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Abstract

A major rationale for the advocacy of epigenetically mediated
adaptive responses is that they facilitate faster adaptation to envi-
ronmental challenges. This motivated us to develop a theoretical–
experimental framework for disclosing the presence of such adap-
tation-speeding mechanisms in an experimental evolution setting
circumventing the need for pursuing costly mutation–accumula-
tion experiments. To this end, we exposed clonal populations of
budding yeast to a whole range of stressors. By growth phenotyp-
ing, we found that almost complete adaptation to arsenic emerged
after a few mitotic cell divisions without involving any phenotypic
plasticity. Causative mutations were identified by deep sequencing
of the arsenic-adapted populations and reconstructed for valida-
tion. Mutation effects on growth phenotypes, and the associated
mutational target sizes were quantified and embedded in data-
driven individual-based evolutionary population models. We found
that the experimentally observed homogeneity of adaptation
speed and heterogeneity of molecular solutions could only be
accounted for if the mutation rate had been near estimates of the
basal mutation rate. The ultrafast adaptation could be fully
explained by extensive positive pleiotropy such that all beneficial
mutations dramatically enhanced multiple fitness components in
concert. As our approach can be exploited across a range of model
organisms exposed to a variety of environmental challenges, it
may be used for determining the importance of epigenetic adapta-
tion-speeding mechanisms in general.
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Introduction

The need for an extended evolutionary theory where epigenetic

mechanisms have a more prominent explanatory position is a

much-debated issue (Laland et al, 2014). This discussion has arisen

due to a deeper understanding of the epigenetic mechanisms under-

lying phenotypic plasticity and parental influence (Rando &

Verstrepen, 2007; Carone et al, 2010; Halfmann & Lindquist, 2010;

Daxinger & Whitelaw, 2012). A major rationale for advocating an

important role for environmentally guided DNA, RNA, protein and

metabolite alterations mediated by epigenetic adaptive mechanisms

is that such alterations provide an evolutionary advantage by facili-

tating faster adaptation (Richards, 2006) to new or recurrent envi-

ronmental changes. To assess the adaptive importance of epigenetic

mechanisms relative to a pure mutation–selection regime for a vari-

ety of adaptations in a wide range of organisms is a challenging

undertaking, however. Even in those cases where we have identified

causative genetic variation underlying a specific adaptation and thus

may be tempted to promote a gene-centric explanation, we have to

show that epigenetic mechanisms have not acted transiently during

the adaptation process to guide gene-based solutions by allowing

silenced variation to take effect (Masel & Siegal, 2009; Halfmann

et al, 2010), altering mutation effect sizes (Laland et al, 1999;

Plucain et al, 2014), or enhancing mutation rates either locally

(Molinier et al, 2006; MacLean et al, 2013) or globally (Roth et al,

2006; Zhang & Saier, 2009; Martincorena & Luscombe, 2013)

through elevated DNA damage (Ruden et al, 2008) or impaired

DNA repair (Tu et al, 1996; Hoege et al, 2002; Moore et al, 2014;

Supek & Lehner, 2015). Such documentation is arguably beyond

reach through studies of natural adaptations, but could conceivably

be addressed by artificial selection experiments in the laboratory

(Conrad et al, 2011; Dettman et al, 2012).

State-of-the-art experimental evolution methodology can verify

the long-term stability of an adaptation after removal of the
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selection regime creating it, and reversion of candidate mutations

by gene editing can validate their adaptive effect. However,

refuting epigenetic adaptive mechanisms reviving silenced muta-

tions or influencing mutation rate demands costly mutation–

accumulation experiments that precisely mimic the adaptive

regime and can currently only address the issue of general

changes in mutation rates (Zhu et al, 2014). Thus, unless one

can remedy these obstacles, even an experimental evolution

framework appears impracticable for determining the adaptive

importance of epigenetics.

