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Atopic diseases and inflammation of the brain in the
pathogenesis of autism spectrum disorders
TC Theoharides1,2,3,4, I Tsilioni1, AB Patel1,2 and R Doyle5

Autism spectrum disorders (ASDs) affect as many as 1 in 45 children and are characterized by deficits in sociability and
communication, as well as stereotypic movements. Many children also show severe anxiety. The lack of distinct pathogenesis
and reliable biomarkers hampers the development of effective treatments. As a result, most children with ASD are prescribed
psychopharmacologic agents that do not address the core symptoms of ASD. Autoantibodies against brain epitopes in mothers of
children with ASD and many such children strongly correlate with allergic symptoms and indicate an aberrant immune response, as
well as disruption of the blood–brain barrier (BBB). Recent epidemiological studies have shown a strong statistical correlation
between risk for ASD and either maternal or infantile atopic diseases, such as asthma, eczema, food allergies and food intolerance,
all of which involve activation of mast cells (MCs). These unique tissue immune cells are located perivascularly in all tissues,
including the thalamus and hypothalamus, which regulate emotions. MC-derived inflammatory and vasoactive mediators increase
BBB permeability. Expression of the inflammatory molecules interleukin (IL-1β), IL-6, 1 L-17 and tumor necrosis factor (TNF) is
increased in the brain, cerebrospinal fluid and serum of some patients with ASD, while NF-kB is activated in brain samples and
stimulated peripheral blood immune cells of other patients; however, these molecules are not specific. Instead the peptide
neurotensin is uniquely elevated in the serum of children with ASD, as is corticotropin-releasing hormone, secreted from the
hypothalamus under stress. Both peptides trigger MC to release IL-6 and TNF, which in turn, stimulate microglia proliferation and
activation, leading to disruption of neuronal connectivity. MC-derived IL-6 and TGFβ induce maturation of Th17 cells and MCs also
secrete IL-17, which is increased in ASD. Serum IL-6 and TNF may define an ASD subgroup that benefits most from treatment with
the natural flavonoid luteolin. Atopic diseases may create a phenotype susceptible to ASD and formulations targeting focal
inflammation of the brain could have great promise in the treatment of ASD.
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INTRODUCTION
Autism spectrum disorders (ASDs) are pervasive neurodevelop-
mental disorders characterized by deficits in communication and
social interactions, as well as the presence of stereotypic
behaviors.1–3 Numerous gene mutations have been identified in
patients with ASD, but no direct link has so far been uncovered
except for a small percentage of cases associated with Tuberous
Sclerosis, Fragile X syndrome, Rett syndrome and PTEN
deficiency.4,5 As a result, even though there are a number of
genetically-engineered mice with phenotypes resembling autism,6

they do not adequately reflect ASD and there is an urgent need
for appropriate animal ‘models’ of ASD.7 In fact, mouse ‘models’
are increasingly considered unreliable with respect to inflamma-
tory human diseases.8 We recently reported that a small number
of bull terriers develop symptoms consistent with autism and have
increased serum neurotensin (NT) and corticotropin-releasing
hormone (CRH), also found to be elevated in children with ASD.9

ASD may affect as many as 1 in 45 children in the USA,10 but the
global prevalence is still under-recognized.11 The lack of reliable
biomarkers12 and specific pathogenesis,13 as well as the existence

of subgroups or comorbidities14 (Table 1), makes the development
of specific treatments and conducting clinical studies difficult.13 As
a result, child and adolescent outpatient mental health services in
the USA have increased considerably.15 Moreover, the annual
economic burden for ASD was recently estimated at $268 billion
for 2015 and is projected to reach $416 billion in 2025.16

A number of perinatal allergic, genetic, environmental, immune
and infectious factors may increase the risk of or contribute to the
pathogenesis of ASD17–19 (Table 2). These could act through
activation of a unique tissue immune cell, the mast cell (MC).20,21

