overhead understood as the frame length minus the payload is
depicted here.)

Transmission frequency
(MHz)

2400 (channels
37, 38, 39) 2400 (all BT channels) 2400 (ch. 6) 5800 (ch. 149)

Maximum transmission
power (dBm) +5 +5 +11 (2400 MHz)+4 (5800 MHz)

Medium Access Protocol No medium access protocol [38]. Non-persistent CSMA [39]

Modulation

Gaussian Frequency Shift Keying (GFSK) (other
modulation schemes are considered in BT

specification such as differential phase shift keying
that allow increased data rates not needed for

this application.)

Orthogonal frequency-division
multiplexing

(OFDM) with QAM symbol mapping.
(Multiple modulation schemes are

considered in compliance with the different
IEEE 802.11 protocols, OFDM-based

protocols are the most
widespread nowadays)

Message
codification

Message types (only
compulsory)

Basic ID message (UAS identification)
Location message (UAS position)

Message format and size
(in bytes) Header (1B) + Message data (24B) [payload of aforementioned frames]
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Table 3. Cont.

ASTM F3411-19 Main Technical Characteristics

Information encoding
resolution

Timestamp 0.1 s

Latitude 1.0 × 10−6◦

Longitude 1.0 × 10−6◦

Altitude 0.5 m

Speed 0.25 m/s if speed < 0.5 knts.0.75 m/s
otherwise

Message frequency Basic ID message: at least 0.33 HzLocation message: at least 1 Hz

Other features

Authentication Optional with external unspecified registration service

Encryption No

Error detection Physical layer dependent (Yes)

Error correction No Yes (convolutional FEC) Yes

The ASTM protocol also standardizes a protocol for the networked identification of
drones using an adaptation of the previous messages to internet friendly formats. To do so,
it decouples the network identification service into two different roles: service providers and
display providers. Service providers implement networked communications with drones
receiving and processing their message (even providing extrapolated information). Display
providers serve as a gateway to end users supplying them with the traffic information in
their area of interest. This decomposition paves the way for federated UTM systems. In fact,
the protocol also defines a discovery and synchronization protocol for USS interoperability
that is outside of the scope of this paper.

It is expected that new drones directly implement their own means to fulfill RemoteID
requirements (e.g.,: DJI statement in [40]). For instance, some DJI [41] and Parrot [42]
drones already support some remote identification capabilities via software update and
repurposing the C2 channel. Meanwhile, dongles or broadcast modules are to be used for
this purpose. Some commercial examples include Aerobits idME+ [43] or ScaleFlyt [44]
from Thales, both compatible with ASTM standard. Sensors/receivers for RemoteID seem
to still be under development. In particular, no smartphone-based receiver has been found.
Some companies’ commercial announcements publicize RemoteID receivers (e.g.,: [45,46]),
but with no technical details that allow us to assess their technological maturity.

2.5. Ongoing Discussion

The main open discussion analyzes the usage of networked or direct/broadcast remote
identification. First, networked solutions’ dependence on public mobile communication
networks limits the possible coverage of this solution, especially in rural areas that usually
lack ubiquitous and reliable mobile connectivity. In fact, if networked identification is
deemed compulsory, this would prevent developing operations in rural areas or in emer-
gency scenarios where communications are degraded. However, proponents of networked
solutions argue that a broadcast-only solution can lead to frequency congestion in unli-
censed spectrum as the number of drones increases in the future. Furthermore, cooperative
surveillance is expected to be used not just for traffic management purposes, but also for
tactical drone safety using detect and avoid (DAA) techniques. In this case, broadcast-
based alternatives would be preferred over networked approaches to avoid round-trip
transmission delays. For the time being, regulations only mandate the usage of broadcast
identification, while the networked approach remains optional.

Apart from the summarized discussion on the technical aptitude of each solution,
additional points regarding safety and privacy have also been discussed. For instance,
networked solutions can be exposed to DDoS attacks by nefarious actors, which can
jeopardize the safety of the system. Additionally, there is no consensus on who should be
able to access remote identification information. Some drone operators are reluctant to send
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their identity and critical mission information to third party UTM systems, arguing privacy,
business, and tactical issues. In this regard, discussion is still ongoing as to whether some
identification positions must be encrypted and only available to authorities. Privacy is also
considered when discussing if a unique drone id (as seems to be the case in the European
approach) or a session ID must be used. The latter approach would allow enhanced privacy
for users, but authorities must still be able to correlate that temporal ID with drone and
operator real identities for accountability purposes. A good summary of the different points
of view of the industry regarding collaborative surveillance (and particularly remote id)
can be found in the public comments sections of the FAA final rule on RemoteID [15]. As
the discussion continues, so must the standardization process (although solutions might be
transient) to start enabling safe drone operations.

3. Collaborative Surveillance System General Modelling

The previous section has covered the main technical features of some of the existing
collaborative surveillance systems for UAS. The objective of this section is to define and
model the main factors that determine the performance of such systems and the overall
surveillance deployment integrated within a UTM system. The aim is not to reliably
reproduce the internal functioning of those systems, but to provide a statistical model that
allows one to simulate their outputs. To do so, we follow a top-down approach defining a
general abstracted model that can be adapted to each of the existing surveillance protocols.

