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Accounting for small variations in the
tracrRNA sequence improves sgRNA activity
predictions for CRISPR screening

Peter C. DeWeirdt1, Abby V. McGee 1, Fengyi Zheng 1, Ifunanya Nwolah1,2,
Mudra Hegde 1,3 & John G. Doench 1

CRISPR technology is a powerful tool for studying genome function. To aid in
picking sgRNAs that have maximal efficacy against a target of interest from
many possible options, several groups have developed models that predict
sgRNA on-target activity. Although multiple tracrRNA variants are commonly
used for screening, no existing models account for this feature when nomi-
nating sgRNAs. Here we develop an on-target model, Rule Set 3, that makes
optimal predictions formultiple tracrRNA variants. We validate Rule Set 3 on a
new dataset of sgRNAs tiling essential and non-essential genes, demonstrating
substantial improvement over prior prediction models. By analyzing the dif-
ferences in sgRNA activity between tracrRNA variants, we show that Pol III
transcription termination is a strong determinant of sgRNA activity.We expect
these results to improve the performance of CRISPR screening and inform
future research on tracrRNA engineering and sgRNA modeling.

Pooled screening with CRISPR technology has revolutionized the ease
and scale for probing gene function1,2. Targeted loci, which are often
protein-coding genes, can each have hundreds of protospacer adjacent
motifs (PAMs), providing many potential single guide RNA (sgRNA)
options. It is impractical to assess activity of the millions of potential
sgRNAs, so accurate predictions of sgRNA activity are essential for the
construction of compact yet potent libraries. Several groups have
developed algorithms and web tools to facilitate sgRNA selection3.

We previously used a classification model to determine sequence
features and developed on-target sgRNA design rules using data from
1841 sgRNAs (Rule Set 1)4. Rule Set 2 then improved upon this initial
attempt by incorporating more training data and using a regression
model that included additional sequence features5. Our guide design
portal, CRISPick (broad.io/crispick), has been in continuous operation
since 2014 and has averaged 168 design runs per day. Since the
development of Rule Set 2, new datasets, features, and model archi-
tectures have been developed, which we wanted to include in an
updated rule set.

While developing this updated rule set, we discovered that small
variations in the sequence of the trans-activating CRISPR RNA

(tracrRNA) can lead to large differences in activity (here, we will refer
to the region of the sgRNA that base pairs to the target DNA as the
‘spacer’ and the remaining structural element of the sgRNA as the
‘tracrRNA’). The majority of published on-target models were trained
with sgRNAs that use the tracrRNA as implemented in Hsu et al.6,
however, several other tracrRNAs have been used for screening. Chen
et al. modified the Hsu tracrRNA with both a flip—a T to A substitution
and compensatory A to T substitution, to disrupt the run of 4 thymi-
dines that can trigger RNA polymerase III termination – and an
extension of 5 base pairs in the tetra-loop that is hypothesized to
stabilize the sgRNA structure7,8.Wehave also conducted screenswith a
modification to the Hsu tracrRNA that disrupts the Pol III termination
site with a T to G substitution and compensatory A to C substitution,
but without any tetra-loop extension (herein named the DeWeirdt
tracrRNA)9.

To account for the differential effects of these tracrRNA variants,
we incorporated tracrRNA identity as a feature in our rule set. Fur-
thermore, to validate ourmodel and gain a deeper understanding for
how the different tracrRNAs affect activity, we generated a new
dataset with tens of thousands of sgRNAs tiling across essential and
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non-essential genes for each tracrRNA variant. We show that our
updated model, Rule Set 3 (Sequence + Target), makes optimal pre-
dictions for all three tracrRNA variants. Additionally, the new
screening data demonstrate that disrupting the Pol III termination
signal present in the Hsu tracrRNA improves activity for a subset of
spacer RNAs, suggesting that the Chen or DeWeirdt tracrRNAmay be
preferable when target density is a priority, such as base editing
screens10–12, or when direct detection of the sgRNA is necessary to
interpret screening results, such as in some scRNAseq approaches13.
We expect these results to improve CRISPR-Cas9 screening perfor-
mance in addition to providing mechanistic insight into tracrRNA-
dependent differences in sgRNA activity.

Results
Comparison of on-target models
To understand the current state-of-the-art for on-target modeling, we
identified four recently published models14–17, and to evaluate these
modelswe collateddatasets generatedby three different experimental
approaches: three genome-wide datasets, four tiling datasets, and four
integrated-target datasets4,5,15,16,18–23 (Supplementary Data 1). Due to the
strong interdependence between the models and the collated data-
sets, we compared the models in a pairwise fashion, allowing us to
retain the maximum number of spacer sequences for testing while
avoiding leakage between training and testing sets (Fig. 1a). Spearman
correlation was calculated between the observed and predicted
activity to assess performance. By this metric, the best performing
model was CRISPRon (Supplementary Fig. 1a).

