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Abstract: Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental 

disorders characterized by dysfunctions in social interactions, communications,  

restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and 

biological research, significant controversy surrounds our understanding of the specific 

mechanisms of their pathogenesis. However, accumulating evidence points to the 

involvement of epigenetic modifications as foundational in creating ASD pathophysiology. 

Epigenetic modifications or the alteration of DNA transcription via variations in DNA 

methylation and histone modifications but without alterations in the DNA sequence,  

affect gene regulation. These alterations in gene expression, obtained through DNA 

methylation and/or histone modifications, result from transcriptional regulatory influences 

of environmental factors, such as nutritional deficiencies, various toxicants, immunological 

effects, and pharmaceuticals. As such these effects are epigenetic regulators which 

determine the final biochemistry and physiology of the individual. In contrast to 

psychopharmacological interventions, bettering our understanding of how these  
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gene-environmental interactions create autistic symptoms should facilitate the development 

of therapeutic targeting of gene expression for ASD biomedical care.  

Keywords: autism; gene expression; environmental factors 

 

1. Autism 

Autism spectrum disorders (ASDs) represent complex, pervasive neuro-developmental disabilities [1], 

characterized by dysfunctions in social interactions, communications and restricted/fixated interests or 

repetitive behavior that manifest in early childhood [2,3]. Most children with ASDs (about 50%–70%) 

are intellectually disabled by nonverbal IQ testing, and are at significant risk of developing seizures [4]. 

Autism is a lifelong disability requiring intensive parental, school, and social support, rendering autism 

an urgent health care priority. 

Currently, there is no definitive pharmacotherapy for the treatment of core symptoms of ASDs [3]. 

Therapies commonly used for ASDs involves educational, behavioral, sensory-based, nutritional, 

hyperbaric oxygen, heavy metal detoxification, immunological interventions, and a variety of 

symptom-directed pharmacological approaches [5–8]. These pharmacological options (i.e., atypical 

antipsychotic drugs) usually only target the secondary symptoms, such as aggression, irritability, 

depression, anxiety and self-injurious behaviors. Dietary and behavioral therapy may help improve 

language, social interactions and communication skills. 

While the etiopathogenesis of ASDs remains elusive and controversial, it is now well recognized 

that ASDs involve the complex interaction of several genes and environmental risk factors [9–11].  

As ASDs result from a complex combination of genetic, epigenetic, environmental (i.e., infections, 

toxins, air pollution, organophosphates, heavy metals, stressors), and immunological factors, these 

pathologies could be referred as multifactorial and polygenic disorders [12–14]. It seems likely that 

epigenetic dysregulation might contribute to significant proportion of ASD cases [15]. Even if specific 

chromosomal regions have been identified in autism-susceptibility loci, the results have been 

inconclusive, and the identification of the underlying genes has failed to produce a substantial causal 

linkage [16]. No single gene can account for more than 1% of the cases of ASDs. 

2. Epigenetics 

The term epigenetics was first coined in the 1940s by British embryologist and geneticist Conrad 

Waddington, who described it as: “the interactions of genes with their environment, which bring the 

phenotype into being” [17]. Our present knowledge enhances this earlier understanding,  

and epigenetics now evaluates the alteration of DNA transcription via variations in DNA methylation 

and histone modifications, but without alterations in the DNA sequence. These variants represent the 

epigenome, which in turn will be reflected in the transcriptome: that portion of the DNA which is 

being actively transcribed into RNA. However, it is noteworthy to consider that the non-coding RNA 

represents over 90% of the transcripts in most cells. Regions of DNA that do not code for proteins  

(i.e., intergenic regions) can be actively transcribed and participate in the genes regulation, and is 
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known as non-coding RNA. Epigenetic factors can impact large-scale “omics”-type cellular processes: 

transcriptome, RNAome, proteome and metabalome [18,19].  

2.1. DNA Methylation 

In post-replication events, the DNA methyltransferase (DNA MTase) enzyme catalyzes the addition 

of a methyl group (CH3-) from the methyl donor S-adenosyl-L-methionine to the cytosine or adenine 

DNA nucleotides, typically at the C5 position of CpG dinucleotides. This biochemical process 

regulates the gene transcription and expression. 