Apart from telemetry reporting (already modelled by the authors in [12], and not to be
covered in this paper), all systems consist of two different elements: an onboard transmitter
and a ground-located receiver or sensor. Regarding the transmitter, it broadcasts GNSS
positioning information of the drone over a physical channel. GNSS positioning is not free
from suffering errors due to multipath propagation, clock errors, atmospheric propagation
disturbances, etc. A simple model to simulate such errors was proposed by authors in [12],
and will be used here to generate the input information used by each transmitter. Once
a GNSS measurement is obtained, each surveillance system encodes it using different
resolution and message structures. Then, two types of messages can be generated, either
periodically or due to protocol-defined events such as important position changes. These
messages may contain only UAS identification information, or identification plus encoded
positioning/kinematic information. These messages are finally broadcasted over a RF
physical layer for which a MAC protocol is required.

As a signal is propagated and received, it suffers attenuation, interferences, presence of
noise, etc., which may result in digital information degradation (bit errors, burst errors . . . )
at the receiver (sensor). Within each sensor, the physical layer characteristics and envi-
ronmental conditions determine the receiving range and quality. Concurrent access to the
shared RF medium can also affect the receiving capacity of the receptor and should also be
modelled. Even if the digital signal has been successfully detected by the receiver, it does
not guarantee that corresponding message can be decoded. This will depend on the number
of transmission-generated errors (which depends on signal quality, interferences, etc.) and
the capacity of the protocol to correct such errors. Finally, the receiver will process the
received information and generate position reports (including all drones and information
from multiple messages) that will be sent to a UTM system over public communication
networks. The coverage and performance of these networks also affect the capacity of a
collaborative sensor to reliably provide a UTM system with information. However, the
effect of the connection from sensors to the UTM will not be considered here, as the authors
covered this specific topic in a previous paper [12].

Therefore, we can identify the main elements to model collaborative systems. The
aggregation of all these elements in Figure 1 constitutes the proposed simulation model:

• Collaborative surveillance emitter.

# GNSS measurement encoding, which determines which information is sent
(e.g., FLARM does not include speed information whereas RemoteID does) and
the resolution of each element within a measure.
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# Message generation frequency and other conditions that trigger messages, which
determines the number of messages of each type to be generated and their timing.

# Medium access control. Depending on each of the protocols, emitters may be
required to sense the RF medium before transmitting to avoid collisions. This
can yield to transmission delays and depends on the number of emitters within
the area.

# Physical transmission. The emitter RF module propagates a signal with the mes-
sage in a specific frequency, from the drone location and with a given transmission
power and directionality.

• RF propagation. Depending on the propagation environment (urban/rural) and
frequency, different attenuations and noise levels are expected.

• Collaborative surveillance receiver.

# Physical receiving. The receiver requires a minimum signal level to detect the
emitter message which determines the receiving range.

# Medium access control. Due to the possibility of collisions when concurrently
using the RF medium and depending on the MAC protocol, packets may be
discarded by the receiver.

# Transmission error generation and correction. The transmission errors are to be
simulated within this module considering the digital signal quality. Depending
on the capacity of the protocol to correct such errors, messages may also be
discarded here by the receiver.

# Message handling and report generation. The receiver may perform additional
data processing with the incoming messages such as information filtering and
prediction. The frequency for which aggregated reports are generated is also to
be considered.
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Next, we propose a general model for each of the previous elements. These general
models will be common for all surveillance protocols, but some parameters will be depen-
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dent on the technical characteristics of each protocol. This particularization of the general
models is covered in Section 4.

3.1. GNSS Measurement Encoding

To model the information forwarded by each protocol and the resolution used to
forward that information, a list of the information elements included by each protocol can
be defined as follows:

Pprotocol ⊆ P (1)

P = {timestamp, longitude, latitude, altitude, speed} (2)

where P is the set of all possible state information variables provided by the drone or GNSS
system and protocol denotes the surveillance system the list refers to. Then, for each element
of the said list or subset, a minimum resolution (rprotocol

p ) must be defined, understood as
the minimum change in the value representable with the protocol message encoding:

rprotocol
p , ∀ p ∈ Pprotocol (3)

Finally, it is possible to encode the information forwarded by a given protocol with
the required resolution as follows:

mencoded
p =

⌈
mdrone

p

rprotocol
p

⌉
·rprotocol

p , ∀ p ∈ Pprotocol (4)

where d·e represents rounding to the nearest integer and mdrone
p refers to the measured

variable or state in its original precision. This encoding is only performed for the state
variables forwarded by the protocol.

3.2. Message Generation

As with most of the protocols reviewed in Section 2, two different types of messages
are considered in our model:

• Position report message. This message is generated with a f protocol
position [Hz] frequency

and includes the encoded position information mencoded
p = ∀ p ∈ Pprotocol and drone

identification information.
• Identification message. This message is generated with a f protocol

identi f ication [Hz] frequency
and only includes drone identification information. As it is not yet clear which
information is to be used in this case, our implementation of the model uses the serial
number of each drone for identification purposes. In addition, this message may
be omitted in the implementation of each protocol model, as it is not considered in
some cases.