We were surprised that Rule Set 2 marginally outperformed VBC
Activity (average difference in Spearmancorrelation =0.02), sinceVBC
Activity incorporates Rule Set 2 scores in addition to training on data
from Munoz et al. The only dataset where VBC Activity outperformed
Rule Set 2was fromBehanet al., which, alongwith theMunozdata,was
one of two collated datasets that utilized the tracrRNA fromChen et al.
(Supplementary Data 1). This observation led us to hypothesize that
there are systematic differences in sgRNA activity that depend on the
tracrRNA sequence. To investigate this, we analyzed sgRNA activities
from two massive screening efforts, the Dependency Map projects at
theBroad and Sanger Institutes24. TheBroaddatasetwas screenedwith
the Avana library using theHsu tracrRNA, while the Sanger dataset was
screened with the Human CRISPR Library v.1.0/1.1 and the Chen
tracrRNA. These datasets had 876 spacer sequences in common that
target essential genes, enabling an assessment of tracrRNA-dependent
effects on sgRNA activity. To understand whether there were pre-
dictable differences in activity between the tracrRNA variants, we
trained gradient boosting models on five splits of the overlapping
sgRNAs andmeasured the Pearson correlation for predictions on held
out folds. The average Pearson correlation between the predicted and
observed activity differences was 0.34 (Supplementary Fig. 1b), sug-
gesting that tracrRNA identity should be included as a feature for on-
target modeling.

Construction of on-target model
To build an updated on-target model that can make optimal predic-
tions for multiple tracrRNA variants, we selected seven datasets for
training. This totaled 46,526 unique context sequences, defined as the
20 nucleotide sequence thatmatches the spacer plus four nucleotides
preceding the spacer and six nucleotides (PAM+ 3 nucleotides of
context) succeeding the spacer RNA; 45% of sequences utilized the
Chen tracrRNA. We also held out six datasets for testing (23,629
unique context sequences; 31% with the Chen tracrRNA) (Supple-
mentary Data 1, Supplementary Data 2). While convolutional neural
networks have proven effective for predicting sgRNA activity15,16, we
opted for a gradient boosting framework for faster training times25. For
each sgRNA we encoded the 30mer context sequence using all the
features from Rule Set 2 in addition to features to indicate the longest

run of each nucleotide in the sgRNA, the melting temperature of the
sgRNA:DNA heteroduplex26, and the minimum free energy of the fol-
ded spacer sequence27. We also incorporated categorical variables to
indicate which tracrRNAwas associated with each spacer, allowing the
model to learn features that interact with the tracrRNA (Fig. 1b). We
featurized all of the sgRNAs in the training set and fit a gradient
boosting regressor to predict z-scored activity values. We refer to this
model as Rule Set 3 (Sequence).

Evaluation of on-target scoring criteria
To understand how Rule Set 3 (Sequence) makes its predictions, we
calculated Shapley additive explanation (SHAP) values28. We found
that a G in the tracrRNA-adjacent 20th position of the spacer sequence
was the most important feature for activity as has been observed
previously (Fig. 1c)21, although there was a strong interaction with the
tracrRNA feature, as sgRNAswith theChen tracrRNAwere less affected
by the presence of a G in this position (Fig. 1d). Notably, all three
feature classes that were newly added to this model based on prior
literature—poly(T), spacer:DNA melting temperature, and minimum
free energy – were among the 20 most important features (Fig. 1c,
Supplementary Data 3). Likewise, tracrRNA identity also proved to be
relevant, validating its inclusion in themodel.Whenwe considered the
held-out datasets, Rule Set 3 (Sequence) had the highest Spearman
correlation on three of the six datasets, including Behan 2019, which
used theChen tracrRNA (Supplementary Fig. 1c). Rule Set 3 (Sequence)
predictions were modestly correlated to Rule Set 2 scores for test
sgRNAs that used the Hsu tracrRNA (Pearson r = 0.69) (Supplemen-
tary Fig. 1d).

Several groups have incorporated information about the protein-
coding sequence, such as protein domains, amino acid sequence,
evolutionary conservation, and protein length to predict sgRNA
activity5,17,29. To test whether these target-site features improve Rule
Set 3 (Sequence) scores, we filtered for training data targeting endo-
genous sites. We calculated the residual activity from Rule Set 3
(Sequence) scores as the outcome variable for the target-site model,
Rule Set 3 (Target), ensuring that predictions from the trained model
would beadditivewith Rule Set 3 (Sequence) scores. To test each set of
target-site features we split training data into five folds for cross-
validation and trained gradient boosting regression models to predict
residual activity (SupplementaryData 1).Here, target-site features such
as amino acid abundance and conservation refer to features of the
protein-coding region of the gene targeted by the sgRNA and we
define activity as the likelihoodofdisrupting protein function. First, we
tested whether protein domains are predictive of sgRNA activity. We
queried genes in our training set for functional annotations in
Ensembl’s REST API30. In total, we obtained functional annotations
from 16 sources, including Pfam, Smart, PROSITE, Gene3D, and
MobiDB-lite31–35. We then tested if the relative abundance of amino
acids around the sgRNA cut site was predictive of sgRNA activity. To
determine the optimal amino acid window for generating predictions,
we tested widths of 2, 4, 8, 16, and 32 amino acids around the cut site.
We saw that a width of 16 amino acids led to the highest Spearman
correlation with an average value of 0.19 (Supplementary Fig. 2a). To
evaluate the predictive power of evolutionary conservation, we
obtained phyloP scores from the UCSC Genome Browser36,37. We tes-
ted combinations of small and large nucleotide windows around the
cut site with the goal of capturing conservation at the cut site as well as
more global features such as functional domains. We averaged con-
servation across 2, 4, or 8 nucleotides for the small window and 16, 32,
or 64 nucleotides for the large window.We found that a small width of
4 and a largewidth of 32 had the best predictive powerwith an average
Spearman correlation of 0.11 (Supplementary Fig. 2b).

