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The variation of fruit among batches influences the performance of the

portable near infrared spectroscopy (NIRS) instrument and then determines the

success or failure for practical application in fruit industry. Model development

and update methods were investigated for determining soluble solids contents

(SSC) and titrable acidity (TA) of navel orange. The pretreatment and variable

selection methods were explored for building partial least square regression

(PLSR) models. The best models, developed by the combination of second

derivative (2D) and variable sorting for normalization (VSN), could predict SSC

but not TA. The root mean square error of prediction (RMSEP), coe�cient of

determination for prediction (R2p) and ratio of prediction to deviation (RPD) for

SSC were 0.66 ◦Brix, 0.66 and 1.73. Model maintain methods of model update

(MU) and slope and bias correction (SBC) achieved the best results in predicting

SSC for two external validation sets with R
2
p, RMSEP and RPD of 0.54, 0.83 ◦Brix,

1.60 and 0.52, 0.83 ◦Brix, 1.65, respectively. The results suggested model

development and update with MU and SBC could improve the robustness of

the portable NIRS instrument in predicting SSC of navel orange.
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Introduction

The internal quality attributes of soluble solids content (SSC) and titrable acidity

(TA) are main indexes for characterizing maturity level and taste of citrus fruit. The

near infrared spectroscopy (NIRS) with the advantages of non-destructive, rapid and

on field application was firstly integrated into package system for fruit sorting in Japan

since the late 1980 s (1). The portable NIRS instrument followed online sorting system

was developed successfully in 2,000, which was suitable for determining fruit properties

such as monitoring quality variation for supply chain or predicting optimal harvest date

(OHD) (2). To some extent, model development and update determine the success or

failure for practical application of NIRS technology.
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Currently, partial least square regression (PLSR) algorithm

is adopted widely to build a robust model combined with

pretreatment methods (3). The first or second derivative spectra

were frequently applied to develop PLSR models rather than

raw absorption spectra because of baseline correction with

derivative pretreatment. The combinations of derivative spectra

and standard normal variate (SNV) or multiplicative scattering

correction (MSC) were generally operated for removing light

scatter and improving the accuracy of the model to the interest

attributes of fruit (4). An extension algorithm of SNV named

variable sorting for normalization (VSN) was proposed by

Rabatel et al. (5) in 2019. VSN adjusted the weight to the

wavelength for strengthening the target variables. The root mean

square error of prediction (RMSEP) was reduced by 34% with

VSN pretreatment for olive dry matter content (DMC) when the

size of fruit did not match with the measurement window of

the portable NIRS instrument (6). The normalized spectral ratio

(NSR) was proposed by Li et al. (7) in 2020, which chose two

wavelengths for replacing slope and offset parameters of MSC.

The RMSEP of SSC for apple was decreased from 0.85 to 0.64%

after NSR correction using an online sorting system.

Variable selection also is a critical step for extracting

useful variables or eliminating variables containing mostly

noise during model development (3). Recently, variable

selection algorithms were explored such as variable combination

population analysis (VCPA) (8), iteratively retaining informative

variables (IRIV) (9), Monte Carlo uniformation variable

elimination (MC-UVE) (10), successive projections algorithm

(SPA) (11) and window search (6). For fruit quality assessment

by the portable NIRS instrument, an optimal wavelength region

often was recommended. For example, a good result with

TABLE 1 Statistical results for 12 populations.

Population Variety Fruit # Spectra # SSC (◦Brix) TA (g/L) Date

Mean SD Mean SD

1 Newhall 22 66 11.3 0.77 101.1 22.64 14/10/2021

2 Newhall 29 87 11.2 0.92 88.8 14.56 24/10/2021

3 Newhall 29 87 12.1 1.02 18.4 6.00 09/11/2021

4 Newhall 29 87 11.9 1.07 17.4 6.65 23/11/2021

5 Newhall 30 87 12.6 1.14 17.8 7.21 10/12/2021

6 Newhall 40 120 12.5 0.87 16.0 4.38 31/12/2021

7 Lunwan 30 90 11.7 1.84 10/05/2022

8 Lunwan 30 90 11.8 1.27 20/05/2022

9 Lunwan 30 90 11.0 1.03 28/05/2022

10 Lunwan 30 90 11.3 1.22 10/06/2022

11 Lunwan 30 90 11.1 1.15 24/06/2022

12 Lunwan 30 90 11.2 1.10 10/07/2022

Total 359 1074

SSC is soluble solids content; TA is titrable acidity; SD is standard deviation.