For simplicity in the foregoing modelling, it is assumed that the payload of both
messages is of equal length: Lprotocol

payload [B] and that each message has an overhead of

Lprotocol
overhead [B] (to include both MAC and PHY levels frames overhead), for a total length

of Lprotocol
payload + Lprotocol

overhead [B]. In fact, this simplification is accurate in most of the reviewed
protocols as they used a fixed-length frame. In addition, as the processed information of
each receiver is to be forwarded to a UTM system over the Internet using Internet-based
formats, it is not required to simulate the binary encoding of the messages. Therefore, our
implementation of this model in our simulator directly uses JSON data formats but respects
the encoding resolution.

Regarding the position message generation process, it can be modelled as two de-
coupled parallel processes, as seen in Figure 2. On one hand, the drone or the GNSS
module asynchronously provides the drone state (which can be represented as a state
vector composed of the measurements used in the previous step: M =

[
mdrone

p

]
, ∀ p ∈ P)
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to the surveillance emitter. This information can be provided periodically or when drone
position changes, depending on the drone or GNSS module specifics. On the other hand,
the surveillance emitter periodically encodes and sends the last available information every
1/ fposition seconds. Due to this decoupling and some additional delays in the sending pro-
cess that will be discussed later, the information sent by the emitter might not be up to date.
Therefore, some protocols limit the longevity of the sent information (mdrone

time − sending time)

to an amount of time Tprotocol
max age [s]. If this condition is not met, messages are discarded.

Additionally, some additional conditions might be defined in each protocol to trigger a new
position message sending.
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Figure 2. Position message generation process. The figure is a block diagram representing the
different processes and information flow within the model. In general, each block represents a
process or function within the model with arrows representing dependencies or the information
flow. Additionally, the clock block represents a synchronous/timed process, and switches represent a
decision which depends on the stated condition or probabilistic term.

3.3. Medium Access Control

When multiple users concurrently access a unique shared RF channel, if more than
one user transmits simultaneously, information may be corrupted (in a situation known as
collision) depending on the users’ geographical location and timing. Medium access control
(MAC) techniques and rules are used to minimize these collisions. The simplest technique
consists of listening to the channel for other transmissions before transmitting. However,
even when listening for other transmissions, collisions might occur due to the propagation
delay or geographical distribution of nodes. Let us imagine a situation (depicted in Figure 3)
in which a principal emitter (emitter 1) wants to transmit information to a receiver in the
presence of other emitters (emitter 2 and 3). In the figure, the sensing ranges (distances
from which they can sense other emitters transmissions) of each node are depicted. The
emitters can be classified in four different sets and subsets:

• Emitters that are within the sensing range of the main emitter, Semitter. These are the
emitters for which the main emitter may avoid collisions in some cases (depending on
timing because of propagation delay), for all the possible receivers.

• Emitters that are within sensing range of the receiver, Sreceiver. These are all the emitters
that can cause collisions in the receiver when concurrently sending information. Two
subsets of emitters can be identified here, depending on its relationship with the
main emitter:

# Emitters sensed by the main emitter, for which collisions may be avoided to some
extent for this receiver, Ssensed = Semitter ∩ Sreceiver

# Emitters not sensed by the main emitter (known as hidden nodes), Shidden =

Sreceiver − Ssensed, and for which collisions cannot be avoided in any case.
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Figure 3. Different situations in the RF medium. Emitter 2 is a hidden node of emitter 1. Emitter 1
detects and tries to avoid messages from emitter 3. This avoidance would not be needed as emitter 3
is out of the range of the receiver.

Some of the reviewed surveillance systems use the carrier sense multiple access
(CSMA) MAC protocol [47]. The main idea behind this protocol is the previously described
“listen before transmit” concept. Some variations of the protocol include a random wait
before retrying a transmission (non-persistent CSMA) after the channel is sensed busy
while others transmit as soon as it is free (persistent CSMA). Other surveillance protocols
do not implement any explicit MAC protocol: nodes access the channel in a completely
unsynchronized manner; this is called the Aloha access mechanism [48]. Therefore, the
proposed MAC model must be able to adapt to this variety of MAC protocols. From this
discussion, some ideas can be extracted:

• If a CSMA protocol is implemented, there is a probability that the channel is sensed as
occupied, and this probability depends among other things on the traffic generated by
the nodes in Semitter :

Pbusy = f
(

Semitter, traffic characteristics, distance between nodes in Semitter
)

• If a non-persistent CSMA protocol is used, a random wait in the range (0, Tbacko f f [s] ]
must be used before sensing the channel again.