Calculating SHAP values from the trained model, we saw that
conservation around the cut site was the most important feature
(Fig. 1e), suggesting that targeting a conserved region of a gene
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improves sgRNA activity. The second most important feature was the
proportion of amino acids around the cut site that are typically found
in an alpha-helix (V, I, Y, F,W, L).Michlits et al. noted the favorability of
each of these amino acids individually17, which we have combined into
a single feature. The third most important feature was the relative
position of the cut site, where targeting past 85% of the coding

sequence led to a steep decrease in sgRNA activity (Fig. 1e), an effect
that has been observed previously5. We also examined protein
domains38; five protein domain sources were among the 20 most
important features (Smart, Pfam, PROSITE profiles, Gene3D, and
MobiDB-lite), where sgRNAs targetingwithin anannotated regionwere
more active, with the exception of MobiDB-lite, which identifies long
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intrinsically disordered regions. Although the relative abundances of
seven different amino acids were among the top 20 features, we were
unable to identify a biochemical property that explained their impor-
tance (Supplementary Fig. 2c). In fact, the strongest correlate was the
fraction of adenine in the codon sequences for an amino acid, poten-
tially indicating that these features were used as a correction to the
Rule Set 3 (Sequence) scores after removing a portion of training data
that targeted exogenously integrated sites.We tested the targetmodel
in combination with the sequencemodel, which we refer to as Rule Set
3 (Sequence + Target), on held out datasets (Fig. 1b). Target scores
improved the Spearman correlation for all test sets relative to
sequence scores alone, with an average improvement of 6.7% (Sup-
plementary Fig. 2d).

Validation of model and examination of tracrRNA interaction
To validate Rule Set 3 and gain mechanistic insight into tracrRNA-
dependent differences in spacer activity, we designed a tiling library
targeting a subset of essential genes39 and non-essential genes40. We
generated lentiviral vectors that varied in their use of theHsu, Chen, or
DeWeirdt tracrRNA, and each of the three libraries were screened in
triplicate in A375 (melanoma) cells stably expressing Cas9. After three
weeks, we collected cells, isolated genomic DNA, retrieved the library
by PCR, and performed Illumina sequencing to determine the abun-
dance of each sgRNA (Fig. 2a, Supplementary Data 4).

To interpret the results, we first calculated log2-fold-changes
(LFCs) compared to the initial library abundance, as determined by
sequencing the plasmid DNA (pDNA). As replicates were well corre-
lated (Pearson r =0.77 − 0.89), we averaged LFCs within each screen
(Supplementary Fig. 3a). Average LFCs across screens were also well
correlated, with the Chen and DeWeirdt tracrRNAs showing the high-
est correlation (Pearson r = 0.89; Supplementary Fig. 3b). To compare
screening performance across tracrRNAs, we calculated the receiver
operating characteristic area under the curve (ROC-AUC) defining
sgRNAs targeting essential genes as positive controls andnon-essential
genes as negative controls. The Chen and DeWeirdt tracrRNAs both
achieved ROC-AUCs of 0.82, while the Hsu tracrRNA had an ROC-AUC
of 0.76 (Supplementary Fig. 3c). The similarity in performance of the
Chen and the DeWeirdt tracrRNAs suggests that the presence or
absence of a T in the 5th position has a larger effect on sgRNA activity
than the stem extension. We also examined the distribution of various
target categories to assess if the controls behaved as expected. In all
three screens, the non-targeting controls were tightly distributed and
the intergenic controls showed a cutting effect (Supplemen-
tary Fig. 3d).

To evaluate the performance of Rule Set 3 as well as other models
on this new dataset, we first removed all spacer sequences that had
been seen by any of thesemodels, and then within each essential gene
we calculated the Spearman correlation between the predicted scores
and the observed sgRNA activity. Rule Set 3 (Sequence + Target) sig-
nificantly outperformed all other models (t-test p value < 0.002) when
the correct tracrRNAwas specified (Fig. 2b, SupplementaryData 5).We
saw better performance when using the Chen tracrRNA as an input to
Rule Set 3whenpredicting spacers pairedwith theDeWeirdt tracrRNA,
highlighting the importance of disrupting the Pol III termination signal
present in the Hsu tracrRNA. Conversely, we saw Rule Set 3 perfor-
mance decrease when we specified the incorrect tracrRNA.

Interestingly, target scores were relativelymore helpful than sequence
scores for the Chen and DeWeirdt tracrRNAs, although there was large
variation across genes, suggesting that sgRNA selection heuristics that
over-emphasize target features at the expense of sequence features
may lead to poorer performance.

