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Abstract
With increasing incidence of multidrug-resistant tuberculosis (MDR-TB), accurate drug sus-

ceptibility testing (DST) ofMycobacterium tuberculosis to first-line drugs has become cru-

cial for proper patient management. We evaluated concordance of DST results for 70M.

tuberculosis isolates across two phenotypic and two molecular methods: BACTEC 460TB,

MGIT 960 system, GenoType MTBDRplus and DNA sequencing of gene segments most

commonly implicated in conferring resistance to anti-TB drugs. Most (84%)M. tuberculosis
isolates were multidrug-resistant. Twenty-four isolates yielded discrepant DST results. For

rifampicin, isoniazid and streptomycin, 96%, 97% and 93% of isolates, respectively, were

susceptible or resistant by all four methods, whereas for ethambutol, this agreement was

observed for only 76% of isolates (P <0.05 for rifampicin or isoniazid or streptomycin versus

ethambutol). Occurrence of rare mutations in three isolates that confer low-level resistance

caused lower agreement for rifampicin among the four methods (kappa coefficient (κ)

range, 0.84 to 0.95). For isoniazid, there was perfect agreement among phenotypic meth-

ods and molecular methods (κ, 1.00) but lower agreement between phenotypic and molecu-

lar methods. Three isolates were detected as polydrug-resistant by MGIT 960 system but

as multidrug-resistant by DNA sequence-based method. The agreement was higher for

streptomycin among the two phenotypic methods (κ, 0.97) while targeted sequencing

yielded lower agreement (κ range, 0.86 to 0.89). The discrepancy for ethambutol resulted

largely due to lower concordance of MGIT 960 results (κ range, 0.53 to 0.64). The MGIT

960 system is an accurate method for DST ofM. tuberculosis against isoniazid and strepto-

mycin while the results of rifampicin susceptibility should be complemented with DNA

sequencing-based method when the suspicion for resistance is high. The possibility of false

susceptibility to ethambutol with MGIT 960 system suggests that molecular or other pheno-

typic methods may be more useful when accurate ethambutol susceptibility results are

warranted.
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Introduction
Despite declining trends in the incidence of tuberculosis (TB) in recent years, the morbidity
and mortality associated with TB is still enormous and drug-resistant TB is a growing problem
worldwide. According to annual surveys conducted by World Health Organization (WHO),
9.6 million new active TB cases and 1.5 million deaths occurred in 2014 [1]. Worldwide, 3.3%
of new cases and 20% of previously treated cases are now identified as multidrug-resistant TB
(MDR-TB, infection withMycobacterium tuberculosis strain resistant at least to rifampicin and
isoniazid, the two most effective first-line anti-TB drugs) [1–3]. MDR-TB is much more diffi-
cult to treat due to lengthy (18–24 months), more expensive and more toxic treatment regi-
mens which are associated with higher rates of clinical failure and disease relapse [3–5].
MDR-TB is also a risk factor for extensively drug-resistant TB (XDR-TB, defined as infection
with MDR-TB strains additionally resistant to a fluoroquinolone and injectable agent such as
kanamycin, amikacin or capreomycin), a virtually untreatable disease in most of the developing
countries [5–7]. Compared to the global average, much higher rates of MDR-TB (15.7%
among new and 45.3% among previously treated TB cases) and XDR-TB (11.4% of all
MDR-TB cases) have been reported from several countries in the European Region presenting
new challenges for tuberculosis control [8–10]. Rapid and accurate laboratory diagnosis of
MDR-TB is crucial for effective treatment which will also limit transmission of MDR-TB and
development of XDR-TB [3, 6, 11].

Phenotypic drug susceptibility testing (DST) ofM. tuberculosis is considered as the gold
standard. The solid (Lowenstein-Jensen) medium-based proportion method is a WHO-recom-
mended method but it requires 4–6 weeks to report results [12]. Commercial liquid culture sys-
tems and molecular assays have been developed and endorsed by WHO and Centers for
Disease Control and Prevention (CDC) for more rapid detection of drug resistance inM. tuber-
culosis [11, 13–15]. The liquid-broth-based semiautomated, radiometric BACTEC 460TB
(460TB) accurately performed DST ofM. tuberculosis for nearly two decades, reported results
within 14 days and was considered as a reliable alternative to the solid medium-based method
[16–19]. The fully automated systems such as Bactec Mycobacterium Growth Indicator Tube
960 (MGIT) system, MB/BacT system and Versa TREK system with similar turnaround time
subsequently replaced 460TB due to concerns for safe disposal of radioactivity [20]. Although
highly consistent results were obtained between 460TB versus MGIT or other automated sys-
tems for first-line and second-line drugs during early proficiency testing studies [17–20], recent
studies have shown highly discordant results forM. tuberculosis isolates carrying specific resis-
tance conferring mutations for some first-line drugs [21–27]. However, none of these latter
studies were carried out in a country from the Middle East. Since the occurrence of specific
resistance conferring mutations in target genes for anti-TB drugs varies considerably across
various geographical locations [6], different concordance levels may be obtained in different
settings.