determination coefficient (R2) of 0.90–0.96 and RMSEP of 0.29–

0.33 ◦Brix was achieved in predicting SSC of pear, and the range

700–930 nm was recommended for pear sugar content using

Vis-NIR instrumentation adopted in the current study (12). The

region of 729–975 nm was recommended to build PLSR model

for DMCofmango for Vis-NIR instrumentation (13). Therefore,

variable selection methods should be considered in this work.

Mathematical models imbedded in the portable NIRS

instrument performed poorly when the calibration model

predicted new groups with different season, variety, population

or environmental conditions (14). At present, the common

solution is merging new samples into the original calibration

set and recalibrated, here it is named as model updating

(MU) (15). MU is necessary to support the portable NIRS

instrument application success for fruit quality assessment

(16). The variation between calibration and prediction sets

causes the change of both slope and bias of PLSR model

(17), slope and bias correction (SBC) is a simple and

easy way to maintain PLSR model (18). The dynamic

orthogonalization projection (DOP) algorithm adopts external

parameter orthogonalisation (EPO) framework to correct the

spectra between the original calibration and new prediction

sets for updating the PLSR model. RMSEP was reduced by

66% in predicting DMC of olive fruit using DOP algorithm

(19). The orthogonal signal correction (OSC) proposed by

Wold et al. (20) provides another way to correct the

spectra difference among fruit varieties (21). Mishra and

Woltering (15) proposed a semi-supervised parameter-free

calibration enhancement (PFCE) approach to update the

model for predicting several new batches of pear and kiwi

fruit. The performance of the model in predicting moisture
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TABLE 2 The di�erences and similarities between two varieties derived from www.baidu.com with keywords of Newhall and Lunwan in Chinese.

Variety Weight Mature period Edible rate Skin color

Newhall 250–350 g November to January 73–75% Orange yellow

Lunwan >200 g March to April 74.1% Shallow orange

Weight refers to average weight of single fruit.

FIGURE 1

Flowchart of all experimental procedures, P represented population.

content and total soluble solids of pear and kiwi fruit were

greatly improved using PFCE approach. Therefore, Model

updating also was considered for assessment the quality of

navel orange.

The objective was to investigate an approach for

model development and update in assessment the quality

of nave orange using a portable NIRS instrument. The

pretreatment and variable selection methods were attempted

to build a robust PLSR model. The update methods were

explored for improving the performance of PLSR model to

new populations.

Materials and methods

Samples preparation

The populations of 1-6 (Newhall navel orange) were

harvested from a local orchard from Oct. 14, 2021 to Dec. 31,

2021 located at Ganzhou Citrus Research Institute (114◦51
′

2
′′

E,

25◦46
′

36
′′

N), Ganzhou, China. The fruit tree was 6-year-old

Newhall navel orange, a mainstream species of citrus. Thirty

and forty samples were collected randomly from three trees at

moderate height for the first five and sixth batches, respectively.
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The samples were cleaned and transported to the laboratory at

Nanchang, China. Removing damage samples, a total of 179

navel orange samples were obtained. To verify the applicability

of the model to new batches, the populations of 7–12 (Lunwan

navel orange) (n = 180) were collected randomly from a local

market fromMay 10, 2022 to Jul. 10, 2022. The statistical results

for the samples were listed in Table 1. For understanding the

differences and similarities well-between the two varieties, the

main features for Newhall and Lunwan were listed in Table 2.

The procedures of the model development and update were

shown in Figure 1. One internal and three external validation

sets were applied to investigate influence of coverage of the

update set to the prediction set (Figure 1).