• When using a CSMA protocol, the collision probability in the receiver is reduced but
only for those nodes included in Ssensed :

Pcollision known nodes = f (Ssensed, traffic characteristics, distance between nodes in Ssensed)

• In any case, unknown known nodes (to the emitter) may exist (all nodes if using
Aloha), which will lead to collisions with a higher collision probability:

Pcollision hidden nodes = f (Shidden, traffic characteristics, distance between nodes in Shidden)

These ideas are reflected in the model MAC effect model depicted in Figure 4. First,
channel usage is simulated using Pbusy. If the channel is busy, a random wait can be
simulated before sensing again the channel (i.e., generating a new binary decision). Oth-
erwise, the simulation process continues. Messages are handled one by one in arriving
order, meaning that if a package is waiting for a free channel, the following package waits
in a queue. On the receiver end, collisions are simulated using Pcollision known nodes and
Pcollision hidden nodes (by generating random binary decisions with these probabilities). It
is assumed that a collision completely invalidates the message (this may not be true in
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real systems due to possible decoding of overlapping messages in some cases), and it is
therefore discarded.
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Figure 4. MAC model for an emitter and receiver. The figure is a block diagram representing the
different processes and information flow within the model. In general, each block represents a
process or function within the model with arrows representing dependencies or the information
flow. Additionally, the clock block represents a synchronous/timed process, and switches represent a
decision which depends on the stated condition or probabilistic term. The initial block in the figure
represents a message queue for FIFO processing.

In our initial models, we assume that each UAS surveillance system utilizes an in-
dependent communication channel. This means not only that traffic from two different
systems does not interact with each other (even though some systems share bandwidth),
but also that no other external users use that bandwidth. This approximation greatly
simplifies the analysis but might reduce the validity of RemoteID and FLARM models,
using ISM bands in which other traffic (e.g., BT, WiFi . . . ) exists.

The probabilities defined in the model will be specified for each of the surveillance
systems depending on the MAC protocol they use. The emitters of each of the defined sets
can be dynamically computed in simulation time using the emitters and receivers’ position
and the physical transmission model defined in Section 3.4. However, some common
notations and assumptions (based on [49]) can be introduced to define the traffic generated
in a given channel. It is assumed that the traffic generated by all surveillance emitters
can be modelled as an independent Poisson source (this hypothesis is valid for a large
number of drones, as no sending synchronization is expected). As previously stated, we
also assume that all packets are of a constant length and that discarded packages are not
retransmitted. Under these conditions, we can define an aggregate traffic source for the
nodes in each set of nodes S. This source will have a mean packet generation rate of:

λ
protocol
S

[
pckt

s

]
= Nemitters in S·

(
f protocol
position + f protocol

identi f ication

)
(5)
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Finally, the normalized traffic offered to the network, G, generated by this source can be
computed as follows. This traffic that the sources generate, is not that which will be finally
carried over the network. The real throughput will be lower due to the collision effect.

Gprotocol
S = λ

protocol
S ·Tprotocol

pckt (6)

where Tprotocol
pckt [s] is the packet transmission time which depends on the channel physical

capacity or physical bit rate, Rprotocol [bps] (this bitrate is the gross bitrate measured at the
physical layer, not the achievable throughput at the application level considering protocol
overhead and encoding redundancy), and can be computed as:

Tprotocol
pckt [s] =

8·(Lprotocol
payload + Lprotocol

overhead)

Rprotocol ·FECprotocol (7)

where FECprotocol is the coding rate used by the protocol in those cases with Forward error
correction (FEC). That is, FECprotocol is the ratio of actual information over the total bits
transmitted due to the additional redundancy included.

3.4. Physical Transmission, Propagation and Reception

Although complex physical transmission models could be proposed, this detailed
approach is outside of the scope of this paper, where we are interested in the systematic
effects to the UTM messages. Therefore, we propose a go-no go model based on the power
balance of the radio link assuming free space losses and omnidirectional antennas. Thus, a
transmission power is defined for each emitter depending on the protocol: Pprotocol

tx [dBm].
Likewise, the transmission frequency will be defined for each system as f protocol

tx [GHz].
Each network node also requires an associated position (node position in the case of the
emitter and surveillance sensor position for the receiver) so that the distance between each
emitter and receiver can be computed: de−r [km]. With this information, it is possible to
compute the power in the receiver as [50]:

Prx [dBm] = Pprotocol
tx − 20 log de−r − 20 log f protocol

tx − 92.45 (8)

To decide if a message is received, it can be compared with the receiver sensitivity
Srx [dBm], defined as the minimum power required to detect an incoming signal. Likewise,
emitters also have an associated sensitivity, Stx [dBm] in those cases where a “listen and
transmit” (such as CSMA) procedure is used. Therefore, for a signal to be received, it
must fulfill:

Prx ≥ S (9)

where S is either the emitter or receiver sensitivity as appropriate. However, attenuation is
not the only effect suffered by the signal. The antenna receives the signal with an aggregated
level of noise which degrades the signal. We do not consider the effect of other possible
interferences. Assuming an additive white Gaussian noise (AWGN) channel, the signal
quality can be estimated by the Eb

N0
metric, which is a normalized version of the SNR for

digital signals. The former can be computed as:

Eb
N0

=
Prx [W]/Rprotocol

N0

[
W
Hz

] (10)

where N0 is the noise power spectral density and can be computed from the overall noise
factor of the system, Fprotocol

eq [dB]:

N0 = k·T0·10
Fprotocol
eq

10 (11)
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where k is the Boltzmann constant (1.38× 10−23 J/K) and T0 = 290 K is the reference
temperature. The overall noise factor of the system is dependent on the transmission
frequency (different noise sources are predominant for different frequencies) and the
receiver quality [51]. The proposed model is summarized in Figure 5:
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Figure 5. Physical transmission model. The figure is a block diagram representing the different
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switches represent a decision which depends on the stated condition or probabilistic term.