To further reduce the turn-around time for DST required by broth-based methods, the
WHO also endorsed genotypic assays including INNO-LiPA Rif. TB and GenoType
MTBDRplus (gMTBDR+) line probe assays and real-time PCR-based automated GeneXpert
MTB/RIF (Xpert) assay for rapid diagnosis of TB and MDR-TB directly in clinical specimens
as well as in culture isolates in developing and high-burden countries [11, 14, 15, 28]. While
phenotypic assays can provide data on all first-line and second-line drugs, INNO-LiPA Rif. TB
and Xpert detect resistance to rifampicin only whereas gMTBDR+ detects resistance to both,
rifampicin and isoniazid. Resistance to rifampicin is a key determinant in treatment failure and
it also generally correlates well with MDR-TB as ~85% rifampicin-resistant clinicalM. tubercu-
losis isolates worldwide are also additionally resistant to isoniazid, [6, 11]. However, detection

Susceptibility Testing of Drug-ResistantM. tuberculosis

PLOSONE | DOI:10.1371/journal.pone.0153563 April 20, 2016 2 / 16



of resistance to rifampicin alone as a marker of MDR-TB can be problematic in some geo-
graphical locations where rifampicin monoresistance can be as high as 12% [29–31]. Further-
more, most rapid molecular tests fail to detect all clinically relevant drug resistance
determinants due to the occurrence of DNA mutations outside region targeted by these tests
and also yield, albeit rarely, false-positive results due to presence of silent mutations which do
not affect drug efficacy [23, 24, 26, 32–36]. More recently, a genomic sequence-based scanning
of drug resistance-associated loci most commonly implicated in conferring resistance to anti-
TB drugs and whole genome sequencing have been performed for unambiguous and rapid
determination of drug resistance ofM. tuberculosis in clinical specimens and culture isolates
[34, 37–42]. Although whole genome sequencing approaches could identify all drug resistance
inM. tuberculosis, data complexity requiring specialist expertise has restricted their clinical appli-
cation. Thus, targeted screening of a limited number of gene loci is more practical for proper
management of patients with drug-resistant TB in resource-limited settings [34, 37, 42]. How-
ever, this approach requires prior knowledge of resistance conferring mutations in target genes in
various settings since the prevalence of specific mutations conferring resistance to anti-TB drugs
varies considerably at different geographical locations including Kuwait [6, 43–45].

This retrospective study was performed to evaluate the concordance of susceptibility results for
clinicalM. tuberculosis isolates across two phenotypic and two molecular methods: 460TB, MGIT,
gMTBDR+ and targeted DNA sequencing of gene segments most commonly implicated in confer-
ring resistance to anti-TB drugs in Kuwait, a low TB incidence country in the Middle East.

Materials and Methods

Patients, specimens andM. tuberculosis isolates
A total of 70M. tuberculosis isolates grown from 70 clinical specimens (sputum, n = 49;
bronchoalveolar lavage, n = 6; pus and fine needle aspirate, n = 7; tissue biopsy, n = 3; lymph
node and endotracheal secretion, n = 3 and cerebrospinal fluid, n = 2) collected from 48 sus-
pected TB patients at Kuwait National TB Reference Laboratory (KNTRL) were used. TheM.
tuberculosis isolates were cultured during 2006 to 2010 and were selected to include mainly
MDR-TB strains from culture collection at KNTRL. The KNTRL participates in periodic drug
susceptibility proficiency testing. Only two of the TB patients were Kuwaiti nationals while the
remaining 46 patients were migrant workers or their family members. The clinical specimens
were collected from suspected TB patients who had come to the TB clinic for treatment after
obtaining verbal consent (the patient’s consent was not recorded as written consent is not
required for collecting samples from patients visiting TB clinic for routine diagnosis and treat-
ment) as part of routine diagnostic work-up and resistance surveillance. Data analyses were
carried out on deidentified results. The study and the consent procedure (verbal consent for
collecting clinical specimens from suspected TB patients as part of routine patient care) were
approved by the Health Sciences Center Ethics Committee, Faculty of Medicine, Kuwait Uni-
versity (vide approval no. VDR/EC/2 dated 9-2-2015).

The smears for direct microscopy were prepared by Ziehl-Neelsen stain to detect acid-fast
bacilli (AFB). Non-sterile samples were processed by using N-acetyl-L-cysteine and sodium
hydroxide (NALC/NaOH) while sterile clinical specimens were directly processed [46]. All
specimens were used for culture on solid (Lowenstein-Jensen) and MGIT system media
according to the instructions supplied by the manufacturer of MGIT system (Becton Dickin-
son, Sparks, MD, USA) and as described previously [33, 46]. All 70 samples yielded a positive
growth reading in MGIT system and the cultures were positive for the presence of AFB and for
M. tuberculosis complex DNA by AccuProbe DNA probe assay which was performed as
described previously [33, 46]. All 70M. tuberculosis isolates were subjected to DST against
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first-line drugs by 460TB, MGIT, targeted DNA sequencing of gene segments most commonly
implicated in conferring resistance to first-line drugs and for detection of MDR-TB strains by
gMTBDR+ line probe assay. Direct microscopy, culture in MGIT system and phenotypic DST
were performed at KNTRL and the personnel performing these tests were not informed of
genotypic susceptibility test results. Genotypic testing was performed at the Department of
Microbiology, Faculty of Medicine, Kuwait University and the personnel performing these
tests were blinded to phenotypic DST results.