Near infrared spectra collection

The spectra of the samples were collected by hand-held non-

destructive detector for fruit internal quality (H100F, Sunforest,

Incheon, Korea). The full region from 650 to 950 nm composed

of 151 variables with wavelength interval of 2 nm. The light

source is two tungsten halogen lamps (10W) arranged at an

included angle of 100 degrees. In order to avoid the influence

of external environment, the samples were placed at room

temperature (about 20◦C) for 24 h before spectra collection.

After startup of the instrument, the reference and dark current

spectrum were recorded with the integration time of 900

milliseconds. Then the spectrum of navel orange was recorded

with the integration time of 900 milliseconds. During collection,

the navel orange was tightly attached to the probe. The light

emitted by two halogen tungsten lamps, after diffuse reflected by

navel orange tissue, entered into the detector of the spectrometer

and was converted into absorption spectrum (Figure 2). A

spectrum was recorded every 120 degrees along the equator.

Considering the variation of SSC distribution within a sample,

each spectrum was regarded as a sample.

Internal quality attributes measurement

After spectra collection, the flesh at the spectral

measurement point was juiced, filtered and dripped into a

beaker for measurement of SSC and TA. The SSC was measured

by digital sugar meter (PAL-1, Atago Co., Tokyo, Japan).

The measurement process is to suck juice drops onto the light

window of the sugar meter until it covered the light window. The

measurement was repeated for three times and the average value

was obtained. TA was measured by potentiometric titration

(PE28, Mettler-Toledo, Zurich, Switzerland), the end point of

titration was reached when sodium hydroxide solution was used

to titrate to pH 8.2, and TA was calculated according to the

volume of sodium hydroxide solution consumed [formula (1)].

FIGURE 2

Optical geometry of H100F instrument.

But it should be noted, for populations of 7–12 only SSC

was measured.

X =
[c× (V1 − V2)]× k× F

m
× 1000 (1)

Where X is TA value, c is the concentration of sodium

hydroxide solution, V1 is the volume of sodium hydroxide

solution consumed when titrating fruit juice, V2 is the

volume of sodium hydroxide solution consumed during blank

experiment, k is the conversion factor of acid (citric acid is

0.064), F is the dilution ratio of fruit juice and m is volume

of juice.

Data analysis

The pretreatment algorithms of second derivative (2D),

SNV, MSC, VSN and NSR, variable selection algorithms

of VCPA, IRIV, MC-UVE, SPA and window search and

model upgrade algorithms of SBC, DOP and OSC were

carried out by use of Matlab 2020a (Mathworks Inc., Natick,

MA). The VSN and DOP algorithms were provided by

Prof. Roger (5, 19), the others were programmed by

ourselves. All the algorithms were programmed based

on PLSR.

The 5-fold cross validation was adopted to determine

the number of latent variables (LVs). The determination

coefficient of cross validation and prediction (R2cv and R2p),

root mean square error of cross validation and prediction

(RMSECV and RMSEP) were calculated. A quick guideline of

RPD defined as the ratio of standard deviation (SD) to the

RMSECV or the RMSEP was applied for model assessment
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FIGURE 3

Averaged absorption (A,B) and 2D (C,D) spectra for 12 populations. For better comparison with P7–12, P1–6 was represented with a thin, black

and dashed line in panel (B,D). P represented population.

(22, 23). The critical limit of RPD is one, above which some

predictive power exists. Ideally, RPD should be >2 for a

good calibration.

