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Abstract
A short synthesis of the postulated structure for indolizidine alkaloid 259B with the hydrogens at
C5 and C9 entgegen has been achieved with complete control of stereochemistry at C5. Both
diastereoisomers at C8 were obtained, but neither proved to be the natural product. The
comparison of the mass and FTIR spectral properties of the synthetic compounds to those of the
natural material strongly suggest that the gross structure is correct and that the difference may be
a branch in the C5 alkyl side-chain. The GC-retention times of the two synthetic compounds were
markedly longer than that of the natural 5,9E-259B.

Background
Indolizidines are common in nature [1] and to date over
eighty 5,8-disubstituted indolizidine alkaloids have been
isolated from the skins of frogs.[2] Due to the scarcity of
such indolizidine alkaloids from the natural sources, for
the most part the biological properties of these materials
have not been fully evaluated. However, synthetic 5,8-dis-
ubstituted indolizidine 5,9Z-235B' (Figure 1), has
recently been shown to be a potent and selective non-
competitive inhibitor of nicotinic acetylcholine recep-
tors.[3] Earlier work had reported that indolizidines 5,9Z-
203A and 5,9Z-235B' (Figure 1), and other 5,8-disubsti-
tuted indolizidines were non-competitive blockers of the
ganglionic subtype of nicotinic receptors.[4] For most of
the 5,8-disubstituted indolizidines the structures have
been assigned by a combination of GC-mass spectrometry
and GC-FTIR spectroscopy [2] and such structures must be
considered tentative until NMR studies on isolated pure
compounds can be obtained or until synthetic material is

available for comparison. In the EI-mass spectrum of 5,8-
disubstituted indolizidines loss of the C5 chain gives rise
to the base peak, identifying the mass of the C5 substitu-
ent. The resulting cation undergoes a retro Diels-Alder
fragmentation losing an alkene thus identifying the mass
of the C8 substituent. Once the gross structure has been
assigned, analysis of the vapor-phase infrared spectrum,
particularly the Bohlmann bands, allows assignment of
the relative configuration of the chiral centres at C5 and
C9. When the two hydrogens on C5 and C9 are both axial
(trans anti-parallel to the N lone pair), designated as 5,9Z
(Figure 1), the presence of a strong, sharp Bohlmann band
at approximately 2789 cm-1 confirms this relative config-
uration. In the alternative diastereoisomer when one
hydrogen is axial and the other equatorial, designated as
5,9E, the Bohlmann band is weak and is shifted to 2810
cm-1. Most 5,8-disubstituted indolizidines detected in
frog skin extracts have the 5,9Z relative configuration,
with 259B being very unusual in that it has the 5,9E rela-
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tive configuration. Not surprisingly then, with the excep-
tion of the synthesis of two 5,9E diastereomers of the
natural 5,9Z-223V,[5] most of the synthetic effort has
been directed towards the 5,9Z isomers and this has
resulted in a large number of elegant approaches to these
indolizidines.[6-35]

Results and Discussion
The absolute configurations of 5,9Z-203A and 5,9Z-235B'
(Figure 1) and several other such 5,9Z indolizidines are
known.[2] Thus, in analogy to such 5,9Z indolizidines it
might be anticipated that for the 5,9E indolizidines the
stereochemistry at C9 will also be R. We now report an
enantioselective synthesis of the tentative structure postu-
lated for ent-indolizidine 5,9E-259B, which is outlined in
Scheme 1 using (S)-pyroglutamic acid as the chiral start-
ing material. The synthesis is extremely short, robust, does
not utilise any protecting groups, appears to be com-
pletely diastereoselective at C5 and gives both diastereoi-
somers at C8.

Scheme 1: Reagents: (i) MeMgI. 96% (ii) PTSA 71%. (iii) TiCl4 
CH2Cl2 25°C 3d 68%. (iv) MsCl, Et3N, THF -40°C, 74%. (v) Grubbs' 
catalyst, 25°C CH2Cl2, 90%. (vi) H2 MeOH Pt/C 79%. (vii) LiAlH4, 
AlCl3, 73%. (viii) (a) Dess Martin periodinane, 77%. (b) Ph3P+CH2I 
I-, NaN(SiMe3)2 51%. (c) TMS acetylene, CuI, Pd(Ph3P)3, Et3N 
then K2CO3 MeOH, 69%.

