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A B S T R A C T :   

The best and most effective way to combat pandemics is to use effective vaccines and live attenuated vaccines are 
among the most effective vaccines. However, one of the major problems is the length of time it takes to get the 
attenuated vaccines. Today, the CRISPR toolkit (Clustered Regularly Inerspaced Short Palindromic Repeats) has 
made it possible to make changes with high efficiency and speed. Using this toolkit to make point mutations on 
the RNA virus's genome in a coculture of permissive and nonpermissive cells and under controlled conditions can 
accelerate changes in the genome and accelerate natural selection to obtain live attenuated vaccines.   

List of abbreviations  

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 
sgRNA single guide RNA 
Cas9 CRISPR-associated protein 9 
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 
dCas9 Deactive Cas9 
ADAR adenosine deamination of RNA 
EsCas13d Eubacterium siraeum Cas13d protein 
APOBEC catalytic polypeptide-like 
RESCUE RNA Editing for Specific C-to-U Exchange 
PAM Protospacer Adjacent Motif 
REPAIRv1 RNA Editing for Programmable A-to-I Replacement 
GeCp Genome-scale CRISPR/Cas 13 deletion and point mutation  

1. Main Text 

With the spread of the severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) and becoming a pandemic crisis, the need for an 
effective vaccine for viruses has been considerably increased considered 
and several research studies have been focusing on making a vaccine to 
prevent the disease (Alturki et al., 2020). Attenuated vaccines are the 
most effective vaccines for immune system education, stimulation, and 
immunity (e.g. mumps, measles, vaccinia, rubella, rotavirus, and yellow 
fever) (). Natural selection is one of the best ways to make an effective 
attenuated vaccine (Fields et al., 2013). For this purpose, the viruses are 
consecutively cultured in vitro and in vivo for years to get attenuated by 
various random genome mutations (Sabin and Boulger, 1973). During 
long passages in a variety of experimental conditions (e.g. low temper-
ature or different cellular and animal hosts), the driving force of natural 
selection tries to shift the virus populations toward the highest 
compatibility by fixing adaptive mutations (Dolan et al., 2018; Duffy 
et al., 2008). This is indeed time-consuming in vitro and ineffective oin 
some viruses especially DNA viruses because it needs to be passaged and 
purified many times to get an effective live attenuated virus vaccine and 
difficult to control while manipulated using in vivo conditions (Dolan 
et al., 2018). Therefore, a faster and more efficient system is needed 

more than ever. 
Researchers are using a new toolkit called CRISPR to make targeted 

changes in the genome. An RNA-designed (single guide RNA [sgRNA]) 
for the target point is responsible for endonuclease protein (Cas9 
[CRISPR-associated protein 9]), Cas12, and Cas13 guidance. By use of 
the CRISPR toolkit and modified CRISPR toolkit systems, we can knock- 
in and knock-out genes, transcription activation, and suppression, 
epigenetic changes, edit the base, and image-specific nucleic acids (Adli, 
2018; Jamehdor et al., 2020). Research studies have shown that this 
system is effective in RNA and DNA editing (Kushawah et al., 2020; Ran 
et al., 2013). Although this toolkit has worked well in viruses' genome 
alterations as well, it has two major drawbacks including off-target 
(attach to other locations and make cuts in them) and delivery of the 
system to the target tissue (Xu et al., 2019; Zhang et al., 2015). 