Results and discussion

Analysis of near infrared spectral
characteristic

Generally, the derivative spectra were applied to build

models for removing baseline shift in fruit quality assessment

by the portable NIRS instrument (3). The spectra of this

study were transformed into second derivative (2D) spectra

by second Savitzky-Golay derivative with window width of 13

points and fitting order of 2. The averaged absorption and 2D

spectra were showed in Figure 3. For better comparison with

the averaged spectra of populations 7–12, populations of 1–6

were represented with a thin, black and dashed line in panel

B and D of Figure 3. From Figure 3A, the spectral intensities

for population 2 were higher than the others, however, the

variation for six populations were consistent. The baseline shift

was removed after 2D pretreatment, and the characteristic

peaks of 680, 740, 815, 840, 880, and 920 nm could be seen

from Figure 3B. The absorption peak around 680 nm is due to

the decrease of chlorophyll content (24). The absorption peak

near 740 nm is related to the third-overtone of O-H, and the

absorption peak near 840 nm is assigned to an O-H combination

(25, 26). The absorption peak near 815 nm is mostly related to

the fourth-overtone N-H, and the absorption peak near 880 nm

may be caused by the fourth overtone C-H (27). The absorption

peak near 920 nm is interpreted as a combination of the third

overtone CH-vibration and the third-overtone CH2 vibration

(28). In addition, the averaged SSC and TA for every population

were also marked in Figure 3. But we could not observe pattern

clearly, chemometrics methods should be adopted to interpret

and develop the model.
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Pretreatment methods

Near infrared spectroscopy contains not only the target

component information, but also other irrelevant information

and noise. In the process of developing a robust mathematical

model, pretreatment for the spectral data has become a common

way to remove irrelevant information (29). The pretreatment

algorithms of 2D, SNV, MSC, VSN, and NSR were adopted for

finding out the suitable pretreatment method. Two wavelengths

of 824 and 916 nm were chosen by NSR algorithm without

any physical justification, respectively. The number of latent

variables (LVs) was determined by the lowest RMSECV value

using 5-fold cross validation method. The optimal number of

LVs for SSC and TA were 9 and 7, respectively. As shown in

Table 3, the best model for SSC (R2p = 0.66, RMSEP= 0.66◦Brix)

with RPD of 1.73 indicated that this model could screen SSC

roughly. But this work also encouraged quality assessment

of navel orange to forward. The RMSEP reduction of 17.5%

for citrus was inferior to 34% reduction for olive DMC (6).

Because citrus fruit size matched well with H100F test window,

but single olive size was smaller than F750 test window. This

result was superior to 10% reduction using SNV pretreatment

method for citrus SSC by a portable device (30). However,

several pretreatment methods did not achieve good results in

TABLE 3 Calibration (P1–4) and prediction (P5) results of PLSR models for SSC and TA with di�erent pretreatment methods.

Attribute Pretreatment LVs Calibration Prediction

R2
cv RMSECV Bias RPD R2

P RMSEP Bias RPD

SSC (◦Brix) 2D 9 0.62 0.64 −0.0045 1.48 0.49 0.80 0.2548 1.43

2D+ SNV 9 0.58 0.67 −0.0024 1.42 0.52 0.78 0.3266 1.46

2D+MSC 9 0.59 0.66 −0.0040 1.44 0.57 0.74 0.3737 1.54

2D + VSN 9 0.60 0.66 –0.0013 1.44 0.66 0.66 0.1382 1.73

2D+ NSR 9 0.53 0.71 −0.0080 1.34 0.47 0.95 0.4764 1.20

TA (g/L) 2D 7 0.83 16.16 –0.0079 0.77 0.66 21.82 0.6255 0.33

2D+ SNV 7 0.79 17.86 −0.0154 0.70 0.51 26.18 5.2522 0.28

2D+MSC 7 0.80 17.74 −0.0066 0.70 0.50 26.24 6.7637 0.27

2D+ VSN 7 0.79 17.92 −0.0087 0.71 0.53 25.53 7.1741 0.28

2D+ NSR 7 0.80 17.48 0.0129 0.71 0.54 25.29 −2.7920 0.29

The best calibration and prediction results for each parameter were shown in bold. P represented population.

TABLE 4 Calibration (P1–4) and prediction (P5) results of PLSR models for SSC with di�erent variable selection methods based on 2D or 2D + VSN

pretreatment.