Reaction of (S)-ethylpyroglutamate with an excess of
methyl magnesium iodide gave the water soluble tertiary
alcohol 1 in 96% yield. 7-Oxoheptanoic acid methyl ester
was prepared by the literature procedure,[36] by ozonoly-
sis of 1-methoxycycloheptene, and then condensed with
the amidoalcohol 1 with azeotropic removal of water to
give the N,O-acetal 2 in 71% yield as a single diastereoi-
somer. It is likely that allylic strain of the lactam carbonyl
group leads to the alkyl group preferentially occupying a
pseudo-axial position.[37-40] Reaction of N,O-acetal 2
with trimethylallyl silane and titanium tetrachloride at
room temperature for two days gave the product 3 in 68%
yield. The alternate diastereoisomer could not be detected
by NMR spectroscopy in the crude reaction mixture. Prod-
uct 3 formally arises by attack of trimethylallyl silane from
the least hindered face of the thermodynamically less sta-
ble Z-iminium ion and the mechanistic details of this
intriguing transformation will be published elsewhere in
due course. One-pot dehydration of the tertiary alcohol 3
was accomplished via the mesylate, and in situ elimina-
tion with triethylamine to give the diene 4 in 74% yield.
Diene 4 smoothly underwent cyclisation to indolizidi-
none 5 when treated with Grubbs' first generation cata-
lyst.[41,42] Analysis of the spectral properties of
indolizidine 5 was considered convenient to confirm the
stereochemistry at C5. It is known that in indolizidinones,
with a carbonyl group at C3, the C5 hydrogen in the equa-
torial position will have an anomalously high chemical
shift in NMR due to it lying in the deshielding cone of the
lactam carbonyl group.[5,37,38,43,44] In the present
case, the proton at C5 has a chemical shift at δ 4.24 ppm
and the corresponding proton in similar indolizidinones
with the 5,9Z relative configuration has a chemical shift at
about δ 3.27 ppm. Reduction of the alkene 5 with hydro-
gen and a heterogeneous catalyst gave the product
indolizidines as a mixture of C8 diastereoisomers. When
platinum oxide was used as catalyst, a 1:1 mixture of dias-
tereoisomers resulted, but when platinum-on-carbon was
employed, a 4:1 mixture was produced with the isomer
corresponding to 6 (Scheme 1) predominating. We have
previously shown,[45] and there is also good literature
precedent,[46,47] that in indolizidines with unsaturation
at C7-C8 there is a tendency for the addition reactions to
occur on the concave face, although this obviously will be
influenced by the presence of other substituents. In the
present case, there is an additional axial substituent at C5,
which again would encourage reaction from the concave
face. Although the mixture of isomers proved inseparable
at this stage, the relative configuration at C8 in both dias-
tereoisomers could be readily assigned by examining the
multiplets for the hydrogen at C9. For the major diastere-
oisomer the coupling constant J8–9 was 9.9 Hz, indicating
a trans diaxial arrangement of these hydrogens and for the
minor diastereoisomer the corresponding J value was 3.9
Hz. All that remained to complete the synthesis was the
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Subclasses of diastereoisomeric 5,8-disubstituted alkaloidsFigure 1
Subclasses of diastereoisomeric 5,8-disubstituted alkaloids. The 
absolute stereochemistry of 5,9Z-203A and 5,9Z-235B' are as 
shown, while the structure shown for 5,9E-259B is tentative as 
postulated based on mass and FTIR spectra.[2] Almost all of the 
5,8-disubstituted indolizidines detected in frog skin extracts have 
proved to be the 5,9Z isomers.[2]
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EIMS spectra of a) natural 5,9E-259B, b) synthetic 7, and c) synthetic minor diastereomer of 7Figure 2
EIMS spectra of a) natural 5,9E-259B, b) synthetic 7, and c) synthetic minor diastereomer of 7. Structures are shown with relative con-
figuration.
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Vapor-phase FTIR spectra of a) natural 5,9E-259B, and b) synthetic 7Figure 3
Vapor-phase FTIR spectra of a) natural 5,9E-259B, and b) synthetic 7. Structure shown with relative configuration.
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reduction of the lactam carbonyl group and the installa-
tion of the cis-enyne functionality. Simultaneous reduc-
tion of both the ester and the amide gave the alcohol 6.
Dess Martin oxidation [48] of the alcohol 6 gave an alde-
hyde, which on Stork Zhao reaction [49] gave the Z-vinyl
iodide with a selectivity of 97:3. Finally, Sonogashira reac-
tion [50] of the vinyl iodide with trimethylsilyl acetylene
followed by removal of the trimethylsilyl group gave syn-
thetic 7. At this stage the C8 diastereoisomers were sepa-
rated by flash chromatography, though the minor
component was contaminated with triphenyl phosphine/
phosphine oxide residue from the Sonogashira reaction.