We hypothesized that a possible route to overcome these obsta-

cles would be to make use of a theoretical–experimental approach

involving a data-driven evolutionary population model capable of

explaining experimental results as a function of mutation effect

sizes, mutation target sizes and mutation rate changes. As very fast

adaptations are arguably a natural point of departure to search for

evolutionarily important epigenetic adaptive mechanisms, we tested

this hypothesis by precisely tracking the adaptation dynamics of

budding yeast populations adapting to a panel of environmental

challenges and by making use of an individual-based evolutionary

population model to explain the fastest adaptive trajectories. We

found that ultrafast arsenic adaptation could be fully accounted for

by gene-based solutions causing extensive positive pleiotropy

between fitness components. And we could only account for the

experimentally observed homogeneity of adaptive speed and hetero-

geneity of molecular solutions if mutation rates were close to empir-

ical estimates of the basal mutation rate. As the introduced

theoretical–experimental approach can be exploited across a wide

range of model organisms and environments (Long et al, 2015), it

can tentatively become an instrumental generic tool for illuminating

the influence of epigenetics on adaptation.

Results

Arsenic adaptation is ultrafast and heritable

To identify growth challenges eliciting ultrafast adaptation, we

exposed n = 4 independent haploid yeast populations, derived from

a single clone, to each of 18 energy-constrained environments over

250 generations (Appendix Table S1). The iterative batch experi-

mental evolution (Appendix Fig S1A) forced adapting populations to

cycle through a lag phase, an exponential growth phase and a

stationary growth phase. We tracked the associated fitness compo-

nents—length of lag phase, population doubling time and efficiency

of growth—at high accuracy (Fig 1A). The four populations, here-

after termed P1–P4, exposed to arsenic in its most toxic form, As

(III), adapted faster than populations exposed to other challenges

and went from poor to optimal performance for all three fitness

components within just a few mitotic divisions (Fig 1B and C, and

Appendix Fig S1B). In the absence of arsenic, the adapted strain

performed on par with the founder; thus, fitness component

increases were adaptive responses to arsenic and not to other selec-

tive pressures (Fig 1B). We found estimates of the number of viable

cells (colony-forming units; CFU) to match estimates of the total

number of cells in populations and to be unaffected by the presence

of As(III) (Appendix Fig S1C). The three estimated fitness compo-

nents therefore reflected the time to the first cell division, cell

division time and the energy efficiency of cells, and together they

should capture total fitness well.

The extraordinarily fast As(III) adaptations could conceivably be

due to a single rare adaptive mutation standing at substantial

frequency in the shared founder population rather than de novo

mutations. To account for this possibility, we repeated the arsenic

adaptations in four new populations, hereafter termed P5–P8, that

were initiated from distinct founder populations derived by clonal

expansion from four different single cells (see Materials and Meth-

ods). As the original As(III) adapting populations (P1–P4), popula-

tions P5–P8 showed the ultrafast and near-deterministic adaptive

leaps. With the higher sampling density these were detectable

already after 10 generations (Fig EV1). The probability of adaptive

variants standing in all P5–P8 populations was estimated to be

3.9 × 10�5 (see Materials and Methods).

We tested the possibility of the ultrafast adaptation being directly

due to non-genetic mechanisms by releasing each of the four

adapted populations P1–P4 from selection for 75 generations. All

populations retained their extreme As(III) tolerance (Fig 1D). This

excludes a plain phenotypic plasticity mechanism at the level of the

individual cell. Moreover, we are not aware of any reports of trans-

generational epigenetic inheritance of fitness over 75 generations,

making it a quite unlikely explanation.