Drug susceptibility testing by BACTEC 460TB system
The DST by the radiometric 460TB system was used as the gold standard and was performed
in accordance with the manufacturer’s recommendations [16, 19]. The semiautomated BAC-
TEC 460TB system was recently discontinued by the manufacturer (Becton Dickinson) due to
concerns for safe disposal of radioactive substances and was replaced by the fully automated
non-radiometric Bactec MGIT 960 system. The primary culture (100 μl) fromMGIT tube was
subcultured in a BACTEC 12B (12B) vial for susceptibility testing. The lyophilized drugs
(SIRE, Becton Dickinson, Sparks, MD, USA) were reconstituted and 100 μl of each antibiotic
solution was added to the labeled 12B vial. The DST assays were performed at the following
final drug concentrations: 0.1 mg/L for isoniazid, 2 mg/L for rifampicin, 2.0 mg/L for strepto-
mycin and 2.5 mg/L for ethambutol. A 12B vial broth (growth index of 500 to 800) was used
for the direct inoculation of SIRE drug-containing 12B vials. A 1:100 dilution of 12B broth was
also used for a SIRE drug-free control [16, 19]. All 12B vials were incubated at 37°C, tested
daily in the 460TB instrument and the growth index readings were evaluated according to the
established criteria for calculating susceptible, resistant and borderline DST results [16, 19].

Drug susceptibility testing by Bactec MGIT 960 system
Susceptibility testing with the automated MGIT system was performed withMGIT cultures that
tested positive at least 1 day but no more than 2 days earlier by following the manufacturer’s
instructions using the SIRE drug kit [19, 47]. The lyophilized antibiotics were reconstituted in
distilled water and added to MGIT tubes supplemented with 0.8 ml of the enrichment solution
(Bactec MGIT SIRE supplement; Becton Dickinson). The DST assays were performed with the
following final drug concentrations: 0.1 mg/L for isoniazid, 1.0 mg/L for rifampicin, 1.0 mg/L for
streptomycin and 5.0 mg/L for ethambutol. All of the drug-containing tubes were inoculated
with 0.5 ml of MGIT culture. A SIRE drug-free control was also inoculated with 0.5 ml of a 1:100
dilution of the positive culture broth in sterile saline. The tubes were placed in the MGIT rack,
incubated in the cabinet drawer of the MGIT system and were continuously monitored. The
results indicating susceptibility or resistance were interpreted and reported automatically by the
MGIT system using predefined algorithms that compare bacterial growth in the drug-containing
tube with the growth in the drug-free control tube [19, 47]. Repeat DST was performed on six
selected isolates yielding discrepant results by the two phenotypic methods.

Genotypic drug susceptibility testing by DNA sequencing
Genomic sequence-based scanning for drug resistance-associated mutations was performed by
PCR sequencing of various segments of 6 gene loci most commonly implicated in conferring
resistance to the four first-line drugs [6, 34, 37, 42]. Chromosomal DNA was extracted from
MGIT culture tubes using the Chelex-100 as described previously [33] and analyzed by PCR
amplification and DNA sequencing of amplicons for the presence of mutations in the 6 genes
linked to resistance to rifampicin (N-terminal, cluster II and rifampicin resistance determining
region or RRDR covering codons 508–534, Escherichia coli numbering system, of rpoB) [6, 32,
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43, 45], isoniazid (katG codon 315 region and inhA regulatory region) [6, 43, 45], streptomycin
(rpsL and 500 and 900 regions of rrs) [6, 43, 45] and ethambutol (embB codon 306, 406 and
497 regions) [6, 43, 45]. All 70M. tuberculosis isolates were first tested by an in-house multiplex
PCR assay specific forM. tuberculosis complex [48]. The details of various primers used for
PCR amplification of various gene loci and sequencing of amplified fragments for drug resis-
tance-associated mutations are presented in S1 Table [33, 49–51]. Amplification was per-
formed by touchdown PCR using the reaction and cycling conditions as described previously
[52]. Briefly, the PCR reaction in a final volume of 50 μl contained of 1x AmpliTaq DNA poly-
merase buffer, 1 unit of AmpliTaq DNA polymerase (Applied Biosystems), 0.1 mM dNTPs, 10
pmol of each primer and 2 μl of chromosomal DNA. PCR cycling conditions were same as
described previously [52]. PCR products were analyzed on 2% agarose-Tris-borate-EDTA gels
and stained with ethidium bromide as described previously [52]. Unincorporated primers and
nucleotides were removed from PCR amplicons by using QIAquick PCR product purification
kit (Qiagen, Hilden, Germany) used according to instructions supplied by the manufacturer.

Purified PCR products were sequenced with an internal forward and reverse primer at each
locus for maximum coverage and reproducibility of results. The sequencing reactions were per-
formed with an ABI BigDye terminator (version 3.1) cycle sequencing kit, as described in detail
previously [33, 49]. Briefly, the reaction mixtures in a final volume of 10 μl contained 2 μl puri-
fied amplicon, 1x reaction buffer, 2 μl of BigDye terminator (version 3.1) reagent and 3.2 pmol
of sequencing primer (S1 Table). The cycling parameters for sequencing reactions included an
initial denaturation step at 96°C for 1 min followed by 30 cycles of 1 min at 96°C and 4 min at
60°C. The unincorporated terminators were removed from the completed sequencing reactions
by using BigDye Xterminator kit (Applied Biosystems Inc.) and the samples were then loaded
on an ABI 3130xl genetic analyzer for electrophoresis and data collection according to the
manufacturer’s instructions.