2.2. Histone Modifications 

In mammalian cells, the basic unit of DNA packaging is the nucleosome. Histone basic  

proteins (histones) form the core around which the DNA is wrapped. This formation constitutes the 

chromatin [20]. The covalent modifications of the core histone proteins influence DNA availability to 

transcription processes, regulating in this way high-order DNA structure and gene expression. 

3. Autism and Epigenetics 

Since survival of any organism requires its ability to adapt to the various environmental factors  

it isn’t surprising to observe epigenetic influences more commonly than alteration of the DNA 

sequence [21]. The covalent modifications of DNA likely represent an interface between the changing 

environment and the fixed genome. Many environmental factors that have epidemiological association 

with ASDs exert their effects through epigenetic alterations [22]. Indeed, environmental factors can 

influence physiological process within cells, tissues and organs via changes in gene regulation.  

In example, endocrine-disrupting compounds (EDC) could affect ASD development [22]. Under this 

EDC category are included chemicals that affect endocrine glands, their function, hormone, receptors 

and signaling pathways. They are naturally occurring compounds (genistein), and/or synthetic 

compounds, such as the plasticizing agent bisphenol A (BPA), fluorosurfactants (perfluoro- octanesulfonic 

acid and perfluorooctanoic acid), herbicides (atrazine) and phthalate plasticizers [bis-[2-ethylhexyl] 

phthalate or di-2-ethylhexyl phthalate (DEHP)]; other compounds like lead, arsenic, dioxins, benzene, 

toluene are also included. Human exposure is almost unavoidable as these compounds are widespread 

in the environment (drinking water, household dust, several consumer products, like food and beverage 

containers, to name but a few possible sources). This point of view opens us to new insights into the 

environmental contributions to ASDs. With this in mind, new therapeutic approaches can be designed 

to address the consequences of the epigenetic influences. 

4. DNA Methylation and Autism 

A recent study has found a specific methylation pattern associated with ASD severity [23].  

In addition, significant correlations between DNA methylation and quantitatively measured autistic 

trait scores were also identified, suggesting quantitative relationship between the severity of the 

autistic phenotype and epigenetic variation at several multiple loci previously implicated in the 

pathogenesis of ASDs, including AFF2, AUTS2, GABRB3, NLGN3, NRXN1, SLC6A4 and UBE3A. 
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However, systemic changes in epigenetic programming were not related to ASDs,  

whereas considerable variability was found in DNA methylation at individual CpG sites within  

ASD-discordant monozygotic twin pairs. 

Methylation Level of Specific Genes in ASDs 

In ASDs, DNA methylation has been also linked to reduced expression of the oxytocin  

receptor [24]. Oxytocin is a neuropeptide hormone correlated with social behaviors. A connection 

between oxytocin and ASDs has been demonstrated [25]. Indeed, in a mouse model, the oxytocin 

receptor gene expression is epigenetically regulated by DNA methylation of its promoter [24]. 

Furthermore, methylation of specific sites in the gene promoter of the oxytocin receptor gene 

significantly inhibits its transcription in individuals with autism [24]. These findings also lead to an 

important question: are the social processes under epigenetic control? [26].  

Genes that control synaptic molecules also show epigenetic regulation. Among them, SHANK3 

gene is subjected to a specific epigenetic control mechanism [27]. Indeed, DNA methylation regulates 

the tissue-specific expression of SHANK3 gene [28]. Even if there are no studies indicating a direct 

association between the methylation status of Shank3 and ASD development, epigenetic dysregulation 

of the Shank-mediated connections could probably result in ASD pathogenesis. This gene comprises 

five CpG-islands, and it is associated with autism [29]. Specifically, the methylation of CpG-island 2 

seems to be involved in the tissue-regulated expression. Shank3 mutant mice exhibit impaired social 

interaction and repetitive behaviors like autism. In the central nervous system, the protein SHANK3 is 