Type VI (Class 2 Cas proteins) systems are the only prokaryotic 
CRISPR-Cas immune systems known to target RNA (and not DNA) 
molecules exclusively, therefore, they show specific potential for RNA 
detection and manipulation (Konermann et al., 2018). Cas13 is recog-
nized in several classes in which some have been studied (Abudayyeh 
et al., 2016; Kushawah et al., 2020; Smargon et al., 2017). Scientists by 
useing of targeted point mutations in Cas13, inactivate RNA cleavage 
site so, it can bind to RNA but has lost the ability to cut the RNA (called 
deactive Cas9 [dCas9]). Various effector protein domains have been 
fused to dCas13 to expand the functionality of Cas13 beyond the RNA 
cleavage. Fusion of ADAR (adenosine deamination of RNA) enzyme 
domain with Cas13 resulted in RNA editing (Cox et al., 2017). Recently 
to edit transcripts bases in mammalian cells, a newly established RNA 
editing technology called REPAIR is introduced (Cox et al., 2017). Other 
Cas13 enzymes, the Eubacterium siraeum Cas13d protein (EsCas13d) 
orthologs, the enzymes also do not require a protospacer flanking 
sequence, so one can target virtually any RNA sequence. Measuring the 
efficacy of Cas13d demonstrated 92% mCherry protein knockdown 
(Konermann et al., 2018). dCas13d as a form of deactive Cas13d and 
fusing to an apolipoprotein B mRNA editing enzyme, catalytic 
polypeptide-like (APOBEC) change cytosine to uracil. For virus editing, 
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one can use a viral genome-wide library of dCas13b combination in the 
RNA Editing for Programmable A-to-I Replacement (REPAIRv1) system 
and dCas13b RESCUE (RNA Editing for Specific C-to-U Exchange) sys-
tem that derived from dCas13b (derived from Prevotella sep. P5-–125 
(PspCas13b)), which does not require Protospacer Adjacent Motif (PAM) 
fragment, by creating targeted C to U and A to I off-target editing, is a 
suitable system for generating extensive changes on the RNA viruses 
genome (Fig. 1) (Cox et al., 2017) In this perspective we think that rate 
of mutation by CRISPR toolkit library is relatively high but many of 
these mutations are deleterious and small remaining part of mutations 
can be effective and functional. However, in some viruses such as 
influenza and SARS-CoV-2 induced mutation can be tolerated. In addi-
tion, the mutation on RNA made by CRISPR can only lead to part of 
amino acid substitution. 

Although having an off-target effect is one of the drawbacks of this 
technology, it is considered as an advantage since this feature is used to 
create more mutations in the virus genome. In RNA viruses, a wider 
range of mutations can be induced with the CRISPR base editing toolkit. 
(Anzalone et al., 2019). This method of mutant libraries are used for the 
construction of populations of mutant viruses. These induced mutants 
include synonymous, non-synonymous, codon-deoptimization, and stop 
codon. The studies have been shown that these processes or manipula-
tions result in the development of new attenuated variants of SARS-CoV- 
2 such as potential live attenuated vaccine (Le Nouën et al., 2021). In 
editing methods, amino acids are also broadly changed and the changes 
can affect virus protein function and configuration (Cox et al., 2017; Di 
Giorgio et al., 2020). These methods of mutant libraries are used for the 
construction of populations of mutant viruses. 

After the production of a pool of mutant viruses using the CRISPR 
system, it should be subjected to the natural selection for new adaptation 
in the co-culture of “non-permissive” cells such as human fibroblast or 
MRC5 instead of Vero, Clau-3 (Harcourt et al., 2020). The mutated vi-
ruses in non-permissive cells drive to a new situation that is evolutionary 

different from their origins and are potentially live attenuated. 
The mutated viruses in non-permissive cells drive to a new situation 

that is evolutionary different from their origins and are potentially live 
attenuated (Fig. 2). In this model, based on the form of selection, can 
also be selected the other features including viral drug-resistant mu-
tants, low or high virulence mutants, and targeting of tumor cells. iIts 
results can be rational, especially in oncolytic virus therapy. 

2. Conclusion: 

Live attenuated vaccines are the best vaccines with a high level of 
creating immunity. The main problem with making these vaccines is 
time and the high cost of producing these viruses. By creating a random 
mutation in the genome of viruses by the CRISPR toolkit and selecting a 
live attenuated virus adapted to non-permissive cells, we can get these 
viruses at a low cost and high production speed. In addition, this system 
can be used to study the evolution of viruses and predict the possibility 
of changes in the viruses over the coming years. This system has a high 
potential for application in the laboratory and it is a flexible system that 
can be useful for manipulating a variety of viruses. 
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Fig. 1. Generation of random mutations in the genome of RNA viruses with CRISPR toolkit to create live attenuated viruses and natural selection studies. (1) Specific 
identification of RNA by the dCas13 protein with the guidance of the sgRNA that has been fused to ADAR or APOBEC. (2) Random mutation in the genome of RNA 
viruses by CRISPR toolkit. 
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