Sequence data generated by the ABI 3130xl genetic analyzer were checked for confidence
levels with an ABI sequence scanner, reverse compliments were generated and aligned with for-
ward sequences using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). Nucleotide
and amino acid sequences were compared with the corresponding sequences from susceptible
strainM. tuberculosisH37Rv using the Basic Local Alignment Search Tool (BLAST, National
Institutes of Health, Bethesda, MD, USA; http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=
blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome). Repeat PCR sequencing was per-
formed on all isolates for which DNA sequencing predicted resistance but one or both of the
phenotypic tests scored them as drug susceptible.

Genotypic drug susceptibility testing by GenoType MTBDRplus assay
All 70M. tuberculosis isolates were also tested by reverse hybridization-based gMTBDR+ assay
(Hain Lifesciences, Nehren, Germany) which detects resistance to rifampicin and isoniazid
only [11, 33, 53]. However, since resistance to these two drugs is sufficient for the diagnosis of
MDR-TB, rapid and accurate detection of resistance to rifampicin and isoniazid is of para-
mount importance. Negative controls (water instead of DNA) were included with each run.
The assay was performed and the results were interpreted according to the manufacturer’s rec-
ommendations and as described in detail previously [11, 33].

Statistical analyses
Categorical variables were expressed as absolute number. Statistical analysis was performed
using chi-square test or Fisher’s exact test as appropriate and probability levels<0.05 by the
two-tailed test were considered as statistically significant. The strength of agreement between
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the different test results was assessed by using the robust kappa statistics. A kappa coefficient
(κ) value of<0.4, 0.4–0.6, 0.61–0.8 and 0.81–1.0 indicated low agreement, moderate agree-
ment, substantial agreement and perfect agreement, respectively. Statistical analyses were per-
formed using WinPepi software ver. 3.8 (PEPI for Windows, Microsoft Inc., Redmond, WA,
USA) or GraphPad software (GraphPad, La Jolla, CA, USA).

Results

Characteristics ofM. tuberculosis isolates
We tested 70M. tuberculosis isolates obtained from 55 pulmonary and 15 extrapulmonary
specimens of 48 TB patients. One isolate each was tested from 29 patients, two isolates each
were obtained from 16 patients and three isolates each were from three patients. Duplicate iso-
lates from 19 patients were cultured within one week of isolation of the first isolate while tripli-
cate isolates from three patients were cultured within one month of isolation of the first isolate.
Repeat isolates were cultured from similar clinical specimens from 18 patients while two iso-
lates were cultured from BAL and sputum specimens from one patient. Repeat isolates were
tested to ascertain the reproducibility of the susceptibility testing. All isolates were identified as
M. tuberculosis complex by the AccuProbe DNA probe assay as well as by the multiplex PCR
assay based on specific amplification of two DNA fragments of ~473 bp and ~235 bp, as
described previously [46, 48]. Based on DST by the 460TB, 63, 59, 34 and 43M. tuberculosis
isolates were resistant to isoniazid, rifampicin, streptomycin and ethambutol, respectively. A
total of 59 (84%) isolates were multidrug-resistant and 29 (41%) isolates were resistant to all
four drugs. Four isolates were polydrug-resistant while seven isolates were susceptible to all
first-line drugs by 460TB.

Discordance between genotypic drug resistance testing and phenotypic
DST
The cross-tabulation of results to determine concordance between all the four methods (both
phenotypic methods and both genotypic methods) for isoniazid and rifampicin and three
methods (both phenotypic methods and molecular testing by DNA sequencing only since
gMTBDR+ detects resistance to rifampicin and isoniazid only) for streptomycin and ethambu-
tol are shown in Table 1. The agreement among all four methods for susceptibility to rifampi-
cin and isoniazid was 96% (three discordant results) and 97% (two discordant results) of
isolates, respectively. Concordance was also observed in 93% of isolates (five discordant results)
for streptomycin. Only 76% of isolates (17 discordant results) yielded concordant results for
ethambutol by both phenotypic methods and genotypic testing by DNA sequencing and this
difference was statistically significant (P<0.05 for ethambutol versus rifampicin or isoniazid
or streptomycin).

Table 1. Comparison of drug susceptibility results as determined by both phenotypic (BACTEC 460TB and MGIT 960 system) and one or both
genotypic (DNA sequencing and GenoType MTBDRplus assay) methods.

Drug No. of Number of isolates scored by all methods as

isolates tested Susceptible Resistant Discordant

Rifampicin 70 10 57 3

Isoniazid 70 7 61 2

Streptomycin 70 36 29 5

Ethambutol 70 25 28 17

doi:10.1371/journal.pone.0153563.t001
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In order to determine whether the discordant results were due to poor performance of one
or both of the phenotypic methods compared to genotypic methods, the susceptibility test
results of 460TB were compared with the results obtained by MGIT system and genotypic
testing.