The two synthetic C8 diastereoisomers were compared to
natural 5,9E-259B present in the alkaloid fraction
obtained from a bufonid toad, Melanophryniscus
stelzneri.[51] The GC mass spectra of the three compounds
were very similar (Figure 2). However there was a greater
loss of methyl for the natural alkaloid. The GC FTIR spec-
trum of the major synthetic diastereoisomer 7 differed
from the natural 5,9E-259B in the finger-print region (Fig-
ure 3). In addition, the vinyl C-H stretching absorption
band is at 3020 cm-1 rather than the expected 3032–3038
cm-1 for a conjugated CH=CH, as found in synthetic 7 and
in the minor diastereomer. Finally, the intense C-H
absorption band at 2963 cm-1 in natural 5,9E-259B sug-
gests that two methyls rather than one are present. The
corresponding band at 2961 cm-1 is merely a shoulder in
the synthetic compounds that contain only one methyl.
The GC FTIR spectrum of the minor synthetic isomer was
very similar to that of the major isomer 7, but due to a co-
emerging contaminant the finger-print region could not
be compared and the mixed FTIR is not shown. Remarka-
bly, the GC retention time of the natural 5,9E-259B was
markedly shorter than those of the two synthetic com-
pounds as follows: Natural 5,9E-259B: 11.01 min; major
synthetic isomer 7: 13.01 min; minor synthetic isomer:
13.07 min. These retention times have been slightly
adjusted to make them consistent with the retention times
reported for the many frog skin alkaloids.[2] After hydro-
genation the GC-retention times of the products (MW
265) were changed only slightly with the retention time of
the perhydro-derivative of natural 5,9E-259B still mark-
edly less than those of the perhydro-synthetics. This result
proves that the carbon skeleton of 259B is different to 7
and supports the proposal that there is a branch point in
the C5 side-chain.

Clearly, a structural revision for 5,9E-259B is needed and
it appears most likely that the point of difference is
branching on the C5 side-chain. Isolation of 5,9E-259B
for NMR spectral analysis will be required to establish the
presence and nature of such branching. This hypothesis, if
verified, is very significant because branching of the side-
chains of 'izidine' alkaloids has been considered unlikely.

The only documented case is the 5,6,8-trisubstituted
indolizidine 5,9E-249F, isolated for NMR analysis from a
dendrobatid frog, Dendrobates auratus, where there is an
ethyl branch in the C5 substituent.[51] Further study will
be needed to determine what other izidines detected in
frog skin extracts have branch points in their side-chains.
See Additional File 1 for full experimental data.

Conclusion
An extremely short entry to the unusual 5,8-disubstituted
5,9E-indolizidine alkaloids has been developed giving a
synthetic sample of two possible structures corresponding
to the structure postulated for indolizidine alkaloid 5,9E-
259B. The synthetic compounds had mass and FTIR spec-
tra similar, but not identical to those of the natural prod-
uct, but the GC-retention times of the two synthetic C8
diastereomers, which were quite similar, differed mark-
edly from that of the natural 5,9E-259B. Thus, the postu-
lated structure of 259B is not correct and further study will
be required, in particular as to whether and where the
side-chain at C5 is branched.

Additional material
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