mainly expressed in neurons, especially in their synapses, and is strictly associated with the cell 

adhesion proteins neuroligins (NLGN), acting as a scaffolding protein. Neuroligins are a family of cell 

adhesion proteins located on the post-synaptic membrane. NLGNs are involved in the formation and 

maintainence of synapses between neurons. Neuroligins function is disrupted in ASDs, as specific 

mutations in the genes encoding NLGN 3 and NLGN 4 have been found, interfering with synaptic 

transmission [30]. In addition, it has been demonstrated that neuroligin-3 mutations alter tonic 

endocannabinoid signaling [31], providing evidence that alterations in the endocannabinoid pathway 

may contribute to autism pathophysiology. Recently, it has been found that cannabinoid type-2 (CB2) 

receptor is up-regulated in ASD- peripheral blood mononuclear cells (PBMCs) [32].  

DNA methylation dysregulation also contributes to another key event in ASDs. Indeed, DNA 

methylation and pro-oxidant environmental stressors could modulate autism development. A link 

between epigenetic regulation and antioxidant/detoxification capacity has been reported in many 

children with autism that showed genome-wide DNA hypomethylation and oxidative protein/DNA 

damage [33]. Deficit in antioxidant and methylation capacity could promote cellular damage and 

altered epigenetic gene expression.  

Hyper-methylation of specific CpG sites in upstream promoter regions of BCL-2 and retinoic acid 

receptor-related orphan receptor (RORA) genes were identified in autistic children compared to 

healthy developing twins [34]. The expression of these genes was found down-regulated in the 

cerebellum of post-mortem brain tissues from subjects with ASDs. Bcl-2 is a known protein involved 

in the anti-apoptotic process [35]. These findings suggest that a possible dysfunctional apoptotic event 

could lead to altered development of specific brain regions, resulting in decreased cognitive function. 
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RORA belongs to the nuclear receptor-1 subfamily of nuclear hormone receptors and is involved in the 

control of the neuronal oxidative stress [36]. RORA is a novel candidate gene for ASD pathology and 

could be related to sex hormones involvement in autism [37,38]. 

5. Histone Modifications and Autism 

Neurodevelopmental pathologies, including ASDs, are affected by histone modifications [39,40]. 

Lysine acetylation, methylation, SUMOylation, and ubiquitinylation; arginine methylation;  

serine phosphorylation; proline isomerization are the covalent modifications of histone proteins.  

Most of them are localized to the amino- and carboxy-terminal histone tails, and a few are localized to 

the histone globular domains [41]. Lysine methylation of histone H3 could be involved in autism 

development [42]. The amino-acid lysine can carry up to three methyl groups. Each methylation could 

represent a distinct functional state of the cell [43]. Histone methylation machinery is involved in brain 

function and development.  

Alterations in this process could be related to autism. In pre-frontal cortex of autistics it has been 

identified altered methylation of H3K4 sequences in genes and loci implicated in regulating neuronal 

connectivity, social behaviors, and cognition [44]. Mutations in the X-linked gene SMCX which 

encodes a histone 3 lysine 4 (H3K4)me3-specific demethylase have been demonstrated [45]. This gene 

regulates in turn other genes, i.e., SCN2A, CACNA1H, BDNF, SLC18A1, associated with autism and 

cognitive dysfunction. Interestingly, it has been demonstrated a possible connection between 

epigenetic changes in ASD relevant behaviors and gene expression alterations. Indeed, histone 

deacetylase inhibitors sodium butyrate and trichostatin A were able to increase up-regulation of 

oxytocin receptor and vasopressin V1a receptor [46]. The genes encoding for these two receptors are 

strongly associated to ASD-like behaviors. 

6. Environmental Factors Linked to Epigenetic Mechanisms in Autism 

ASDs are now recognized as pathologies caused from several environmental risk factors [47].  