BACTEC 460TB results in comparison with MGIT 960 system and
genotypic susceptibility test results
Table 2 summarizes the results of 460TB in comparison with MGIT system and the two geno-
typic tests; DNA sequencing of different gene loci and the gMTBDR+ assay. The MGIT system
compared to 460TB yielded 16 discrepant (false susceptible) results; two for rifampicin, one for
streptomycin and 13 for ethambutol. DNA sequencing studies compared to 460TB gave 12 dis-
crepant results. Nine isolates had false susceptibility results by DNA sequencing; two for isonia-
zid, five for streptomycin and two for ethambutol. Three isolates showed initial false resistance
results by DNA sequencing studies; one for rifampicin and two for ethambutol. The gMTBDR+

assay compared to 460TB gave five discrepant results. Four isolates had false susceptibility
results by gMTBDR+, two for rifampicin and two for isoniazid. One isolate showed initial false
resistance result for rifampicin by gMTBDR+ assay.

Concordance across phenotypic DST and genotypic testing methods
We also examined the concordance across all the methods by calculating kappa coefficients (κ)
for each platform and drug and the results are shown in Table 3. Most isolates yielded nearly
completely concordant results and exhibited κ values that were excellent (perfect agreement)
for rifampicin (κ range, 0.84–0.95), isoniazid (κ range, 0.86–1.0) and streptomycin (κ range,
0.86–0.97) across all the tested methods, although some important differences were noted for
rifampicin between the two phenotypic methods and the DNA sequence-based method
(Table 3). However, diminished concordance was apparent for ethambutol resistance and was
attributable largely to MGIT discrepancies (of 19 ethambutol discrepancies for 17 isolates, 15
were fromMGIT and only two each were from 460TB and DNA sequencing; P<0.05 for
MGIT system versus the other two methods). Most MGIT system ethambutol discrepancies

Table 2. Drug susceptibility test results as determined by MGIT 960 system, DNA sequencing and GenoType MTBDRplus assay in comparison
with BACTEC 460TBmethod.

MGIT 960 system or molecular method-based phenotype BACTEC 460TB method-based phenotype forb

Rifampicin Isoniazid Streptomycin Ethambutol

R S R S R S R S

MGIT 960 system

Resistant 57 0 63 0 33 0 30 0

Susceptible 2 11 0 7 1 36 13 27

DNA sequencing

Resistant 59 1 61 0 29 0 41 2

Susceptible 0 10 2 7 5 36 2 25

GenoType MTBDRplusa

Resistant 57 1 61 0

Susceptible 2 10 2 7

aThis assay detects susceptibility to rifampicin and isoniazid only
bR, resistant; S, susceptible

doi:10.1371/journal.pone.0153563.t002
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were discrepantly susceptible (false susceptible) as 13 of 15 MGIT ethambutol susceptible
results were resistant by 460TB and DNA sequencing. The κ values reiterated these findings as
only moderate agreement (κ, 0.53) was exhibited with DNA sequencing and substantial agree-
ment (κ, 0.64) with 460TB. On the contrary, perfect agreement (κ, 0.88) was exhibited by
460TB with DNA sequencing (Table 3).

Summary of discordant results between phenotypic and genotypic
testing methods
A total of 24M. tuberculosis isolates exhibited a discordant result between phenotypic and
genotypic methods. The resolution of discrepant results was accomplished by comparison of
the drug susceptibility testing data by all the four methods and the results are presented in
Table 4. Of the threeM. tuberculosis isolates yielding discrepant results for rifampicin, two
(5177/06 and 9049/06) were resistant by 460TB and DNA sequencing but susceptible by MGIT
and gMTBDR+ assay. These isolates contained I572F mutation in cluster II region of the rpoB
gene. One isolate was susceptible by both phenotypic methods but was resistant by both
gMTBDR+ and DNA sequencing. This isolate (13242/10) contained D516Y mutation in rpoB
gene. Two isolates (1171/08 and 3130/08) were resistant to isoniazid by both phenotypic meth-
ods but isoniazid susceptible by both genotypic methods. Five isolates (2496/07, 2609/07, 3805/
07, 1572/09, and 8132/10) yielded discrepant results for streptomycin and four of these five iso-
lates were resistant to streptomycin by both phenotypic methods but susceptible by DNA
sequencing. One isolate (1572/09) was resistant by 460TB but susceptible by both MGIT and
DNA sequencing (Table 4). A total of 17 isolates yielded discrepant results for ethambutol and
13 of these 17 isolates were resistant by 460TB and DNA sequencing but susceptible by MGIT
(Table 4). Two isolates (193/09 and 676/09) were susceptible by both phenotypic methods but
ethambutol-resistant by DNA sequencing while two other isolates (4519/06 and 4556/06) were
resistant by both phenotypic methods but susceptible by DNA sequencing.

Reproducibility testing
Duplicate (and triplicate) isolates from the same patient yielded identical results as the first iso-
late by both phenotypic and genotypic tests. Repeat phenotypic tests performed on six selected

Table 3. Kappa coefficient (κ) values across phenotypic andmolecular methods.