Rule Set 3 (Sequence) had higher Spearman correlations when
predicting sgRNAs with the Hsu tracrRNA as opposed to the Chen or
DeWeirdt tracrRNAs. This is likely due to a multitude of factors,
including a greater diversity of datasets that have the Hsu tracrRNA
in the training data, as well as features that are inherently more
powerful discriminators for the Hsu tracrRNA. One example of such a
feature is having G in the last nucleotide position of the spacer
sequence, which has a greater effect on sgRNA activity for the Hsu
tracrRNA than the Chen tracrRNA (Fig. 1d). Further, Rule Set 3
(Sequence) predicts more sgRNAs at the extreme ends of the activity
spectrum for the Hsu tracrRNA than the Chen tracrRNA (16% and 9%
of sgRNAs with |z-score|>1 for the Hsu and Chen tracrRNAs respec-
tively; Fig. 2c, Supplementary Data 5), suggesting the model can
identify more discriminating features for the Hsu tracrRNA. We also
examined the performance of Rule Set 3 (Sequence) for CRISPRi
using a previously published tiling CRISPRi dataset41 with sgRNAs
targeting the Hart-Moffat essential gene set to assess on-target
activity. We calculated the Spearman correlation of the predicted
scores and the measured growth phenotype and saw Rule Set 3
(Sequence) performs substantially better than other models, indi-
cating the robustness of Rule Set 3 for predicting other perturbation
modalities (Fig. 2d), although we note that robust CRISPRi predic-
tions should also take into account additional features, such as dis-
tance from the transcription start site42–44.

Returning to the newly generated tiling dataset, to calibrate
our understanding of the model outputs, for each essential gene
we divided the observed LFCs for each sgRNA into quintiles. We
then compared the observed quintiles with predicted activities
and saw a direct relationship between the percent of active sgRNAs
and Rule Set 3 (Sequence + Target) scores for all tracrRNAs
(Fig. 2e, Supplementary Data 5). For the sgRNAs with the lowest
predicted activity, 87.7%, 74.9%, and 82.0%, were observed to be in
the lowest or second lowest activity quintile for the Hsu, Chen, and
DeWeirdt tracrRNAs respectively. Conversely, for the sgRNAs with
the highest predicted activity, 77.0%, 69.0%, and 75.5%, were
observed to be in the highest or second highest activity quintile for
the Hsu, Chen, and DeWeirdt tracrRNAs, respectively. The large
separation between sgRNAs that were observed to be active versus
inactive in the highest and lowest predicted bins suggests that
sgRNAs picked de novo have a high likelihood of generating gene
knockouts for all tracrRNA variants.

To assess how Rule Set 3 (Sequence + Target) impacts library
performance in a genome-wide screening context, we simulated a
library by picking 4 sgRNAs randomly, using Rule Set 2, or Rule Set 3
(Sequence + Target) with the matched tracrRNA. We observed that
across all three screens, as expected, random picking of sgRNAs
showed the least separation between average LFCs of essential and
non-essential genes (Fig. 2f, Supplementary Data 5). This separation
increased when Rule Set 2 or Rule Set 3 (Sequence + Target) was used
to pick sgRNAs. We quantitated this separation by calculating the
strictly standardized mean difference (SSMD) between the essential

Fig. 1 | Development of Rule Set 3 (Sequence + Target). a Fraction overlap
between sgRNAs used for training Rule Set 3 and those used for training other
on-target models. Edge width and color are proportional to the fraction
overlap. Node size is proportional to the number of sgRNAs. b Schematic
depicting Rule Set 3 (Sequence + Target) development. Nucleotide differences
in tracrRNA sequences are colored. Models were trained only on the train set,
as indicated by blue outlines. Italics indicate features for which information
was obtained from existing databases. c SHAP feature importance for the 20

most important features in Rule Set 3 (Sequence). Each point represents one
sgRNA from the training set. Descriptions of model features can be found in
Supplementary Data 3. d Histograms of SHAP values for sgRNAs, colored by
guanine status in the 20th sgRNA position and split by tracrRNA identity.
e SHAP feature importance for the 20 most important features in Rule Set 3
(Target). Each point represents one sgRNA from the training set. Descriptions
of model features can be found in Supplementary Data 3. Source data are
provided as a Source Data file.
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and non-essential genes for each model; a higher SSMD indicates
greater separation between the essential and non-essential genes. For
all three simulated screens, Rule Set 3 (Sequence + Target) had the
highest SSMD. When comparing across tracrRNAs, we found that
guides screened with the Hsu tracrRNA and picked using Rule Set 3
(Sequence + Target) had the highest overall SSMD, showing that

although there are fewer active sgRNAs with the Hsu tracrRNA (Sup-
plementary Fig. 3c), by picking a highly active subset of sgRNAs, one
can achieve high screening performance.

To understand how each tracrRNA affects spacer activity, we
subtracted the z-scores for sgRNAs screened with the Chen tracrRNA
from matched sgRNAs screened with the Hsu tracrRNA from the new
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tiling library. We then trained a gradient boosting model to predict
the activity difference from sequence features. We saw that T in
spacer positions 17–20 led to relatively lower activity when paired
with the Hsu tracrRNA (Fig. 3a, Supplementary Data 6). On the other
hand, G in these same positions led to relatively higher activity for
the Hsu tracrRNA. We also observed that spacer RNAs that were
predicted to have highly stable secondary structures, as indicated by
Gibbs free energy, were less likely to be active when paired with the
Hsu tracrRNA.