MCs derive from bone marrow progenitors and mature in tissues
depending on microenvironmental conditions.22 In addition to
histamine, stimulated MCs secrete other vasoactive and pro-
inflammatory mediators such as the preformed kinins and
proteases, as well as the de novo synthesized leukotrienes,
prostaglandins, chemokines (CCXL8, CCL2), cytokines (interleukin
(IL)-4, IL-6, IL-1, tumor necrosis factor (TNF)) and vascular
endothelial growth factor (VEGF).20

MCs are not only considered critical for the development of
allergic reactions,20 but also for immunity22 and inflammation.23
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In fact, many studies have reported that allergic diseases in
preschoolers are strongly associated with psychological and
behavioral problems.24 We had proposed that MC-derived
mediators could disrupt the blood–brain barrier (BBB) and cause
'allergy of the brain’25 or ‘focal encephalitis’,26 thus contributing to
the pathogenesis of ASD.26,27 A number of recent reviews have
now confirmed and expanded on these findings.28,29

MATERNAL HEALTH, PREMATURITY AND LOW BIRTH WEIGHT
ARE LINKED TO INCREASED RISK OF ASD
Obesity during gestation has been strongly associated with
prematurity and low birth weight.30,31 Obesity is considered as
an inflammatory state32 and has been associated with activation
of MCs.33,34 Moreover, MCs secrete leptin35 and its deficiency
switches MC to an anti-inflammatory phenotype.36 Leptin is
increased both in obesity37 and ASD.38 Premature births account
for about 15% of all births in the USA and premature infants (32–
36 weeks) make up most of the increased rate of prematurity.39

Such infants are at risk for neurologic injury40,41 associated with
decreased attention, increased anxiety, as well as social interaction
and learning difficulties.42

A retrospective study reported that children o33 weeks
gestation were associated with a twofold higher risk of ASD.43

One prospective study found that 26% very low birth weight
(o1500 g) infants ((n= 91), mean age of 22 months) developed
ASD.44 There was a higher risk of infantile autism among children

with low birth weight especially in mothers 435 years, foreign
born and those who had psychoactive medicines during
pregnancy.45 Another case-control population-based cohort study
among Swedish children (n= 408, born 1974–1993), reported that
the risk of ASD was associated with being small for gestational
age, daily maternal smoking in early pregnancy, maternal birth
outside Europe and North America, a 5-min APGAR score o7 and
congenital malformations.46

Perinatal stress has been linked to increased risk of ASD.18,47

Such stress may be linked to sexual abuse that has been
associated with higher risk of ASD.48,49 ASD patients are prone
to stress50 and a meta-analysis showed a strong correlation
between the presence of anxiety disorders and ASD.51 In fact,
anxiety was significantly correlated with repetitive behaviors in
children with ASD.52 We reported that the peptides NT53 and CRH9

secreted under stress were increased in the serum of young
children with ASD, as compared with normal controls.53 The
highest expression of NT receptors in the human brain is in the
amygdala,54 hypothalamus and area of Broca,55 which regulate
emotions and language, respectively. Stress can activate MCs
through CRH leading to increased BBB permeability.56 Moreover,
CRH has synergistic actions with NT, stimulating secretion of VEGF
and increasing vascular permeability.53 Human MCs express
CRHR-1,57 activation of which by CRH leads to VEGF secretion
and BBB disruption58 and NT stimulates secretion of VEGF.57

A recent review concluded that stress during gestation
increases the risk for developing atopic diseases in infants.59

Moreover, stress has been associated with precipitating or
worsening asthma60 and multiple sclerosis.61

ATOPIC DISEASES ARE STRONGLY CORRELATED WITH
INCREASED RISK OF ASD
Recent studies have shown strong associations between allergies,
asthma, autoimmune diseases and psoriasis in the mother with
increased risk for ASD in their children.62–64 Moreover, mothers
with mastocytosis or MC activation syndrome were much more
likely to have children who developed ASD.65

Allergies66 and auto-immune diseases67,68 have been increasing
significantly. Early reports indicated more frequent allergies in ASD
children,69,70 with food allergies being the most prevalent complaint,
often in the absence of elevated serum IgE or positive skin tests.71–73

A large epidemiological study of noninstitutionalized children
(n=92 642; 0–17 years old) showed that eczema was strongly
associated with ASD and attention deficit hyperactivity disorder.74