While the genetics of autism are still incompletely elucidated, epigenetic mechanisms likely are the 

interface between the individual’s genetics and susceptibility to the environmental influences which 

subsequently develop the autistic phenotypic expression. Indeed, epigenetic modifications are known to 

be influenced by nutritional status, medications and even mental stress. A positive association between 

the U.S. Environmental Protection Agency (EPA)’s risk of neurological disease index, which was based 

on 23 air emission parameters, and autism in several US counties was found [48]. Another recent study 

found a positive correlation between exposure to traffic-related air pollution, nitrogen dioxide, PM2.5,  

and PM10 during pregnancy and during the first year of life with autism [49]. Prenatal exposure to 

anticonvulsant medication is a risk factor for the development of ASDs [50]. In animal models, it has 

been demonstrated that prenatal exposure to bisphenol A (BPA) affects mRNA levels of several genes 

encoded for estrogen receptors, oxytocin, and vasopressin, acknowledged as important neuropeptides 

modulators of diverse social behaviours (affiliative behavior—pair-bonding and maternal behavior), 

social cognition (social memory), and social approach (social preference or social avoidance)) [51–53]. 

Indeed, estrogen receptors, oxytocin, and vasopressin gene expressions variations are associated with 
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differences in social interaction [54] and are strictly connected with ASDs, as dysregulations in these 

brain neuropeptide systems could underlie social dysfunctions in ASDs [24,55,56]. 

Polybrominated diphenyl ethers (PBDEs) exposure affects several proteins involved in neuronal 

survival, growth, and synaptogenesis, such as Brain-Derived Neurotrophic Factor (BDNF),  

Calcium-Calmodulin Kinase II (CaMKII) and growth-associated protein-43 (GAP-43) [57],  

indicating that the exposure to several environmental chemicals can be a candidate factor associated 

with the development of ASDs [58]. Indeed, these proteins are involved in normal brain maturation. 

Clinical data and animal models indicate that they are dysregulated in ASDs. Altered BDNF levels 

have been found in autistic patients [59]. BDNF is a neurotrophic factor and important regulator of 

neuronal functions [60]. Several evidences indicate an involvement of BDNF in ASDs [61]. 

Interestingly, BDNF plays a role as trophic support for serotonergic neurons, and serotonin levels are 

altered in ASDs [59].  

Reduction in the phosphorylation of CAMKII was found in the maternal immune activation (MIA) 

autism mouse model of gestational poly(IC) exposure [62]. Overexpression of GAP-43 is linked to 

excessive number of thin axons in cortex areas of autistic subjects [63]. 

It has been recently proposed that environmental factors-associated epigenetic changes in 

epitestosterone synthesis could contribute to the development of autistic-like behaviors in rodents 

administered with a postnatal dose of citalopram, estradiol or valproic acid [64]. Dietary vitamin D 

could regulate epigenetic events. Maternal vitamin D deficiency has been indicated as a risk factor for 

the development of infantile autism [65,66]. Vitamin D and its receptor (VDR) are involved in the 

regulation of several genes controlling inflammation, immunity, cellular proliferation, differentiation, 

and apoptosis. Indeed, nuclear VDR activated by a metabolite of vitamin D, the 1,25-dihydroxyvitamin 

D(3), cooperates with some chromatin modification enzymes (i.e., histone acetyltransferases and 

histone deacetylases), taking a role in complex epigenetic events [67].  

The influence of endogenous and exogenous factors on genotype could impact the metabolic 

phenotype. It has been demonstrated that autistic patients show differences in allele frequency and/or 

significant gene-gene interactions for relevant genes encoding for the protein involved in methionine 

metabolism, such as the reduced folate carrier, transcobalamin II, catechol-O-methyltransferase, 

methylenetetrahydrofolate reductase, and glutathione-S-transferase, indicating an increased vulnerability 

to oxidative stress (endogenous or environmental) [68]. 