3.5. Transmission Errors and Error Correction

Additive noise in a digital signal manifests as a set of bit errors that might be recovered
with error correction techniques or that yield the package undecodable. Burst errors might
also appear due to interferences or multipath effects. In our model, we consider the effect
of isolated bit errors. For a given modulation scheme, it is possible to derive theoretical
expressions relating the Eb

N0
metric to the mean number of expected errors, or bit error rate

(BER). Thus, it exists a function, named bprotocol , such as:

BER = bprotocol
(

Eb
N0

)
(12)

Once this mean error rate is computed, it is possible to statistically simulate the number
of errors in a message. To do so, we consider a Bernouilli experiment with BER probability
repeated for each bit of the message. Overall, the number of errors in the message can be
obtained with a binomial distribution:

Nerrors = B
(

Lprotocol
payload + Lprotocol

overhead, BER
)

(13)

As all protocols include an error detection algorithm, we assume that the probability
of undetected errors is negligible. Therefore, packages with errors (or for which errors
cannot be corrected) will be discarded and will not result in corrupted decoding of data.
Although some error correction algorithms such as convolutional FEC correct errors within
a bitstream and not in an isolated manner, we model the error correcting capacity of a given
protocol as a maximum number of correctable errors: Nprotocol

max errors. Therefore, a message is
decodable if Nerrors < Nprotocol

max errors; otherwise, it is discarded. This process is depicted in
Figure 6.

3.6. Receiver Message Handling and Report Generation

Once decoded in the receiver, messages are used to maintain an up-to-date list of
detected drones and its associated positions. This list is then periodically reported to the
UTM system with a frequency of f protocol

report [Hz]. No further data processing is considered in
our model. Posterior tracking and extrapolation are not included here.
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Figure 6. Transmission errors and error correction model. The figure is a block diagram representing
the different processes and information flow within the model. In general, each block represents
a process or function within the model with arrows representing dependencies or the informa-
tion flow. Additionally, switches represent a decision which depends on the stated condition or
probabilistic term.

4. Model Specification for Existing Surveillance Systems

In this section, the general model proposed in Section 3 is particularized for each of the
surveillance systems/protocols described in the state-of-the-art review. The following table
(Table 4) defines the numerical parameters as extracted from the technical specification or
using typical values otherwise. Then, a series of subsections discuss these parameters and
cover the remaining protocol-dependent model functions.

Table 4. Model parameters for each surveillance system.

Model Parameter ADS-B FLARM RemoteID-BT
Legacy

RemoteID-BT
ER RemoteID-WiFi

P {timestamp, longitude,
latitude, altitude, speed}

{timestamp, longitude,
latitude, altitude} {timestamp, longitude, latitude, altitude, speed}

rtimestamp [s] 0.0078125 2 0.1

rlongitude

[
◦
]

0.0000215 0.000025 1.0 × 10−6

rlatitude

[
◦
]

0.0000215 0.000025 1.0 × 10−6

raltitude [m] 0.0047625 1 0.5

rspeed [m/s] 0.2315 N/A 0.75

fposition [Hz] 0.5 0.33 1

fidenti f ication [Hz] N/A N/A 0.33

Lprotocol
payload [B] 14 24 25

Lprotocol
overhead [B] 0 9 23 35 21

Tprotocol
max age [s] N/A 1 1

Tbacko f f [s] N/A 0.15 N/A N/A 0.01

Rprotocol [bps] 1.0 × 106 50,000 1.0 × 106 1.25 × 105 2.4 × 107
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Table 4. Cont.

Model Parameter ADS-B FLARM RemoteID-BT
Legacy

RemoteID-BT
ER RemoteID-WiFi

FEC 1/6 1 1 1/4 1/2

Ptx [dBm] 48.5 14 5 5 11

ftx [GHz] 1.09 0.8684 2.4 2.4 2.4

Srx [dBm] −72 −95 −70 −82 −85

Stx [dBm] −72 N/A N/A N/A −85

Feq [dB] 10 10 10 10 10

Nmax errors 7 0 0 7 7

freport [Hz] 1 1 1 1 1

4.1. ADS-B

ADS-B does not use any MAC control. Within commercial ADS-B deployments for
manned aviation, collisions are avoided using spatial diversity; however, in this case,
receivers work in an isolated way. Thus, the probability of collision is that of an Aloha
channel, as per [49]:

Pbusy = 0; Pcollision known nodes = 0 (14)

Pcollision hidden nodes = Pcollision ALOHA = 1− e−2GSreceiver (15)

Regarding the BER model, ADS-B uses PPM modulation. In [52], the relationship
between the BER and the Eb

N0
is defined as:

BER =
1
2

e−
1
2 ·

Eb
N0 (16)

4.2. FLARM

The FLARM standard defines CSMA as the MAC protocol. A channel is sensed as
being busy by a given emitter if any other emitter in Semitter transmits in the previous
Tprop + Tpckt seconds. This probability can be computed as (see [49] for a detailed analysis):