Another study of atopic subjects (n=14 812; 3 years old) and non-
atopic subjects (n=6944) also showed a strong association between
atopy and risk of both ASD and attention deficit hyperactivity
disorder.75 A case control study of children and young patients with
ASD (n=5565) and controls (n=27 825) matched to birth year
(1980–2003) and sex reported that allergies, asthma and auto-
immune disorders were diagnosed more frequently, with psoriasis
occurring more than twice as often, in ASD patients than controls.76

An experimental study actually reported neurochemical changes
and autistic-like behavior in a mouse model of food allergy.77

MCs can be activated by fungi,78 such as Aspergillus fumigatus
which triggers IgE-independent MC degranulation79 and fungal
zymosan induces leukotriene production from human MCs.80

Moreover, MCs can be stimulated by aluminum and mercury.81,82

PERINATAL EPIGENETIC ENVIRONMENTAL TRIGGERS
CONTRIBUTE TO INFLAMMATION OF THE BRAIN AND
INCREASE RISK OF ASD
Environmental triggers have been increasingly invoked in
ASD.17,19,83–86 Chemical intolerant mothers were three times more
likely to have a child who developed ASD and these children were
more prone to allergies and sensitivities, including odors.87

Table 1. ASD comorbidities or subgroups

ADD
ADHD
Atopic diseases
Food intolerance
Gastrointestinal symptoms
Mitochondrial dysfunction
PANDAS
PTEN mutations
Seizures

Abbreviations: ADD, attention deficit disorder; ADHD, attention deficit
hyperactivity disorder; ASD, autism spectrum disorder; PANDAS, pediatric
autoimmune neuropsychiatric disorders associated with streptococcal
infections; PTEN, phosphatase and tensin homolog.

Table 2. Perinatal conditions increasing the risk of ASD

Strong evidence
Allergies
Asthma
Brain autoantibodies
Brain hemorrhage
Infection
Low birth weight
Obesity
Preeclampsia
Prematurity
Psoriasis
Stress

Moderate evidence
Cesarean section with general anesthesia
Environmental toxin exposure
Oxytocin, prolonged use for labor induction
Psychotropic medication use
Sexual abuse

Abbreviation: ASD, autism spectrum disorder.
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Exposure to mold has been linked to decreased cognitive function
in children88 and volatile mycotoxins have been reported to
induce neuropsychiatric symptoms.89

Both mercury90 and aluminum91,92 have been associated with
symptom severity in children with ASD and both can stimulate
MCs.81 Aluminum has replaced mercury as an adjuvant in
vaccines, but aluminum can cause DNA damage93 and induce
microglia TNF release.94 The adjuvant activity of aluminum was
shown to be mediated through DNA released from dying cells,
possibly through production of IgE and IgG1, known MC triggers.95

Such ‘damage-associated molecular patterns’ can act as
‘alarmins’96 and cause inflammatory responses through toll-like
receptors, which participate in immunity against bacterial
infections97,98 and are also expressed on MCs.99

Stimulated human MCs can secrete mitochondrial DNA (mtDNA)
and ATP extracellularly without cell death.100 These mitochondrial
components augmented allergic responses101 and could act as
‘innate pathogens’ triggering inflammation and potentially con-
tributing to ASD.102 mtDNA is also directly neurotoxic in rat brain
slices.103 We reported that serum mtDNA is elevated in young
autistic children as compared with controls.104 The pathological
importance of extracellular mtDNA could be even more relevant in
the subgroup of ASD patients with mitochondrial dysfunction.105

MCs are therefore considered important for inflammation.23,106

EVIDENCE FOR INFLAMMATION OF THE BRAIN IN ASD
PATIENTS
Increasing evidence indicates that perinatal brain
inflammation,18,107 may contribute to the pathogenesis of
neuropsychiatric disorders,108,109 including ASD.26,110 It was
previously reported that ASD pathogenesis involves some
immune17,111–113 and autoimmune102,114 components. Circulating
auto-antibodies directed against fetal brain proteins have been
reported in mothers of children with ASD115,116 and in about 37%
of ASD patients,117 implying BBB disruption which is regulated
through MCs.56,118 The presence of auto-brain antibodies
significantly correlated with allergic symptoms.119