7. Other Process 

Beyond the DNA methylation changes, novel findings indicate RNA methylation changes could 

have functional implications, i.e., on mRNA life-cycle, and could be related to glutathione anti-oxidant 

levels [69]. Indeed, this methylation could be responsible to regulate mRNA maturation at both  

pre-transcription level, by regulating precursor-RNA processing and splicing into mRNA,  

and post-transcription level by regulating the functions of ribonucleoproteins and RNA binding 

proteins in mRNA translation. The methylation process is under the control of glutathione anti-oxidant 

levels, indicating that the redox status of neurons could act as central regulatory switch for 

methylation-based changes in mRNA processing. This aspect could be very interesting in ASDs,  

since these syndromes show strong imbalance in glutathione levels [70], enhancing the 
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redox/methylation hypothesis of autism [71]. According to this theory, the oxidative stress, mediated 

by environment factors, could trigger impaired methylation and, consequently, neurological deficits. 

8. Autistic-Like Syndromes 

Beyond ASDs, other autism-like disorders show epigenetic regulation. However, differently from 

autism, these diseases are clinically recognizable genetic syndromes. Rett syndrome (RTT), a disease 

caused by mutations in the gene coding for methyl CpG-binding protein 2 (MeCP2), is associated to 

defects in epigenetic modifiers [72]. RTT patients show alteration of the chromatin state of MeCP2 

target genes: increase in the density of histone H3 and decreased levels of trimethylation of lysine 4 on 

histone H3 (H3K4me3), a modification associated with transcriptional activation [73]. 

Fragile X syndrome (FXS) is a monogenetic disease that causes intellectual disability and  

autism-like behavior [74]. The FXS mutation is an huge expansion of a trinucleotide repeat in the  

5′ untranslated region (UTR) of the X-linked gene fragile X mental retardation 1 gene (FMR1) [75]. 

These polymorphic CGG triplet repeats (>200 CGG) in the 5′UTR of FMR1 gene are able to trigger 

heterochromatin formation, histone deacetylation and trimethylation at critical residues H3K9 and 

H3K27, and DNA methylation across the promoter and through the repeat. Heterochromatin formation 

and DNA methylation silence FMR1 transcription [76]. It has been demonstrated that FXS cells show 

a decrease in methylation of histone H3 at lysine 4 together with a large increase in methylation at 

lysine 9. These events could switch from euchromatin to heterochromatin in the disease state [77]. 

The most consistent known chromosomal abnormality reported that often includes autism is the 

duplication of the 15q11-q13 segment, which contains a cluster of imprinted key genes essential for 

normal neurodevelopment [78]. The duplications of chromosome 15q11-q13 are the only commonly 

recurrent cytogenetic aberration associated with ASDs [79] and reveals epigenetic alterations in gene 

expression [80]. Among the genes present in the 15q11-q13 segment, there is the cluster of three 

GABA(A) receptor subunit (GABR) genes; some autistic patients and RTT patients show common 

epigenetic dysregulation of these genes [81]. 

9. Conclusions and Perspectives 

Although the role played by epigenetics in ASDs remains in its infancy, as well as the exact 

epigenetic account for the ASDs cases, these data infer that ASDs may be “epigenopathies”, and 

further research will be needed to fully characterize epigenetic mechanisms in ASDs. DNA 

methylation and histone modifications can be analyzed through technological advances,  

i.e., combining chromatin immunoprecipitation with single DNA molecule sequencing [82], providing 

detailed epigenetic information. Understanding the epigenetic processes in ASDs is essential for 

developing targeted epigenetic therapy. Indeed, epigenetic mechanisms can be modifed. Epigenetic 

drugs targeting DNA methylation and histone deacetylation enzymes are able to reverse abnormal gene 

expression profiles [83], offering new tools to control the development of complex disorders like 

autism. This opens a new era of patient-specific therapies for children with ASDs. Epigenetic drugs, 

such as DNA methyltransferases inhibitors azacitidine and decitabine, have been mostly investigated 

as anti-tumor drugs. However, they also show other properties, such as immunomodulatory effects [84]. 

Low doses of these drugs could be helpful in ASD therapy. Histone deacetylase inhibiting agents could 
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be used as neuroprotective drugs [85]. It is noteworthy to consider that currently no studies or clinical 

trials with epigenetic drugs have been conducting for ASD treatment. 
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