Pbusy = 1− e−(1+a)GSemitter (17)

where a is the normalized propagation delay to the furthest node in each set:

a =
Tprop [s]
Tpckt [s]

; Tprop [s] =
dmax [m]

c
; c = 3× 108 m

s
(18)

The collision probability in the receiver for CSMA-aware emitters can be obtained as:

Pcollision known nodes = 1− e−aGSsensed

GSsensed(1 + 2a) + e−aGSsensed
(19)

Finally, the collision probability for the hidden nodes is that of the Aloha channel:

Pcollision hidden nodes = 1− e−2GShidden (20)

GFSK is used as modulation in FLARM protocol, as per [53]; the BER- Eb
N0

relation
is also:

BER =
1
2

e−
1
2 ·

Eb
N0 (21)
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4.3. RemoteID—Bluethoot Physical Interface

As is the case in ADS-B, no MAC procedure is used in Bluetooth broadcasting [38].
Therefore, the collision probabilities depicted in Section 4.1 are also applicable here. With
respect to the BER, GFSK modulation is usually used. Therefore, the expression defined in
Section 4.2 for FLARM is also used here.

4.4. RemoteID—WiFi Physical Interface

According to [39], CSMA is used in the WiFi subprotocol used by RemoteID. Thus,
the expressions derived for FLARM in Section 4.2 are to be used here. For the BER
computation, [54] proposes a simplified expression for the QPSK-OFDM modulation used
in WiFi:

BER =
1

1 + Tp
Tp+Tg

· Eb
N0

; Tp = 0.0032; Tg = 0.0008 (22)

5. Results

The collaborative surveillance models described in Section 4 have been implemented
and integrated in a simulation tool for UTM systems proposed by authors in [12]. This
consists of a distributed, agent-based modelling framework that allows one to replicate
the input information (e.g., operation definition, telemetry reporting from drones, track
reporting from surveillance networks, etc.) required by UTM systems for their operation.
Thus, it allows for evaluating UTM systems without requiring real tests by simulating the
behavior and interactions of relevant actors, such as pilots, GCSs, drones, surveillance
networks and communication networks, that are individually modelled. The framework
describes a model-agnostic, extensible architecture that allows to integrate multiple models
for each actor and provides a set of tools to define simulation scenarios manually or ran-
domly (i.e., list of flights, sensor’s locations . . . ). Although simple simulation models were
proposed in [12] for those actors, the work presented here for collaborative surveillance
greatly extends these models, making them much more realistic.

Integrating the advanced models into the simulation tool allows one to use the pro-
posed models in realistic, complex multi-drone scenarios, extending the accuracy of the
original platform. Moreover, it is possible to assess and compare the performance of the
different collaborative sensors we have considered. In particular, a base simulation scenario
is proposed in this section where an area of interest is to be surveilled with different collab-
orative sensors. Thus, collaborative surveillance sensors are deployed within an airport
where ATC controllers must ensure that nearby unmanned traffic does not interfere with
manned traffic. The deployment consists of five different sensors (i.e., FLARM, ADS-B, RID
with legacy BT PHY, RID with ER PHY, RID with WiFi PHY) located in the same position
within the airport for comparison.

Over this base scenario, two different simulation situations are considered. The first
one, depicted in Figure 7, aims to showcase the range, resolution, and periodicity related
effects by simulating just one drone approaching the interest area. This drone is equipped
with the corresponding emitter for each of the protocols so that it can be detected by all
sensors. The second scenario consists of simulating an increasing number of drones in an
area over time so that the spectrum-congestion effects can be observed. These flights are
randomly generated, as depicted in Figure 8, within the area of interest with a set of utilities
provided by the used simulation tools. The random generation of flights was performed
using the utilities offered by the platform in [12], which generates random drone operations
as a series of waypoints in a given area chosen by the user (other parameters such as the
mean length of each flight or their time distribution can also be selected). In this case,
drones are also outfitted with emitters for all protocols.
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Both situations (i.e., drone trajectory, sensor location) were represented and executed
in real time using the simulation platform. After running it, the plots generated by each of
the sensors were retrieved for analysis. Starting with the first situation, Figure 9 shows the
detections made by each sensor allowing to compare the different ranges of each protocol
and package loss due to decoding errors. We can see that the detection limit is abrupt and
almost no packet losses are observed, meaning that the effect of transmission errors due to
low Eb

N0
is negligible when also considering the receiver sensitivity and the FEC correction

capacity. As expected, the RemoteID protocol’s range is lower than the ADS-B and FLARM
ranges. Within RemoteID’s physical layers, WiFi and Bluetooth Long range achieve the
best results.
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plots are shown as blue crosses.

Focusing on the positioning error, Figure 10 shows the difference between the GNSS
position obtained by the drone and measurement received by each sensor. Contrary to
what it is typical with non-collaborative sensors, positioning errors do not increase with
distance to the sensor, as the position is not estimated by the sensor but forwarded by the
drone. Errors are due to either encoding information with different resolutions or missing
packages. The effect of the first type of error can be observed in Figure 10. The FLARM
protocol encodes information with the worst resolution and thus achieves worse precision
than the rest of sensors, particularly in the timestamp encoding. The shapes of the errors
are typical of sensing systems dominated by quantification effects.