Drug Method Kappa coefficient (κ) for comparison withb

BACTEC 460TB MGIT 960 system DNA sequencing

Rifampicin MGIT 960 system 0.90 (0.76–1.0)

DNA sequencing 0.94 (0.84–1.0) 0.84 (0.67–1.0)

GenoType MTBDRplusa 0.84 (0.67–1.0) 0.95 (0.86–1.0) 0.89 (0.75–1.0)

Isoniazid MGIT 960 system 1.0 (1.0–1.0)

DNA sequencing 0.86 (0.67–1.0) 0.86 (0.67–1.0)

GenoType MTBDRplusa 0.86 (0.67–1.0) 0.86 (0.67–1.0) 1.0 (1.0–1.0)

Streptomycin MGIT 960 system 0.97 (0.92–1.0)

DNA sequencing 0.86 (0.74–0.98) 0.89 (0.78–0.99)

Ethambutol MGIT 960 system 0.64 (0.48–0.81)

DNA sequencing 0.88 (0.77–0.99) 0.53 (0.35–0.71)

aThis assay detects susceptibility to rifampicin and isoniazid only
bThe 95% confidence interval values are also shown in parenthesis

doi:10.1371/journal.pone.0153563.t003
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isolates yielding discrepant results exhibited the same pattern of susceptibility as that obtained
on first testing. Furthermore, repeat PCR sequencing performed on all isolates for which initial
DNA sequencing predicted resistance but one or both of the phenotypic tests scored them as
drug susceptible yielded the same mutation in the target gene.

Discussion
Kuwait, an Arabian Gulf country in the Middle East (TB incidence of 24 cases per 100,000 pop-
ulation) is a low TB incidence country [46]. Culture on solid medium and automated (MGIT)
liquid culture system are routinely used for definitive diagnosis of active TB disease. Pheno-
typic DST is performed on allM. tuberculosis isolates and ~1.5% of the isolates in Kuwait are
detected as MDR-TB strains [36, 46]. Since 2011, all clinical specimens from suspected TB
patients are tested by Xpert assay in addition to routine processing for smear microscopy and
culture. Furthermore, MGIT completely replaced the 460TB in 2011 for DST of allM. tubercu-
losis isolates. However, the reliability of DST by MGIT has not been evaluated in Kuwait. Rapid
detection of resistance ofM. tuberculosis isolates to isoniazid and rifampicin is crucial for
timely diagnosis and management of MDR-TB [6, 11, 14, 15, 34]. Hence, there is increasing

Table 4. Summary of discrepant results for 24M. tuberculosis isolates from BACTEC 460TB and MGIT 960 system in comparison with the results
fromGenoType MTBDRplus assay and DNA sequence-basedmethod.

Serial Isolate Resistance patterns obtained during drug
susceptibility testing witha

Mutations detected by DNA sequencing in Final

no. no. 460TB MGIT DNA sequencing gMTBDR+b rpoB katG inhA rpsL rrs embB resistance

1 3070/06 SIRE SIR SIRE IR D516V S315T None K43R None Q497K SIRE

2 3122/06 SIRE SIR SIRE IR D516V S315T None K43R None Q497K SIRE

3 4519/06 IRE IRE IR IR Q513L S315N None None None None IRE

4 4556/06 IRE IRE IR IR Q513L S315N None None None None IRE

5 5177/06 IRE IE IRE I I572F S315T None None None M306I IRE

6 9049/06 IRE IE IRE I I572F S315T None None None M306I IRE

7 688/07 IRE IR IRE IR S531L S315T -8T/A None None M306I IRE

8 789/07 IRE IR IRE IR S531L S315T -8T/A None None M306I IRE

9 2496/07 SIRE SIR IRE IR M515I + D516Y S315T None None None G406C SIRE

10 2609/07 SIRE SIR IRE IR M515I + D516Y S315T None None None G406C SIRE

11 2622/07 IRE IR IRE IR M515I + D516Y S315T None None None G406C IRE

12 4613/07 IRE IR IRE IR S531L S315T None None None M306I IRE

13 4753/07 IRE IR IRE IR S531L S315T None None None M306I IRE

14 3805/07 SIRE SIRE IRE IR S531L S315T None None None Q497R SIRE

15 8000/07 IRE IR IRE IR H526D None -15C/T None None M306L IRE

16 1171/08 IR IR R R S531L None None None None None IR

17 3130/08 SIRE SIRE SRE R S531L None None None G878A Q497K SIRE

18 193/09 IR IR IRE IR H526D S315T None None None M306I IRE

19 676/09 IR IR IRE IR H526D S315T None None None M306I IRE

20 1572/09 SIRE IR IRE IR H526D S315T None None None M306I SIRE

21 5636/10 SIRE SIR SIRE IR S531L S315T None K43R None G406S SIRE

22 7596/10 SIRE SIR SIRE IR S531L S315T None K43R None G406S SIRE

23 8132/10 SIR SIR IR IR S531L S315T None None None None SIR

24 13242/10 IE IE IRE IR D516Y S315T None None None M306V IRE

a460TB, BACTEC 460TB; MGIT, MGIT 960 system; gMTBDR+, GenoType MTBDRplus assay; S, streptomycin; I, isoniazid; R, rifampicin; E, ethambutol
bThis assay detects susceptibility to rifampicin and isoniazid only

doi:10.1371/journal.pone.0153563.t004
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emphasis on determination of drug resistance through molecular methods as they can provide
results within days versus weeks required for phenotypic DST [6, 11, 15, 34, 41, 42]. In this
study we evaluated the performance of two phenotypic (460TB and MGIT systems) and two
molecular (gMTBDR+ and DNA sequencing) methods for accurately detecting resistance ofM.
tuberculosis isolates in Kuwait and we found discordance for all four first-line anti-TB drugs.