Arimbasseri and colleagues have shown that a stretch of four or
more T’s can terminate Pol III transcription,with longer stretches of T’s
having stronger effects on transcription termination45. The Hsu
tracrRNA has a run of four T’s in positions 2–5, whereas the Chen
tracrRNA only has three T’s in positions 2–4. In this context, the
negative impact that 3′-end T’s have on spacers paired with the Hsu
tracrRNA suggests that these spacers are more likely to have a pre-
mature termination signal when paired with the Hsu tracrRNA than
with the Chen tracrRNA. In support of this hypothesis, a recent study
fromGraf et al. showed diminished Pol III transcription in vitro for two
sgRNAs that each had two T’s at the 3′ end of the spacer46. Further-
more, they showed that changing the fourth T in the poly-T run of the
Hsu tracrRNA to an A restored sgRNA activity.

To investigate whether G’s at the 3′ end of spacer sequences have
an attenuating effect on premature transcription termination, we
binned sgRNAs by whether they had a G or a T in the last four
nucleotides of the spacer. We saw that spacers that had a T and no G
had significantly lower activitywith theHsu tracrRNA than spacers that
had both a T and G in this region (mean difference = 0.56, p <0.01;
Fig. 3b, Supplementary Data 6). While spacers with a G and no T were
slightly more active than spacers with neither a G nor a T, this differ-
encewas smaller (meandifference = 0.16), suggesting thatG’s increase
the relative activity of spacers paired with the Hsu tracrRNA primarily
by inhibiting T-dependent transcription termination signals, as
opposed to endowing spacers with some T-independent activity
advantage. When we further discretized these bins by the number of
T’s and G’s in nucleotides 17–20, we saw that the attenuating behavior
of G was sensitive to the number of both T’s and G’s in this region
(Fig. 3c, Supplementary Data 6). We recapitulated these observations
when taking the difference in spacer activity between the Hsu and
DeWeirdt tracrRNAs (Fig. 3d, e, SupplementaryData 6), demonstrating
that the observed effects are independent of the stem loop extension
present in the Chen tracrRNA.

To solidify the connection between 3′ end spacer G/T content and
sgRNA expression we analyzed ECCITE-seq data, which captures
sgRNA sequence abundance directly47. In particular, we analyzed
23 sgRNAs that use the Hsu tracrRNA and were sequenced using both
gDNA and direct sgRNA sequencing. We calculated log-fold changes
between gDNA and direct sequencing and saw that sgRNA levels sig-
nificantly decreased as the number of Ts at the end of the spacer
increased, controlling for G abundance (linear regression coeffi-
cient = −0.53, 95% CI = [−0.848, −0.210], p value < 0.01; Fig. 3f, Sup-
plementary Data 6). Conversely, G content tended to enhance

transcription, albeit not to a significant level (linear regression coeffi-
cient = 0.19; 95% CI = [−0.102, 0.490], p value = 0.19). Thus, direct
sgRNA sequencing supports the hypothesis that use of the Hsu
tracrRNA leads to reduced sgRNA expression as a function of G and T
prevalence at the end of the spacer sequence.

Discussion
Here we present Rule Set 3, an optimal model for predicting sgRNA
activity for multiple tracrRNA variants. We validate this model on a
dataset tiling essential and non-essential genes. By analyzing the dif-
ferences in activity acrossmultiple tracrRNAvariants,we conclude that
early Pol III termination is the primary determinant of activity differ-
ences between the Hsu and Chen/DeWeirdt tracrRNAs. That a Pol III
dependent featurehas sucha strong impact on sgRNAactivity explains
a long-standing observation that in vitro transcribed sgRNAs used
especially in zebrafish systems are poorly predicted bymodels trained
on results frommammalian cellmodels48. Similarly, we expect Rule Set
3 to generalize less well to sgRNAs transcribed from a Pol II promoter.
As more CRISPR screening data from diverse contexts become avail-
able and as transfer learning approaches from machine learning
improve, developing models that generalize to a multitude of
screening contexts represents a promising direction for future
research.

Methods
Vectors
pLX_311-Cas9 (Addgene 96924): SV40 promoter expresses blasticidin
resistance; EF1a promoter expresses SpyoCas9.

All guide vectors are derivatives of the lentiGuide vector, with
modifications to the tracrRNA. All guide vectors contain the EF1a
promoter and puromycin resistance.

pRDA_118 (Addgene 133459): U6 promoter expresses customiz-
able SpCas9 guide with the DeWeirdt (2020) tracrRNA.

pRDA_651: U6 promoter expresses customizable SpCas9 guide
with the Hsu (2013) tracrRNA.

pRDA_652: U6 promoter expresses customizable SpCas9 guide
with the Chen (2013) tracrRNA.