The second type of error corresponds to missing or delayed plots that decrease the
receiving periodicity. This might be due to either decoding errors (caused by low Eb/N0)
or network congestion (caused by either collisions or collisions avoidance). In this case, as
only one drone is flown, collisions are not expected. This can be seen in Figure 11—the
time between message arrivals is constant depending on the modelled message frequency
of each protocol, and losses due to decoding errors are almost negligible for all the systems.
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Moving to the multidrone situation, the objective of this situation is to assess the ex-
pected congestion-related effects in a realistic scenario in terms of drone density. According
to [55], the drone traffic over Paris is estimated to reach around 20,000 hourly flights by
2035. This yields an approximated drone density of 190 flights

h·km2 . In our proposed scenario,
the surveilled area, shown in Figure 8, covers 2.65 km2, and the scenario duration is limited
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to 5 min for practical reasons. Thus, applying the drone density derived from [55], around
42 flights would be expected within the area across the simulation. However, to encompass
future drone usage growth and to clearly show the congestion trend for each technology,
50 drones were simulated. An example of all received plots is shown in Figure 12. Once
again, the different effective ranges of each protocol can be observed. FLARM and ADS-B
can cover greater areas, whereas RemoteID-based protocols only cover the proximity of
the sensor.
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If we focus on one of those drones, we can analyze how spectrum congestion due to
the high number of drones affects the periodicity of its messages. In Figure 13, we can
observe how the collision effect is relevant for the FLARM protocol with intervals between
received messages of 9 s (which means that at least two consecutive packages have been
discarded). It is also possible to see smaller time deviations due to retransmissions when
the channel is sensed as being busy.
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Finally, the overall effect of collisions for all drones can be assessed in Figure 14.
There, the evolution of the number of collisions as the number of drones increases is
plotted. In general, as the number of detected drones increases, so does the number of
collisions. It might be expected that the performance of ADS-B would be worse than
FLARM as it does not use a MAC protocol. However, channel capacity is far greater in
the latter protocol yielding to a less occupied channel. The same effect can be observed
by comparing RemoteID and Bluetooth’s physical layers: the long-range version achieves
greater distances at the expense of a lower data rate yielding to higher channel occupancies
for the same number of drones. The lower range of the RemoteID protocol is also prone
to fewer collisions than FLARM or ADS-B, as for a given drone density it will detect
fewer drones.

Sensors 2022, 22, x FOR PEER REVIEW 26 of 30 
 

 

 

Figure 14. Collision rate for each sensor as the number of detected drones increases. 

Summing up, the conducted experiments show that the expected effects contem-

plated in the proposed model are successfully simulated. In addition, we show that the 

most relevant effects are those related to the quantification and potential saturation of the 

channels leading to collisions and delays. Table 5 compares (with information from the 

obtained results and the protocols standards) the performance of each of the assessed 

technologies for different metrics: the size, weight and power requirements (SWaP), the 

achieved coverage range, the achieved information resolution, and the drone density each 

technology can handle. SWaP requirements (mainly power) are vital as drones are con-

strained platforms with limited energy and payload weight. ADS-B arises as a high-per-

formance (both in resolution and coverage) alternative for high-density scenarios. How-

ever, its high SWaP requirement (mainly the high transmission power) may hinder its 

usage in many commercial drones. As an alternative, FLARM may be used for long-range 

surveillance at the expense of lower resolution for medium density scenarios. Finally, the 

purpose-built RemoteID surveillance technology is only suitable for low–medium-range 

surveillance. Particularly, the WiFi implementation of this protocol can work in high-den-

sity scenarios while maintaining a similar resolution as ADS-B and with a lower SWaP 

requirement.  

Table 5. Comparison of collaborative surveillance technologies with three different performance 

levels for each metric: high, medium and low. 

Performance Metric ADS-B FLARM 
RemoteID-BT 

Legacy 

RemoteID-BT 

ER 
RemoteID-WiFi 

SWaP requirements High Medium Low Low Low 

Coverage Range High High Low  Medium Medium 

Resolution High Low High High High 

Drone density High Medium Low Low High 
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Summing up, the conducted experiments show that the expected effects contemplated
in the proposed model are successfully simulated. In addition, we show that the most
relevant effects are those related to the quantification and potential saturation of the
channels leading to collisions and delays. Table 5 compares (with information from the
obtained results and the protocols standards) the performance of each of the assessed
technologies for different metrics: the size, weight and power requirements (SWaP), the
achieved coverage range, the achieved information resolution, and the drone density
each technology can handle. SWaP requirements (mainly power) are vital as drones
are constrained platforms with limited energy and payload weight. ADS-B arises as a
high-performance (both in resolution and coverage) alternative for high-density scenarios.
However, its high SWaP requirement (mainly the high transmission power) may hinder its
usage in many commercial drones. As an alternative, FLARM may be used for long-range
surveillance at the expense of lower resolution for medium density scenarios. Finally,
the purpose-built RemoteID surveillance technology is only suitable for low–medium-
range surveillance. Particularly, the WiFi implementation of this protocol can work in
high-density scenarios while maintaining a similar resolution as ADS-B and with a lower
SWaP requirement.
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Table 5. Comparison of collaborative surveillance technologies with three different performance
levels for each metric: high, medium and low.