Ultrafast arsenic adaptation is driven by FPS1, ASK10 and
ACR3 mutations

The genetic nature of As(III) adaptation motivated us to sequence

the end point populations P1–P4 by SoLID sequencing to identify de

novo single nucleotide polymorphisms (SNPs) and copy number

variations (CNVs) rising to high frequencies (Appendix Tables S2

and S3). To identify and validate causative mutations, 35 of the top

candidates were individually reconstructed in founder cells and fit-

ness components were recorded (Fig 2A). About 75% of final adap-

tive gains in each of the four populations could be explained by a

single population specific mutation. Adaptation in P2, P3 and P4

was predominantly due to a premature stop codon in FPS1 (P4;

encoding the aquaglyceroporin through which As(III) enters the cell;

Wysocki et al, 2001), a duplication of ACR3 (P2; encoding the As

(III) exporter; Wysocki et al, 1997) and a loss-of-function SNP in

ASK10 (P3; a positive regulator of Fps1; Lee et al, 2013), respec-

tively (Fig EV2). The mutations were neutral (Acr3, Ask10) or nega-

tive (Fps1) in absence of As(III), excluding that they were driven to

high frequencies by other selection pressures (Appendix Fig S2).

The P1 population harboured two medium-frequency FPS1 non-

synonymous mutations (A410S and F413L) that resisted reconstruc-

tion, but were predicted to impair Fps1 function by amino acid

conservation over Fps1 orthologs. The P1 mutations occurred in dif-

ferent haplotypes (reads), affecting close to the entire population

(Appendix Table S2).

Conceivably, early As(III) adaptation could have been epigenetic

in origin and only later assimilated as FPS1, ASK10 and ACR3 muta-

tions into the genome (Pigliucci et al, 2006). We therefore

sequenced the P1–P4 populations throughout their adaptive trajecto-

ries by Illumina sequencing, tracking the frequency change of these

causative mutations over time (Fig 2B). FPS1, ASK10 and ACR3

mutations were all at undetectable frequencies in the founder popu-

lation, emerged and rose in frequency early and were practically
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fixated before 100 generations. The rise in frequency of the ACR3

duplication was slightly delayed relative the adaptive progression in

P2 (compare: Figs 1B and 2B), which may be due to sequencing or

negative selection against the large duplication during sequencing

preparations. No other SNPs from the original end point sequencing

were confidently called at earlier time points, and only a few previ-

ously undetected SNPs were discovered (Appendix Fig S3). Of these,

only three were predicted to affect protein function (see Materials
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Figure 1. Arsenic adaptation is ultrafast and heritable.

A Schematic illustration of the extraction of the fitness components: length of lag phase (h), growth rate (doubling time, h) and growth efficiency (total change in
population size, OD). Absolute fitness components were log(2)-transformed. When comparisons across experimental plates were performed, absolute log(2) values
were first normalized to the corresponding mean value of many founder populations in randomized positions on the same plate, producing relative fitness
components (see Materials and Methods). A positive relative performance equals good growth.

B Fitness components of As(III) adapting populations (n = 2) relative the founder (n = 4). Blue = 5 mM As(III). Red = no As(III). Colour = populations P1–P4.
C Mean adaptation speed under 18 selection pressures (n = 4 independent populations) for doubling time. A monotone function was fitted to each adaptation curve

using least squares and the function isoreg in R (version 2.15.3). Two measures of adaptive speed were extracted from the function: (x-axis) the number of generations
required to reach 25, 50 and 75% of the final doubling time (t = 250 generations) and (y-axis) the fraction (%) of the initial gap to the founder doubling time in
optimal environments (no stress added) that was recovered at these time points. Colour indicates challenge.

D Absolute log(2) fitness components of arsenic-adapted (t = 250 generations) populations in 5 mM As(III), before (blue bars) and after (red bars) a 75 generations
release from selection. Green bars: founder in 5 mM As(III). Yellow bars: founder without arsenic. Error bars represent SEM (n = 2).

Source data are available online for this figure.
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Figure 2. Ultrafast arsenic adaptation is due to rapid fixation of positively pleiotropic FPS1, ASK10 and ACR3 mutations.

A Candidate driver mutations (gene duplications or SNP; see Materials and Methods) were reconstructed individually in a WT background and their growth in presence
of As(III) evaluated. Mean (n = 2) fitness components in 3 and 5 mM As(III) (blue and red bars, respectively) relative to the founder (n = 20) are shown. Grey
field = significant (FDR, q < 0.05) effects at 5 mM As(III). Blue field = As(III) adapted populations. Error bars represent SEM.