A number of inflammatory molecules have been shown to be
increased in the brain and cerebrospinal fluid of many ASD
patients including IL-1β, IL-6, TNF, MCP-1 and CCL8 (IL-8) 120–122

(Table 3). Plasma levels of IL-1β, IL-6 and IL-8 were increased in
children with ASD and correlated with regression, as well as
impaired communication and aberrant behavior.123

Analysis of cytokines in neonatal blood showed that IL-1β and
IL-4 linked to severe ASD.124 In a previous study by some of the
same authors, these cytokines were not detected apparently due
to the sensitivity of the assay used.125 Increased maternal serum
concentrations of IFN-γ, IL-4 and IL-5 during midgestation were
significantly associated with a 50% increased risk of ASD.126

MC-derived TNF can promote Th17-dependent neutrophil
recruitment.127 Moreover, MC-derived IL-6 and TGFβ promote
the devlopment of Th17 cells.128 In fact, MCs can also secrete
IL-17129 and IL-17 was reported to be increased in the serum of
children with ASD.130 There was an increased IL-17 production
from peripheral blood immune cells following mitogen stimula-
tion, and IL-17 was further increased in ASD children with
comorbid asthma.131 A recent paper reported that selective
elimination of Th17 cells in the maternal immune activation (MIA)
mouse model prevented the development of autism-like behaivor
in the offspring.132

The MIA model was also associated with increased serum
IL-6,133 and the autism-like behavior was absent in IL-6− /− mice.134

We had reported that acute stress significantly increases serum
IL-6 in mice that was entirely dependent on MCs, as it was absent
in MC-deficient W/Wv mice.135 In fact, human MC can undergo
selective release of IL-6 without degranulation.136 Mastocytosis
patients have increased serum IL-6 that correlates with disease
activity137–139 and children with mastocytosis had a 10-fold higher
risk of developing ASD than the general population,65 implying
activation of MCs.27

MCP-1 in amniotic fluid was strongly correlated with increased
risk for infantile autism140 and MCP-1 was also elevated in
archived neonatal blood specimens.125 MCP-1 is chemotactic for
MCs,23 which can secrete both pre-formed and newly synthesized
TNF.141 TGF-beta has been reported to be low in the brains of
children with ASD,142 a finding that may contribute to the
inflammatory state since TGF-beta inhibits MCs.143,144

Peripheral blood mononuclear cells from patients with ASD
(n= 23) produced twice as much TNF as those from controls
(n= 13) when stimulated even by gliadin, cow’s milk protein or
soy.145 NF-κΒ DNA-binding activity, involved in TNF production,
was twice as much in peripheral blood from patients with ASD
(n= 67) than controls (n= 29).146 Neurons, astrocytes and micro-
glia from patients with ASD had higher expression of NF-κΒ p65 as
compared with matched controls.147 Moreover, signaling through
NF-κΒ was prominent in interacting gene networks constructed
from brains of ASD patients.148

MCs have recently been considered important in
neuroinflammation.149

MC–MICROGLIA INTERACTIONS IN THE PATHOGENESIS OF
ASD
Microglia, the innate brain immune cells,150 are important during
healthy brain development because they may ‘prune’ neural
circuits.151,152 However, abnormal microglia activation and pro-
liferation could lead to focal inflammation and ‘choking’ of normal
synaptic traffic as has been reported in brains of patients with
ASD.39,153–155 A recent study of the transcriptomes from 104
human brain cortical tissue samples from patients with ASD
identified gene clusters associated with increased microglia
activation (M2) and decreased neuronal activity.156 As a result,
microglia are now considered an important component of the
pathogenesis of ASD.157,158

Human microglia express functional CRHR1159 and NTR3
(sortilin), activation of which leads to microglia proliferation.160

NTR3 has been implicated in neuronal viability and function161

and increased soluble sortilin has been associated with depres-
sion, corresponding to elevated levels of BDNF and VEGF.162 NT
can be neurotoxic by facilitating N-Methyl-D-aspartate-induced
excitation of cortical neurons.163 We recently reported that NT