Performance Metric ADS-B FLARM RemoteID-BT Legacy RemoteID-BT ER RemoteID-WiFi

SWaP requirements High Medium Low Low Low

Coverage Range High High Low Medium Medium

Resolution High Low High High High

Drone density High Medium Low Low High

When comparing these protocols with direct telemetry reporting technologies via
public mobile networks, it is expected that range will not be an issue in most non-rural
scenarios due to the almost ubiquitous nature of those networks. Medium access-related
problems are also not expected to be relevant thanks to the high capacity of modern
mobile networks. Thus, the main effects will be those of different quantifications (although
resolution will probably be higher) and a higher end-to-end latency.

6. Conclusions

Collaborative surveillance technologies have become a key technological enabler
of UTM systems as they provide vital tactical information to monitor drone operations.
Multiple technologies and protocols have already been proposed, and others are still
under development to cover this technological gap. This paper has reviewed the technical
specification and requirements of the most promising protocols including ADS-B, FLARM,
Telemetry reporting and RemoteID. In addition, it has also discussed the main trends and
existing discussing topics (i.e., identification number generation, networked vs. direct
identification approach) guiding the development of these technologies.

As a major information source to UTM systems, the availability and performance of
cooperative surveillance greatly affect the performance of UTM systems. To assess this
interaction, simulation models are a great tool to perform evaluations in a flexible and cost-
effective way. Thus, this paper proposes a protocol-agnostic, statistical simulation model
that considers effects such as measurement quantification, medium access congestion,
signal propagation, transmission errors and signal decoding. This paper greatly extends
our previous work in [12], where only the effect of the sensor range (using a simple pass-no
pass model) was considered. Then, authors show how this model can be implemented for
the reviewed surveillance protocols to simulate the detection process of each technology.
This particularization for ADS-B, FLARM and RemoteID also surpasses the verisimilitude
of the simple model proposed in [12], where the differentiating characteristics of each
technology were not considered.

Finally, the proposed models are integrated into a simulation platform previously
proposed by the authors, enabling experimentation in realistic scenarios. In addition, this
integration also benefits the preexisting platform as it enables testing and analyzing the
integration of surveillance sensors into a UTM platform. Thus, it allows one to look for
unexpected effects that can have a critical impact on security. Finally, it has been possible
to carry out a comparative analysis of the different technologies and to demonstrate
which are the main effects driving surveillance performance. Simulation results show
that quantification and the potential saturation of the communication channels are the
main effects.

To our knowledge, there does not exist previous literature providing an overview on
UAV-oriented collaborative surveillance networks. Likewise, the simulation of these net-
works, which will become key for UTM operational deployments, has not been addressed
before. Thus, this paper includes several novel contributions that have not been previously
covered in the existing literature:

• Technical review of existing collaborative surveillance technologies for UTM systems.
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• Definition of a protocol-agnostic statistical simulation model for collaborative sensors
for UTM.

• Parametrization of the proposed model for the different existing protocols.
• Integration of the proposed, advanced sensor models into a UTM evaluation platform.
• Experimentation within the said platform demonstrating that the most relevant effects

are those related to quantification and potential saturation of the channels.

Overall, the work in this paper greatly extends our previous, preliminary work in
the matter [12], providing a comprehensive, technology-agnostic, statistical model for
collaborative sensors. In fact, it does not just offer a theoretical model, but it provides
specific, practical implementations of it for the main existing technologies. Moreover,
another key advantage of the proposed work is that it has been integrated within an
existing UTM evaluation platform. This not only allows for evaluating collaborative
sensors in realistic scenarios, but also to analyze how this information (or the lack of it)
affects the performance of UTM systems.

However, some limitations exist in the proposed model and should be addressed in
future publications. These limitations are mainly related to the assumptions we made
to provide a simple statistical model while encompassing all of the main effects. These
limitations are:

• The propagation model. The free-space propagation model that has been considered
may be valid for drones flying in open environments, but it is not valid for urban
environments or areas with obstacles. Thus, advanced models (e.g., ray tracing)
considering effects such as multipath, fading, etc., could be considered to improve
the model.

• Interference modelling. Another drawback of the proposed model is that communica-
tion channels are considered to be independent and isolated from other RF sources.
The effect of external interferences within the same band (i.e., other WiFi users, other
emissions in ISM band . . . ) should be considered to provide more realistic results.
Likewise, bandwidth usage within protocols and the interaction between different
surveillance protocols (i.e., RemoteID physical layers may concurrently use the same
bandwidth) should also be better analyzed.

• Error correction. Finally, error correction modelling has been greatly simplified, not
encompassing the enhanced correction capabilities of bitstream-based FEC.

It must be noted that while implementing enhanced models not suffering from the
previous limitations would improve the accuracy of the model, it would also increase its
computational requirements. As a result, this would probably hinder the ability to perform
real time simulation, rendering the model useless for its integration with a UTM evaluation
tool (that works in real time). Therefore, further work to address these points would need
to contemplate a delicate tradeoff between a more accurate model and a practical one.
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