Attribute Pretreatment Method Variable LVs Calibration Prediction

R2
cv RMSECV Bias RPD R2

P RMSEP Bias RPD

SSC (◦Brix) 2D None 151 9 0.62 0.64 −0.0045 1.48 0.49 0.80 0.2548 1.43

2D VCPA 10 3 0.56 0.69 −0.0054 1.38 0.45 0.83 −0.1752 1.37

2D IRIV 30 5 0.62 0.63 −0.0022 1.51 0.54 0.76 0.1715 1.50

2D MC-UVE 45 4 0.59 0.66 −0.0018 1.44 0.45 0.84 0.1113 1.36

2D SPA 24 11 0.60 0.65 −0.0019 1.46 0.48 0.81 0.1481 1.41

2D Window search 121 9 0.65 0.61 –0.0023 1.56 0.55 0.75 0.1016 1.52

2D Previous report 116 7 0.62 0.64 −0.0051 1.48 0.51 0.79 0.1534 1.44

2D + VSN None 151 9 0.60 0.66 –0.0013 1.44 0.66 0.66 0.1382 1.73

2D+ VSN VCPA 11 6 0.55 0.69 −0.0056 1.38 0.55 0.76 −0.0158 1.50

2D+ VSN IRIV 41 6 0.60 0.65 −0.0019 1.46 0.63 0.68 0.1429 1.68

2D+ VSN MC-UVE 35 10 0.55 0.69 −0.0038 1.38 0.40 0.87 −0.1349 1.31

2D+ VSN SPA 27 11 0.59 0.65 −0.0040 1.46 0.56 0.75 −0.0714 1.52

2D+ VSN Window search 129 9 0.61 0.64 −0.0020 1.48 0.56 0.75 −0.1605 1.52

2D+ VSN Previous report 116 9 0.52 0.71 −0.0026 1.34 −24.99 5.75 1.4920 0.20

Previous report recommended wavelength band of 700–930 nm for H100F instrument in predicting SSC of pear by Choi et al. (12). The best result in calibration and prediction for each

parameter was bolded. P represented population.
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TA prediction. The best model (R2p = 0.66, RMSEP= 21.82 g/L)

with RPD of 0.33 for TA developed by 2D spectra did not have

the predictive ability, this result reconsolidated the conclusion

in the literatures (4, 31). It had been noted that the interactance

FIGURE 4

Variation of RMSECV for SSC by variable selection method of

window search.

optical geometry for field-portable instrumentation was not

appropriate for assessment of the acidity of intact low TA fruit

of 1%. Therefore, only SSCmodel was developed and updated in

the following section.

Variable selection

Variable selection is a common method for extracting

informative variables or removing irrelevant variables to target

component during model development (32). Generally, two

strategies involved wavelength combinations and wavelength

bands were adopted to build a robust model. The wavelength

range for most of the portable fruit selector instruments locates

below 1,100 nm due to strong penetration ability and low-

cost spectrometer. The variable number often did not exceed

three hundred, for example, 151 variables for H100F and 306

for F750, respectively. Therefore, a reasonable window often

is recommended, for example 700–930 nm for H100F and

729–975 nm for F750 in predicting SSC of pear and DMC of

mango (12, 13). In this work, window search and compared

methods of VCPA, IRIV, MC-UVE and SPA were adopted

FIGURE 5

Plots of principal component analysis score for absorption (A,C) and 2D spectra (B,D). P1–6, P7–8, P9–10 and P11–12 were illustrated using

open white circles with black contour, black closed circles, red closed circles and green closed circles in panel (C,D). P represented population.
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TABLE 5 Model update results for H100F portable NIRS instrument.