B Adapting P1–P4 populations were sampled at every 25th generation and deep sequenced. The frequency of confidently called mutations (total read depth of > 100,
frequency of > 10% in ≥ 2 time points and snpEff effect = “Moderate” or “High”) predicted to affect protein function (SIFT < 0.05) is shown. Fps1 G51165T failed to
pass the quality filter in the re-sequencing but is shown for completeness. For the ACR3 containing duplicated region in P2, the grand copy number mean of all the
segments within the duplicated region (chr. XVI 880799–944600) is shown. Colours indicate mutations. Bold line = causative mutations. *reconstructed FPS1 mutation.

C Arsenic accumulation inside cells. Top panel: Arsenic-adapted populations (t = 250 generations). Bottom panel: As(III) causative mutations individually reconstructed
in WT backgrounds. Error bars = SD (n = 2).

Source data are available online for this figure.
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and Methods): a previously undetected, low-frequency frameshift in

FPS1 (P1), a late emerging and low-frequency GPD2 mutation (P1)

and a late emerging mutation in PUF3 (P4) (Fig 2B). Neither Gpd2,

the minor isoform of the glycerol dehydrogenase, nor Puf3, involved

in mitochondrial function and mRNA stability, is known to be

linked to As(III) metabolism. Overall, although we cannot comple-

tely exclude very small transient contributions from epigenetics or

from variants in other genes, loss-of-function mutations in FPS1 and

ASK10 and duplications of ACR3 emerged as the dominant proximal

causes of ultrafast As(III) adaptation.

As the identified causative mutations implied adaptation to be

mediated by As(III) exclusion, we followed the accumulation of

arsenic inside cells. We found it to be delayed and stabilized at a

lower final level in all adapted populations (Fig 2C, top panel). The

reduced intracellular arsenic levels were almost completely

accounted for by the reconstructed fps1, ask10 and ACR3 mutations

(Fig 2C, bottom panel). Thus, by reducing the intracellular concen-

tration of arsenic, these mutations affected all three fitness compo-

nents through the same mechanism: As(III) exclusion.

Ultrafast arsenic adaptation is due to positive pleiotropy
between fitness components

Given these experimental results, we assessed quantitatively to

what extent the observed adaptive trajectories could be accounted

for by plain neo-Darwinian mechanisms. We employed an evolu-

tionary population model based on individual cells that combined

population genetics and population dynamics through genotype–

phenotype maps with parameters describing mutation rates and

effect sizes. As each of the three reconstructed critical mutations

had a large positive effect on all three fitness components, we first

evaluated whether positive pleiotropy was needed to account for the

ultrafast adaptation. To this end, we simulated the experimental set-

up while varying mutation parameters and using three types of

genotype–phenotype maps: mutations affecting only cell division

time (population doubling time), mutations affecting both cell divi-

sion time and the time to the first cell division (population lag time)

in the same direction (positive pleiotropy) and mutations affecting

both doubling time and lag but with independently sampled effects

(random assignment of positive and negative pleiotropy). Efficiency

was not taken into account because it may not confer fitness bene-

fits in an energy-restricted regime (MacLean, 2008) and would

require a much more complex model with weak empirical backing.

The parameter set giving the fastest adaptation for the doubling

time-only model clearly failed to approach the ultrafast adaptation

of arsenic adaptations (Fig 3A) despite: (i) having overall mutation

rates 5× those reported in yeast (Lynch et al, 2008), (ii) 65% of

mutations being non-neutral and 17% of mutations being beneficial

(both values 5× the numbers reported by (Hall et al, 2008) and (iii)

a mean selection coefficient of 0.15 (2.5× the level reported by

Joseph & Hall, 2004). Overall, populations adapted dramatically

faster in the models with pleiotropy between fitness components

than in the models without fitness component pleiotropy (Figs 3B

and EV3A and B). Populations exclusively experiencing positive

pleiotropy adapted only moderately faster than populations experi-

encing both positive and negative pleiotropy. Thus, positive pleio-

tropy between fitness components can indeed accelerate adaptation

drastically, and the presence of negative pleiotropy only moderately

limits this acceleration. The benefits of positive pleiotropy were

similar for slow- and fast-adapting populations (Appendix Fig S4).