In our study, we initially used DST results by 460TB as the ‘gold standard’ as this method
has detected resistance ofM. tuberculosis isolates to all four first-line drugs accurately through-
out the world including Kuwait for nearly two decades [16–20]. A total of 70M. tuberculosis
isolates obtained from both pulmonary and extrapulmonary specimens obtained from 48 TB
patients were tested. Repeat isolates were tested to ascertain the reproducibility of results
obtained with the four methods. Most (63 of 70) were drug-resistant isolates including 59
(84%) MDR-TB strains by 460TB. Concordance among all four methods for susceptibility to
rifampicin, isoniazid and streptomycin was 96%, 97% and 93%, respectively, while significantly
less (76%) isolates yielded concordant results for ethambutol. Although accurate detection of
resistance to rifampicin and isoniazid is most crucial for rapid detection of MDR-TB strains,
susceptibility data for streptomycin and ethambutol are also important when formulating indi-
vidualized treatment regimens for patients with MDR-TB since inclusion of as many active
first-line drugs as possible minimizes the number of toxic and less-effective second-line drugs
in treatment regimens [4–6, 54]. The discordant results for each anti-TB drug can be either
truly resistant, with the gold standard method indicating susceptibility (false susceptible) or
actually susceptible, with the gold standard method indicating resistance (false resistance). For
the resolution of discrepant results in the final analysis, we used the presence of well-known
resistance-conferring mutations in target genes as indicative of resistance even when 460TB or
both phenotypic methods indicated susceptibility (Table 4). When the resolution of discrepant
results was not possible, DST data by 460TB was retained (final result; [17–20]) for isolates
lacking a mutation in the target genes since only a few loci were analyzed in this study whereas
multiple loci are implicated in conferring resistance to all four first-line drugs [38–45].

For rifampicin, 67 isolates showed concordant results by all four methods while three iso-
lates yielded discordant results. Two of these isolates that were rifampicin-resistant by 460TB
and DNA sequencing showed the presence of I572F mutation in rpoB gene. Both isolates were
rifampicin-susceptible by MGIT and MTBDR+, however, the latter assay is not designed for
the detection of this mutation as it is outside RRDR, the target region for gMTBDR+ assay [11,
15, 53]. Another isolate was rifampicin-susceptible by both phenotypic methods but was rifam-
picin-resistant by DNA sequencing and gMTBDR+ assay with sequencing data showing the
presence of D516Y mutation in RRDR of the rpoB gene. More importantly, this isolate (13242/
10) was detected as MDR-TB strain by both molecular methods. Interestingly, both D516Y
and I572F, similar to few other ‘disputed’mutations (like L511P, H526D, H526L, H526Y,
H526N, L533P) in the rpoB, confer low-level but clinically significant resistance to rifampicin
which are often missed by growth-based methods, particularly the automated liquid culture
systems [21, 23, 24, 26, 27]. Thus, 3 (4%) of 70M. tuberculosis isolates in Kuwait contained
rpoBmutations that confer low-level resistance to rifampicin. However, the exact prevalence of
these mutations among allM. tuberculosis isolates in Kuwait remains undetermined since the
selected isolates mainly included MDR-TB strains. Treatment of patients infected with these
low-level rifampicin-resistantM. tuberculosis isolates is challenging as they are detected as
rifampicin-susceptible by the conventional phenotypic tests yet the patients often relapse or
fail treatment [24, 55, 56]. It has recently been suggested that both phenotypic and molecular
test results should be considered for the diagnosis of MDR-TB [23–25]. Our results are in
agreement with these observations as three of our 60 MDR-TB isolates were only detected as
polydrug-resistant by one or both phenotypic methods. The results also highlight the
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incapability of MGIT system in detecting these low-level rifampicin-resistant strains. Although
the occurrence of these ‘disputed’mutations among clinicalM. tuberculosis isolates remains
unknown, it could be considerable, particularly among patients with clinical suspicion of drug
resistance as was recently shown in one study involving TB patients from Bangladesh and Kin-
shasa [24]. The ‘disputed’mutations accounted for>10% of all rpoBmutations inM. tubercu-
losis strains from patients with failing therapy or experiencing relapse and the frequency of
treatment failure or relapse was same in patients infected with strains with well-characterized
or ‘disputed’ rpoBmutations [24]. Consistent with other recent reports, our data also suggest
adaptation of the standard phenotypic DST by MGIT for greater accuracy of rifampicin resis-
tance detection [23, 24, 26, 27] and a susceptible result should be confirmed by molecular test-
ing when the suspicion for rifampicin resistance (such as previous history of anti-TB therapy,
failing therapy, relapse or history of close contact with a patient with rifampicin-resistant/
MDR-TB) is very high.