Method Parameters Calibration Prediction

Population R2
cv RMSECV Bias RPD Population R2

P RMSEP Bias RPD

None LVs= 9 1–4 0.60 0.66 −0.0013 1.44 5 0.66 0.66 0.1382 1.73

None LVs= 9 1–4 0.60 0.66 −0.0013 1.44 9–12 −1.92 2.10 1.6978 0.62

None LVs= 9 1–4 0.60 0.66 −0.0013 1.44 7–8, 10–11 −2.52 2.27 1.7183 0.60

None LVs= 9 1–4 0.60 0.66 −0.0013 1.44 7–8, 11–12 −3.79 2.58 2.1336 0.52

OSC LVs= 7 1–4 0.44 0.77 −0.0030 1.23 5 0.69 0.63 0.0369 1.81

OSC LVs= 7 1–4 0.44 0.77 −0.0030 1.23 9–12 0.08 1.18 0.0839 1.13

OSC LVs= 7 1–4 0.44 0.77 −0.0030 1.23 7–8, 10–11 0.14 1.12 0.1031 1.22

OSC LVs= 7 1–4 0.44 0.77 −0.0030 1.23 7–8, 11–12 0.05 1.20 0.4515 1.12

MU LVs= 9 1–4+ (6)** 0.61 0.66 −0.0036 1.41 5 0.64 0.67 0.3178 1.70

MU LVs = 9 1–4 + (7–8)** 0.55 0.74 0.0044 1.55 9–12 0.54 0.83 −0.0632 1.60

MU LVs= 9 1–4+ (9, 12)** 0.56 0.74 −0.0011 1.34 7–8, 10–11 0.52 0.84 −0.0300 1.63

MU LVs= 9 1–4+ (9–10)** 0.59 0.73 −0.0016 1.37 7–8, 11–12 0.31 0.98 0.5340 1.37

SBC LVs= 9 1–4+ (6)*# 0.60 0.66 −0.0013 1.41 5 0.71 0.60 0.0577 1.90

SBC LVs= 9 1–4+ (7–8)*# 0.60 0.66 −0.0013 1.55 9–12 0.55 0.84 −0.0129 1.58

SBC LVs = 9 1–4 + (9, 12)*# 0.60 0.66 −0.0013 1.34 7–8, 10–11 0.52 0.83 0.0152 1.65

SBC LVs = 9 1–4 + (9–10)*# 0.60 0.66 −0.0013 1.37 7–8, 11–12 0.33 0.96 0.5012 1.40

DOP LVs = 9, K = 6 1–4 + (6)* 0.61 0.65 −0.0032 1.46 5 0.73 0.58 0.0261 1.97

DOP LVs= 9, K= 6 1–4+ (7–8)* 0.54 0.70 −0.0035 1.64 9–12 0.49 0.88 0.0114 1.51

DOP LVs= 9, K= 6 1–4+ (9, 12)* 0.57 0.68 −0.0031 1.46 7–8, 10–11 0.47 0.88 0.0636 1.56

DOP LVs= 9, K= 5 1–4+ (9–10)* 0.56 0.68 −0.0032 1.47 7–8, 11–12 0.20 1.05 0.6199 1.28

The PLSR model for SSC was developed based on 2D + VSN pretreatment. The best result in calibration set and prediction set for SSC was bolded. RPD value of MU was different with

None, OSC, SBC and DOP. Because the number in predicting set was different. The symbol (*) represents the update set for spectra correction between the original calibration set and the

update set using DOP method. The symbol (*#) represents the update set for model parameters correction between the original calibration set and the update set using SBC method. The

symbol (**) represents the update set adding to the original calibration set for recalibration.

to choose related variables to SSC (Table 4). For SSC, the

highest RPD of 1.52 was obtained with the optimal wavelength

band of 672–912 nm (121 variables). Figure 4 showed the result

of variable selection by window search, and the minimum

RMSECV can be obtained in the region of 672–912 nm.

However, the best result (R2p = 0.55, RMSEP = 0.75◦Brix,

RPD = 1.52) with variable selection was still inferior to VSN

pretreatment with RPD of 1.73. Because VSN attached different

weights for adjusting the contribution of every variable to SSC.

Further, all methods for variable selection failed based on 2D

spectra after VSN pretreated. Therefore, 2D spectra combination

of VSN pretreatment in the full region (650–950 nm) were

applied for model update.

Model update

The samples in calibration set may not cover with new

samples well in prediction set, and the performance of the model

will decrease (14). Therefore, model update is a crucial routine

for practical application of the portable NIRS instrument. The

principle of the model update is to figure out the pattern

between calibration and prediction sets. So 2D spectra in the

region of 650–950 nm were applied for SSC model update in

this section. The score plots of principal component analysis

(PCA) for absorption and 2D spectra were shown in Figure 5.