Cell lines and culture
A375 cells were obtained from Cancer Cell Line Encyclopedia at the
Broad Institute. HEK293Ts were obtained from ATCC (CRL-3216). All
cells regularly tested negative for mycoplasma contamination and
were maintained in the absence of antibiotics except during screens
and lentivirus production, duringwhichmediawas supplementedwith
1% penicillin–streptomycin. Cells were passaged every 2–4 days to
maintain exponential growth and were kept in a humidity-controlled
37 °C incubator with 5.0% CO2. Media conditions and doses of poly-
brene, puromycin, and blasticidin were as follows, unless
otherwise noted:

A375: RPMI + 10% fetal bovine serum (FBS); 1μg/mL; 1μg/mL;
5μg/mL

HEK293T: DMEM+ 10% heat-inactivated FBS; N/A; N/A; N/A

Fig. 2 | Rule Set 3 (Sequence + Target) validation. a Schematic depicting essen-
tial/non-essential tiling library construction and screening approach. b Spearman
correlations between observed and predicted activity for all essential genes
(n = 201) in each of the essential/non-essential screens across previous models and
Rule Set 3models. Rule Set 3models using the same tracrRNA feature as the screen
are highlighted in pink and significantly outperformed other models (one-sided t-
test p value < 0.002). Boxes show 25th and 75th percentiles asminima andmaxima
and the center represents the median; whiskers show the 5th and 95th percentiles.
c Percent of all sgRNAs targeting essential and non-essential genes brokendown by
Rule Set 3 (Sequence + Target) bins for the Hsu and Chen tracrRNAs. d Spearman
correlations between predicted scores and the growth phenotype for sgRNAs
(n = 1964) targeting essential genes in a tiling CRISPRi dataset across all sequence

models. ePercent of quintiles for sgRNAs fromessential genes (n = 199)with at least
20 guides binned by Rule Set 3 (Sequence + Target) scores for each screen.
f Average log-fold change of 4 sgRNAs per gene for essential genes (n = 201) and
non-essential genes (n = 198) calculated by picking sgRNAs randomly, using Rule
Set 2 or usingRule Set 3 (Sequence+Target) for the tiling library screenedwithHsu,
Chen, andDeWeirdt tracrRNAs. Rule Set 3 (Sequence+ Target) scores used arewith
the matched tracrRNA. For the screen performed with the DeWeirdt tracrRNA, we
used on-target scores with the Chen tracrRNA. Boxes show 25th and 75th percen-
tiles as minima and maxima and the center represents the median; whiskers show
10th and 90th percentile. Heatmap shows the corresponding SSMD scores. Source
data are provided as a Source Data file.
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Essential/non-essential tiling library design
Two hundred one essential and 198 non-essential genes were ran-
domly chosen from the standard set of essential40 and non-essential
genes39. All possible sgRNA sequences tiling these genes were
designed using CRISPick. The library was filtered to exclude any
sgRNAs with BsmBI sites or poly-T sequences. The library was not
filtered for promiscuous sgRNAs to enable future efforts focused on
off-target analysis using the non-essential genes, but promiscuous
guides were excluded from analysis. We also included 1000 controls

targeting intergenic sites in the human genome and 1000 non-
targeting sgRNAs, resulting in a total library size of 84,609 sgRNAs.

Library production
Oligonucleotide pools were synthesized by CustomArray (GenScript).
BsmBI recognition sites were appended to each sgRNA sequence
(represented here as the run of 20 Ns) along with the appropriate
overhang sequences for cloning into the sgRNA expression plasmids.
The final oligonucleotide sequence was thus: CAGCGCCAATGGGC
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Fig. 3 | Analysis of differences in tracrRNA activity. a SHAP feature importance
for the 10 most important features for predicting the difference between sgRNAs
screened with the Hsu versus Chen tracrRNA. Each point represents one sgRNA
from the training set. Descriptions of model features can be found in Supple-
mentary Data 3. b Box plot of the difference in z-score log-fold changes between
sgRNAs screened with the Hsu versus Chen tracrRNA as a function of G/T presence
in positions 17–20 of each spacer sequence. The ‘~’ symbol indicates the nucleotide
is not present in this range. Box minima and maxima represent the 25th and 75th
percentile, whisker minima and maxima represent the 25th and 75th percentile
minus and plus 1.5× the interquartile range, respectively, and the box centers

represent the 50thpercentile of data. cBox plot of the difference in z-score log-fold
changes between sgRNAs screened with the Hsu versus Chen tracrRNA as a func-
tion of G/T abundance in positions 17-20 of each spacer sequence. Boxminima and
maxima represent the 25th and 75th percentile, whisker minima and maxima
represent the 25th and 75th percentile minus and plus 1.5× the interquartile range
respectively, and the box centers represent the 50th percentile of data. d Same as
(b) but for the Hsu and DeWeirdt tracrRNAs. e Same as (c) but for the Hsu and
DeWeirdt tracrRNAs. f Data from Mimitou et al. Comparison of sgRNA relative
abundance when read out via gDNA or direct sequencing. Spacers are binned by G/
T abundance in positions 17–20. Source data are provided as a Source Data file.
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TTTCGACGTCTCACACCGNNNNNNNNNNNNNNNNNNNNGTTTCGAG
ACGCGACAGGCTCTTAAGCGGCT.

Primers CAGCGCCAATGGGCTTTCGA; CGACAGGCTCTTAAGCG
GCTwere used to amplify the pool using 25μL 2× NEBnext PCRmaster
mix (New England Biolabs), 2μL of oligonucleotide pool (~40 ng), 5μL
of primer mix at a final concentration of 0.5μM, and 18μL water. PCR
cycling conditions: (1) 98 °C for 30 s; (2) 53 °C for 30 s; (3) 72 °C for
30 s; 24 cycles.