Table 3. Evidence for inflammation of the brain

Brain
Microglia activation
Microglia proliferation
IL-1β ↑
IL-6 ↑
IL-17 ↑
TNF ↑

Blood
Auto-brain antibodies ↑
IL-1β ↑
IL-6 ↑
IL-17 ↑
TNF ↑
NF-κB ↑

Neonatal blood
MCP-1 ↑

Midgestational blood
Auto-brain antibodies ↑
IL-4, IL-5, IFN-γ ↑

Abbreviations: IL, interleukin; TNF, tumor necrosis factor.
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stimulates activation and proliferation of human microglia.164

We believe this is the first time that a neuropeptide elevated in
ASD is shown to stimulate human microglia that are now believed
to play a major role in the pathogenesis of ASD.39,153,154 NT can
therefore stimulate both microglia and MCs (Figure 1).53

Signaling through the mammalian target of rapamycin (mTOR)
has been implicated in ASD5,165 and mutations of the mTOR
upstream regulatory molecule phosphatase and tensin homolog
(PTEN)166 and tuberous sclerosis complex 1 and 2 (TSC 1/2)167

have been associated with higher risk of ASD.167 We recently
showed that activation of NTR3 induced activation of human
cultured microglia, which was regulated by mTOR.164 PTEN and
mTOR are also involved in MC activation and proliferation.168

MC-derived histamine169 and tryptase170 can stimulate micro-
glia, findings that have led to the proposal that MC-microglia
interactions are important in neuroinflammation.171,172 Stimula-
tion of brain MC in mice was recently shown to induce microglia
activation and brain inflammation, inhibited by a MC stabilizer.172

It is, therefore, important to address neuroinflammation as a
possible treatment option for ASD.

TREATMENT APPROACHES
Most children with ASD are often prescribed psychotropic
medications,173 primarily risperidone and aripiprazole to reduce
disruptive and aggressive behaviors, but these drugs have no
effect on the core symptoms of ASD.174,175 In fact, recent studies
have questioned the benefit of psychotropic agents and have
highlighted frequent adverse effects such as weight gain,
sedation, tremor, movement disorders and drooling.176 As a
result, there is increased polypharmacy174,177 and risk of unwanted
drug interactions.178

There should be concerted efforts toward developing effective
treatments for ASD, such as the European Autism Interventions-A

MultiCentre Study for Developing New Medications (EU-AIMS)
Initiative.179

Immunomodulatory treatments have been considered for
ASD,180 but few studies have been published. Some reports have
hypothesized that the increase in ASD is linked to the increased
use of the antipyretic acetaminophen.181 On the contrary, some
families report that high fever reduces symptoms temporarily.182

Immune Ig
Intravenous (i.v.) immunoglobulin treatment (commonly known as
immune Ig) has been used in ASD.183,184 In one study, i.v. Ig (200
to 400 mg kg− 1, every 6 weeks × 2) was administered to children
with ASD (n= 10) with one child showing significant and four
children showing mild improvement.185 Three pilot open clinical
trials showed some benefit.186–188

The usefulness of this approach may be even more apparent in
children with ASD whose plasma levels of IgG and IgM were
reported to be low in spite of apparently normal numbers of B
cells.189

Macrophage activating factor (GcMAF)
This molecule, an endogenous glycosylated vitamin D-binding
protein, which promotes macrophage cell activation, down-
regulated the over-activation of blood monocyte-derived macro-
phages observed in autistic children (n= 22, 3–11 years old)
compared with age-matched healthy developing controls
(n= 20).190

Antioxidant compounds
A recent double-blind, placebo-controlled, study using the
broccoli-derived anti-oxidant sulforaphane in adult patients with
ASD (n= 40, 13–27 years old, selected for their history of reduced
symptoms during febrile episodes) for 18 weeks showed