The update and prediction sets were designed as shown in

Figure 1. The update set of populations 9–10 and prediction

set (populations 7–8, 11–12) were used as a negative group

during external validation because the region of populations

9–10 could not cover the populations 7–8 and 11–12 well. The

methods of DOP, OSC, SBC and MU were employed to update

the model, respectively.

DOP method is an extension of EPO (19), which removes

the variation in spectra caused by the population change using

EPO framework. OSC was compared because of good spectra

correction ability was achieved in the literature (21). SBC

was also considered because it provided a direct correction

routine based on model parameters (18, 33). The number of

the samples adding into the calibration set was determined

via observing the change of the RMSEP (16). For internal and

external validation sets, 40 and 30 fruit samples were used as

the standard samples in the update sets, which were added

into the original calibration set or corrected spectra. K, the

parameter of DOP, was optimized from 1 to 20, was listed

in Table 5.
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FIGURE 6

Prediction results of the PLSR model of SSC after SBC (A) and

DOP (B) in predicting populations 7–8 and 10–11 (n = 360) and

populations 5 (n = 87), respectively.

For the internal validation (population 5), the best result

was obtained using DOP method followed by SBC, OSC and

MU with R2p of 0.73, RMSEP of 0.58 ◦Brix and RPD of 1.97

(Table 5; Figure 6B). It could be found from rows 2 to 4 in Table 5

that direct application of the PLSR model failed completely in

external validation (RPD < 1). It should be noted that the PLSR

model developed with Newhall navel orange only allowed to

work on the new batch (Lunwan navel orange) after updating.

For the three external validation sets, methods of MU, SBC

and DOP for the two positive groups (populations 9–12 and

7–8, 10–11) achieved better results than the negative group

(populations 7–8 and 11–12) except OSC. The negative group

yielded always the worst results, because the performance for

model update was determined by the representation of the

update set to the prediction set (34). The prediction set could

not be covered well by the update set in Figures 5C,D. The best

results in predicting populations 9–12, populations 7–8 and 10–

11 and populations 7–8 and 11–12 were achieved by MU and

SBC, respectively (Table 5; Figure 6A).

TABLE 6 The previous reports on assessment of citrus quality using

NIRS instrument.

Objective Attribute Method Result References

Citrus SSC SNV-SPA Rp= 0.92,

RMSEP= 0.57

(30)

Orange SSC SpectraNet−53 Rp= 0.40,

RMSEP= 1.16

(35)

Mandarin Sugar degree BPNN Rp= 0.87,

RMSEP= 0.74

(36)

Citrus SSC VABPLS Rp= 0.82,

RMSEP= 0.60

(37)

Rp is correlation coefficient of prediction; VABPLS is variable adaptive boosting partial

least squares; SpectraNet−53 is a deep residual learning architecture; BPNN is backward

propagation neural network.

The internal validation (population 5) and two positive

validation (population 9–12, 7–8, and 10–11) sets with R2p of

0.52–0.73 and RMSEP of 0.58–0.83 were superior to the previous

report in predicting citrus SSC for Rp of 0.4 and RMSEP of

1.16 Brix (30). However, our result was inferior to the reports in

the literatures (35–37) (Table 6). Because an external prediction

set with different variety and region was still a challenge for

the portable NIRS instrument practical application. Methods of

SBC and MU were also recommended for easy operation for

the use.

Conclusions

Model development of pretreatment and variable selection

methods and model upgrade methods of MU, SBC, DOP, and

OSCwere investigated to ensure the predictive ability of portable

NIRS instrument for SSC and TA of citrus fruit. The best

models could predict SSC but not TA according to the critical

limit of RPD of one. For model development, the combinations

of VSN and second derivative pretreatment in the full region

(650–950 nm) achieve the best results with R2p of 0.66, RMSEP of

0.66 ◦Brix and RPD of 1.73 in predicting SSC. For model update,

MU and SBC achieved the best results in predicting SSC for two

external validation sets with R2p, RMSEP and RPD of 0.54, 0.83
◦Brix, 1.60 and 0.52, 0.83 ◦Brix, 1.65, respectively. In addition,

this work provided a case for model development and upgrade

for the portable NIRS instrument in practical application of fruit

quality assessment.
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