All 70 isolates yielded completely concordant results for isoniazid between the two geno-
typic methods. This is not unexpected since DNA sequencing was carried out only for katG
gene region around codon 315 and inhA regulatory region which are also the targets (katG
codon 315 and inhA regulatory region) of gMDBDR+ assay [11, 15, 33, 53]. Also, all isolates
yielded completely concordant results between the two (460TB and MGIT) phenotypic meth-
ods which is in line with previous studies reporting nearly concordant results for isoniazid sus-
ceptibility by these two methods [17–19, 57]. However, 68 isolates yielded concordant and two
isolates yielded discordant results between the phenotypic and genotypic methods with geno-
typic methods scoring both the isolates as susceptible. This result is also expected since muta-
tions in other regions of katG and inhA genes as well as mutations in few other genes occur in
2–10% of all isoniazid-resistantM. tuberculosis isolates [34, 42–45, 58, 59].

Although streptomycin is now used as a second-line drug due to availability of other first-
line drugs that can be conveniently used in combination therapy, it is bactericidal forM. tuber-
culosis with fewer side-effects than other second-line drugs and is a desirable drug to include in
multi-drug regimens for the treatment of drug-resistant TB/MDR-TB provided that the isolate
is susceptible to streptomycin [6, 54, 60]. Furthermore some XDR-TB strains have also been
reported that remain susceptible to streptomycin since there is usually little cross-resistance
with other injectable aminoglycosides (kanamycin and amikacin) or cyclic polypeptides
(capreomycin and viomycin), making streptomycin suitable even for the treatment of some
XDR-TB patients [45, 61]. The DST for streptomycin was carried out by two phenotypic meth-
ods (460TB and MGIT) but only one (DNA sequencing) genotypic method since gMDBDR+

assay detects resistance to rifampicin and isoniazid only. Nearly all (69 of 70, 99%) isolates
yielded concordant results between the two phenotypic methods while one isolate was strepto-
mycin-resistant by 460TB but streptomycin-susceptible by MGIT. Although DNA sequencing
could not resolve the discrepant result, the isolate was considered as streptomycin-resistant in
the final analysis since previous studies have shown that MGIT has a significantly increased
risk of reporting false-negative result for streptomycin compared to 460TB [19, 20]. Four other
isolates yielded discrepant results where both phenotypic methods showed resistance while
DNA sequencing did not detect a resistance conferring mutation. This can be explained by the
fact that only two (rpsL and rrs) loci were studied for mutations while resistance to streptomy-
cin is mediated by few other (gidB, efflux pumps etc.) genes inM. tuberculosis [6, 42, 62, 63]. It
is therefore probable that the basis of resistance in these isolates was due to an alteration in
other genes which were not investigated.

False susceptibility to ethambutol is not very critical for the treatment of drug-susceptible
TB since ethambutol is used only in the initiation phase of treatment and can even be omitted
from the drug regimen once susceptibility ofM. tuberculosis isolate to rifampicin and isoniazid
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has been documented [64]. However, false susceptibility to ethambutol is of considerable
importance for the successful treatment of MDR-TB as treatment regimens for these patients
should include any active first-line drug for improved outcome [5, 6, 54]. Similar to few other
studies [20, 25, 65, 66], the maximum number of discrepant results was obtained for ethambu-
tol, all involving MDR-TB strains. In total, 17 isolates yielded discrepant results and 13 of these
17 isolates were resistant by 460TB and DNA sequencing but susceptible by MGIT while two
other isolates were susceptible by both phenotypic methods but resistant by DNA sequencing
of embB. Ethambutol is a slow-acting anti-TB drug and susceptibility testing to ethambutol has
been problematic with liquid culture-based methods [20, 67]. The MGIT often reports false
ethambutol susceptibility forM. tuberculosis isolates containing embBmutations that confer
low-level but clinically significant resistance to ethambutol [63, 68–70]. Our results support
molecular testing for detecting ethambutol resistance in multidrug-resistantM. tuberculosis
isolates where accurate ethambutol susceptibility results are warranted. Two isolates were eth-
ambutol-resistant by both phenotypic methods but susceptible by DNA sequencing. Although
mutations at embB codon 306, 406 and 497 occur most frequently among ethambutol-resistant
M. tuberculosis isolates, other regions of embB as well as mutations in several other genes are
also involved in conferring resistance to ethambutol [42, 44–46, 71]. Thus, it is likely that the
molecular basis of resistance to ethambutol in these two isolates involves an alteration in other
genes/gene segment that was not interrogated in this study.

Conclusions
The data reported in this study have clearly shown that compared to BACTEC 460TB, the
MGIT 960 system is an accurate alternative method for DST ofM. tuberculosis against isonia-
zid and streptomycin. However, the liquid culture-based methods, particularly MGIT 960 sys-
tem, fail to detect low-level yet clinically significant rifampicin resistance. Thus, molecular
testing (such as DNA sequencing of rpoB) for rifampicin resistance detection should be
employed for all polydrug-resistant strains or when the suspicion for resistance (such as failing
therapy or relapse) is high. The increased possibility of false susceptibility to ethambutol with
MGIT 960 system suggests that molecular methods may be more useful when accurate etham-
butol susceptibility results are warranted.
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