The resulting amplicons were PCR-purified (Qiagen) and cloned
into the library vector via Golden Gate cloning with Esp3I (Fisher Sci-
entific) and T7 ligase (Epizyme); the library vector was pre-digested
with BsmBI (New England Biolabs). The ligation product was iso-
propanol precipitated and electroporated into Stbl4 electro-
competent cells (Invitrogen) and grown at 30 °C for 16 h on agar with
100μg/mL carbenicillin. Colonies were scraped and plasmid DNA
(pDNA) was prepared (HiSpeed Plasmid Maxi, Qiagen). To confirm
library representation and distribution, the pDNA was sequenced.

Lentivirus production
For pooled library production, 24 h before transfection, 18 × 106

HEK293T cells were seeded in a 175 cm2 tissue culture flask in 25mL of
DMEM+ 10% heat-inactivated FBS. Transfection was performed using
TransIT-LT1 (Mirus) transfection reagent according to the manu-
facturer’s protocol. Briefly, one solution of Opti-MEM (Corning, 6mL)
and LT1 (305μL) was combined with a DNA mixture of the packaging
plasmid pCMV_VSVG (Addgene 8454, 5μg), psPAX2 (Addgene 12260,
50μg), and 40μg of the transfer vector (e.g. the library pool). The
solutions were incubated at room temperature for 20–30min, then
the transfection mixture was added dropwise to the surface of the
HEK293T cells. Flasks were transferred to a 37 °C incubator for 6–8 h,
after which the media was removed and replaced with DMEM+ 10%
FBS media supplemented with 1% BSA. Virus was harvested 36 h after
this media change.

Derivation of stable cell lines
In order to establish the Cas9 expressing cell line for screens with the
essential/non-essential tiling library, A375 cells were transduced with
pLX_311-Cas9 and successfully transduced cells were selected with
blasticidin for a minimum of 2 weeks. Cells were removed from blas-
ticidin for at least one passage before transduction with the library.

Pooled screens
For pooled screens, cellswere transduced in three biological replicates
with the lentiviral library. Transductions were performed at a low
multiplicity of infection, using enough cells to achieve a representation
of at least 500 transduced cells per sgRNA. Cells were plated in
polybrene-containingmediawith 3 × 106 cells perwell in a 12-well plate.
Plateswere centrifuged for 2 h at 931 × g, afterwhich 2mLofmediawas
added to each well. Plates were then transferred to an incubator for
12–18 h, after which cells were pooled into flasks. Puromycin was
added 2 days post-transduction and maintained for 5 days to ensure
complete selection for transduced cells. Upon puromycin removal,
cells were passaged every 2–3 days for an additional 2 weeks at a
minimum of 500x representation, at which point, 21 days post-trans-
duction, cells were collected for subsequent processing. Cell counts
were taken at each passage to monitor growth.

Genomic DNA isolation and sequencing
Genomic DNA (gDNA) was isolated using the KingFisher Flex Pur-
ification System with the Mag-Bind® Blood & Tissue DNA HDQ Kit
(Omega Bio-Tek). The gDNA concentrations were quantitated
by Qubit.

For PCR amplification, gDNA was divided into 100μL reactions
such that each well had at most 10μg of gDNA. Plasmid DNA (pDNA)
was also included at amaximumof 100 pg per well. Per 96-well plate, a

master mix consisted of 150μL DNA Polymerase (Titanium Taq;
Takara), 1mL of 10x buffer, 800μL of dNTPs (Takara), 50μL of
P5 stagger primer mix (stock at 100μM concentration), 500μL of
DMSO (if used), and water to bring the final volume to 4mL. Each well
consisted of 50μL gDNA plus water, 40μL PCR master mix, and 10μL
of a uniquely barcoded P7 primer (stock at 5 μM concentration). PCR
cycling conditionswere as follows: (1) 95 °C for 1min; (2) 94 °C for 30 s;
(3) 52.5 °C for 30 s; (4) 72 °C for 30 s; (5) go to (2), ×27; (6) 72 °C for
10min. PCRprimers were synthesized at IntegratedDNATechnologies
(IDT). PCR products were purified with Agencourt AMPure XP SPRI
beads according to manufacturer’s instructions (Beckman Coulter,
A63880), using a 1:1 ratio of beads to PCR product. Samples were
sequenced on a HiSeq2500 HighOutput (Illumina) with a 5% spike-in
of PhiX.

On-target modeling
All read count data were transformed to log-fold changes using the
poola package (version 0.0.7; https://github.com/gpp-rnd/poola)
in Python (version 3.8). For each screen, we selected sgRNAs that
were expected to have a phenotype (e.g. sgRNAs targeting essen-
tial genes in a viability screen). We filtered any sgRNA that had
more than one perfect match in the coding genome. All activities
were transformed using the yeo-johnson transformation from
scikit-learn (version 0.24.2) and z-scored. Finally, we changed the
sign of all activity measurements so the most active sgRNAs had
themost positive activity scores. All processed training and testing
data can be found on GitHub: https://github.com/gpp-rnd/rs_dev/
tree/main/data/processed.