With positive pleiotropy included, the fastest scenarios approached

the observed arsenic adaptations (Fig 3B).

Next, we used the empirical lag and doubling time values for

reconstructed mutations and simulated the fate of the de novo FPS1,

ASK10 and ACR3 mutations in competition assays, starting with a

single-mutant cell at the start of the first batch cycle in an otherwise

homogenous founder population (Fig 3C). We simulated mutants

with only the doubling time effect of the reconstructed mutation,

only the lag effect and both the doubling time and the lag effect.

Factoring in both the doubling time and lag effect strongly reduced

the risk of losing the FPS1 mutation due to chance (loss in 14 of 25

doubling time scenarios vs. 0 of 25 doubling time and lag scenarios)

and accelerated fixation of remaining mutations. The positively

pleiotropic doubling time and lag effects combined into a very large

selection coefficient (s = 0.64; Appendix Fig S5), driving the muta-

tion to fixation in ~25 generations. Thus, the predicted adaptive

performance approached that of the experimentally ultrafast arsenic

adaptations, without even taking efficiency into account. The selec-

tion coefficients for ASK10 and ACR3 were somewhat lower

(s = 0.41 and s = 0.36 respectively, Appendix Fig S5), causing a

slightly longer fixation time (Fig 3C). The additive effects of

doubling time and lag changes on fitness are shown analytically in

the Materials and Methods section.

Ultrafast arsenic adaptation occurs at near-basal mutation rates

Even though the competition simulations show that the focal causal

mutations can account for the ultrafast adaptation, these results rest

on that mutations emerge early. Given that epigenetic mechanisms

can direct DNA damage and DNA repair (Molinier et al, 2006; Roth

et al, 2006; Zhang & Saier, 2009; MacLean et al, 2013; Martincorena

& Luscombe, 2013) to elevate mutation rates, this early emergence

may in principle be epigenetically facilitated. To resolve this issue,

we defined the beneficial mutation target set to contain ACR3 dupli-

cations and loss-of-function mutations in FPS1 and ASK10, the

mutational targets of the latter being premature stop codons and

changes in strongly conserved amino acids (SIFT < 0.06;

Appendix Fig S6A and B). We simulated populations experiencing

basal as well as elevated (3×, 5× and 10×) point mutation and dupli-

cation rates and tracked the frequencies of all beneficial mutations

using lag and rate values equalling those empirically observed. At

basal mutation rates, the founder genotype went extinct within 25

generations in the fastest evolving populations (Fig 3D—upper left

panel). While the predicted large variations in adaptive speed

between populations at a basal mutation rate (Fig 3D—upper left

panel; compare time to vertical black line) are a possible scenario, it

produces a distribution of simulated adaptations from which we

would be unlikely to draw the four nearly deterministic ultrafast

adaptations observed in the experimental data (Fig 1B and

Appendix Fig S2A). A mutation rate closer to the upper bound of

empirical estimates of the basal mutation rate (3×) (Lynch, 2006;

Lang & Murray, 2008; Lynch et al, 2008) increased the homogeneity

in adaptive speed considerably, while allowing heterogeneity in

adaptive solutions. In this case, the founder genotype went extinct

in 35 generations in the median population (Fig 3D, upper right

panel). Mutation rates (> 5×) above empirical estimates of the basal

ª 2016 The Authors Molecular Systems Biology 12: 892 | 2016

Arne B Gjuvsland et al Genetic and epigenetic adaptation Molecular Systems Biology

5



mutation rate gave results that were incompatible with the experi-

mental data, as the superior FPS1 mutations were then consistently

fixed, leaving no room for ACR3- and ASK10-based solutions

(Fig 3D, lower panels). The simulations therefore suggested a muta-

tion rate between 1× and 3× at loci under selection and excluded

substantially higher mutation rates.