Figure 1. Schematic representation of the interactions among mast cells–microglia–neurons and the blood–brain barrier. Curved arrows,
along with mediators associated with them, indicate action from one type of cell to another. The inhibitory action of luteolin (in box) is
indicated by the inhibitory symbols (T). CRH, corticotropin-releasing hormone; IL, interleukin; NT, neurotensin; TNF, tumor necrosis factor;
VEGF, vascular endothelial growth factor.
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significant improvement (34%) in social interaction and commu-
nication using the Aberrant Behavior Checklist (ABC) scale;191

however, the apparent significance was due to the uncharacter-
istically low placebo effect (o3.3%). Placebo effects have been
reported as high as 40–60% in studies of neuropsychiatric
diseases.192

Another antioxidant, N-acetylcysteine (NAC), has also been
tested. In one randomized, placebo-controlled, trial (n= 13)
increasing doses of NAC (900 mg per day × 4 weeks, then
900 mg twice daily × 4 weeks and finally 900 mg three times
daily × 4 weeks) found no difference on the total ABC, but
significant improvement on the irritability subscale.193 In another
also randomized, double-blind, placebo-controlled, study (n= 40),
NAC added to a stable dose of risperidone, again had no effect on
total ABC, but decreased the irritability subscale.194,195 NAC
treatment appears to be safe and well-tolerated.195 Similar results
were obtained in a more recent randomized, double-blind,
placebo-controlled clinical trial of children with ASD (n= 40) who
were given NAC (600–900 mg per day) and risperidone titrated
(between 1 and 2.0 mg per day); by week 10, the NAC group
showed significantly less irritability using the ABC-C irritability
subscale (P= 0.02).196

Anti-inflammatory compounds
An open-label study investigated a formulation containing the
natural flavonoids luteolin and quercetin ((100 mg each per
softgel capsule in olive kernel oil to increase oral absorption) 1
capsule per 10 kg weight per day for 6 months) in children with
ASD (4–10 years old, n= 50) and reported significant (Po0.005)
improvement in attention and behavior (34% in total ABC and
8.43 months in age-equivalent scores in the VABS communica-
tions domain).197 A subgroup of children in that study improved
even more (65%) and were the ones with highest serum TNF and
IL-6 at the beginning of the study, the levels of which dropped
below basal levels at the end of treatment.122 These results
indicate that objective inflammation markers may identify a
subgroup of children with ASD, who are most amenable to
treatment with luteolin or quercetin. A case series using the same
formulation in children with ASD and atopic diseases (n= 17,
4–12 years old) reported 65% improvement in attention and
communication.198 Luteolin also improved ‘brain fog’, character-
ized by reduced attention span, memory and learning199 in adults.
Luteolin (5, 7, 3ʹ, 4ʹ-tetrahydroxyflavone) is naturally found in

green plants, herbs and seeds 200 and is structurally related to 7, 8-
dihydroxyflavone, which was shown to have brain-derived
neurotrophic factor (BDNF) activity201 (Table 3). Low BDNF was
associated with autistic-like-behavior in mice202 and 7, 8-
dihydroxyflavone reduced symptoms in a mouse model of Rett
syndrome,203 which is strongly associated with ASD.204

Luteolin and its structurally related flavonol quercetin (5, 7, 11,
3ʹ, 4ʹ-pentahydroxyflavonol) inhibit histamine, IL-6, IL-8, TNF and
tryptase release from human MCs.205,206 We recently showed that
tetramethoxyluteolin is a more potent inhibitor of human MCs
than luteolin.207 Luteolin also inhibits microglial activation and
proliferation,208 especially IL-6 release,209 and is neuroprotec-
tive.210 Luteolin also prevented autism-like behavior in a mouse
‘model’ of autism.211 Flavonoids are generally considered
safe212,213 and now being increasingly discussed for the treatment
of neurodegenerative disorders.214

CONCLUSIONS
Substantial evidence indicates that the presence of atopic diseases
increases the risk of ASD and that inflammation of the brain may
be involved in the pathogenesis of ASD. Addressing allergic
symptoms, as well as reducing BBB permeability and inflammation
of the brain, could provide significant benefit in ASD. Luteolin

analogs with better bioavailability and BDNF activity should
be investigated further. Intranasal administration to penetrate
the brain through the cribriform plexus could deliver anti-
inflammatory molecules directly to the brain. Such formulations
could further be prepared in liposomes to contain molecules that
target them to microglia.
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