To build Rule Set 3 (Sequence) we used 46,526 unique context
sequences from seven datasets. For each sgRNA we encoded the
30mer context sequence using all the features from Rule Set 2 in
addition to features to indicate the longest run of each nucleotide
in the sgRNA, the melting temperature of the sgRNA:DNA
heteroduplex26, and the minimum free energy of the folded spacer
sequence27. We also incorporated categorical variables to indicate
which tracrRNA was associated with each spacer, allowing the model
to learn features that interact with the tracrRNA. sgRNA features
were extracted using the custom Python package sglearn (version
1.2.3; https://github.com/gpp-rnd/sglearn). This package relies on
biopython to extract biochemical information about sgRNA
sequences49.

To fit an optimal gradient boosting model from sequence fea-
tures, we used the gradient boosting framework from LightGBM
(version 3.2.0)30 and tuned hyperparameters using Tree Structured
Parzen Estimators fromOptuna (version 2.7.0)50.We tuned the number
of leaves (between 8 and 256) and minimum number of samples in a
child (between 8 and 256) over 50 hyperparameter iterations.We fixed
the learning rate to be 0.01 and used 5000 boosted trees. All other
parameters were kept default. To evaluate each set of hyperpara-
meters we split our dataset into five folds using the Stratified-
GroupKFold splitter from scikit-learn. We split the data such that all
sgRNAs targeting a gene were either in the train set or the test set for
each fold. We also tried to represent each dataset source (e.g. Doench
2016 sgRNAs) proportionally in all of the folds, such that each test set
had some sgRNAs from each source. We found that a model with a
maximum of 111 leaves per base estimator and a minimum of
199 samplesper child performedbest.Weused these hyperparameters
to train our final model.

To build the target model, we used Ensembl’s REST API to query
the amino acid sequence around the cut site of each sgRNA (accessed
August 9, 2021). We used biopython to get biochemical properties of
these amino acid sequences (version 1.79). Ensembl’s REST API was
also used to obtain protein domain features. We used the UCSC gen-
ome browser’s REST API to get PhyloP conservation scores for each
sgRNA (accessed August 9, 2021)36,51. All of these features can be
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generated in Python using the rs3 package (https://github.com/gpp-
rnd/rs3). We tuned hyperparameters for the target model using the
same pipeline as Rule Set 3 (Sequence). We found that a model with a
maximum of 8 leaves per base estimator and a minimum of 137 sam-
ples per child performedbest.We used these hyperparameters to train
our final model.

To rerun the modeling pipeline, reference the github repository
here: https://github.com/gpp-rnd/rs_dev. CRISPick has been updated
to incorporate Rule Set 3 (Sequence + Target) scores (broad.io/cris-
pick). Feature importances were calculated using the shap package in
Python (version 0.39)28.

Screen analysis
Guide sequences were extracted from sequencing reads by running
the PoolQ tool with the search prefix “CACCG” (https://portals.
broadinstitute.org/gpp/public/software/poolq). Reads were counted
by alignment to a reference file of all possible guide RNAs present in
the library. Reads were then assigned to a condition (e.g., a well on the
PCR plate) on the basis of the 8 nt index included in the P7 primer.
Following deconvolution, the resulting matrix of read counts was first
normalized to reads permillion within each condition by the following
formula: read per guide RNA / total reads per condition x 1e6. Reads
permillionwas then log2-transformed by first adding one to all values,
which is necessary in order to take the log of sgRNAs with zero reads.

Prior to further analysis, we filtered out 37 sgRNAs for which the
log-normalized reads per million of the pDNA was >4 standard devia-
tions from the mean in at least one of the screens. We then calculated
the log2-fold-change between conditions. All reported LFC values for
dropout screens are relative to pDNA. We assessed the correlation
between log2-fold-change values of replicates.

We also filtered out sgRNAs targeting essential and non-essential
genes that were included in the training set, which constituted ~6% of
all sgRNAs targeting essential genes and ~0.6% of all sgRNAs targeting
non-essential genes.

SSMD calculation
The strictly standardized mean difference (SSMD) between sgRNAs
targetting essential and non-essential genes was calculated using the
following formula: (μne − μe)/

ffiffi

ð
p

σne
2 + σe

2), where ne stands for non-
essential and e stands for essential.

Data visualization
Figures were created with Python3 and GraphPad Prism (version 9).
Schematics were created with BioRender.com.

Statistics and reproducibility
All z-scores, Pearson and Spearman correlation coefficients were cal-
culated in Python. Low abundance sgRNAs in the plasmid pool were
excluded from analysis: we z-scored the pDNA lognorms and removed
any sgRNAs with a z-score less than −3.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The read counts for all screening data generated in this study have
been deposited in the Sequence Read Archive database under acces-
sion code PRJNA832308. The subsequent analyses data generated in
this study are provided in the Supplementary Data/Source Data
file. Source data are provided with this paper.

Code availability
All customcodeused for analysis and examplenotebooks are available
on GitHub: https://github.com/broadinstitute/rs3_manuscript. Code

for developing the on-target model can be found on GitHub: https://
github.com/gpp-rnd/rs_dev. A python package for scoring sgRNA
sequenceswithRuleSet 3 canbe foundonGitHub: https://github.com/
gpp-rnd/rs3.
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