The confinement of the mutation rate needed to explain the co-

appearance of homogeneity in adaptation speed and heterogeneity

in adaptive solutions is in line with existing theory of adaptation

dynamics in asexual populations (Sniegowski & Gerrish, 2010)

(Appendix Fig S7). With a mutation rate of ~1–3×, our dataset falls

in the strong selection, strong mutation regime, where a handful of
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Figure 3. Ultrafast arsenic adaptation is explained by plain neo-Darwinian mechanisms.

A, B Simulating populations (n = 500) with different mutation parameters adapting to arsenic, in an individual cell-based model. Each cell has a cell division time
(population doubling time) and a time to the first cell division (lag). Cell division times were recorded every 5th cell division, and population means were expressed
as the fraction of founder growth w/o arsenic recovered. (A) Mutations affect only cell division time. Grey lines = 500 adapting populations. Black lines = quantiles
corresponding to the fastest 1, 10, 25, 75, 90 and 99% of populations. Red line = median population. Blue line = empirical arsenic populations, P1–P4. (B)
Contrasting simulations with mutations only affecting cell division time (model 1, M1, y-axis) or both cell division time and the time to the first cell division with
the same effect size and direction (model 2, M2, x-axis). The number of cell divisions required to recover 25% (left panel), 50% (middle panel) and 75% (right panel)
of founder growth w/o arsenic is shown. The 227 fastest scenarios, with 75% recovery in ≤ 100 cell divisions, are displayed. Dot size = number of populations. Black
dot = median population.

C Simulated competition in arsenic between WT and ACR3 (top panel), ASK10 (middle panel), and FPS1 (lower panel) mutation-carrying cells, respectively. Mutations
emerge in a single cell at t = 0 in WT population and have empirical effects on doubling time and/or growth lag. Coloured lines = model with individual cells and
genetic drift. Black lines = deterministic model based on subpopulations of cells.

D Arsenic adaptation of 25 simulated populations in an individual cell-based model, given basal, 3×, 5× and 10× mutation rates. Beneficial mutations in FPS1 (green),
ASK10 (red) and ACR3 (blue) occur randomly at estimated frequencies and have empirical lag and doubling time effects. Left hand side: Before t = 250 generations.
Horizontal bars = mutated alleles exist at (sum) P > 50%. Vertical black lines = WT allele goes extinct. Right hand side: At t = 250 generations. Dot presence = WT
allele extinct. Dot colour = gene name. Dot size = number of mutated alleles at P > 5%.
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mutations compete for fixation. Higher mutation rate brings us into

the strong selection, weak mutation regime, where FPS1 with its

high selection coefficient is the preferred solution. At lower muta-

tion rates, we move towards the weak selection, strong mutation

regime, where rare mutation events lead to large variation in adap-

tation speed.

Notably, in contrast to our experimental observations, the model

predicted that FPS1 mutations would eventually emerge and fixate

in populations where ACR3 or ASK10 were already fixated (Fig 3D).

The reconstructed FPS1, ASK10 and ACR3 mutations explain most

of the fitness gains seen in P1–P4, but not all of it. Unidentified

causal mutations accounted for ~25% of total fitness gains, and this

fraction is larger in ASK10 and ACR3 populations than in FPS1 popu-

lations. We may therefore have underestimated the late fitness of

ACR3 and ASK10 containing clones relative to FPS1 containing

clones. Indeed, when we mimicked this possibility by letting the

adaptive gains of ASK10 and ACR3 mutations approach that of FPS1,

FPS1 was less prone to fixate in ASK10/ACR3 backgrounds

(Appendix Fig S8).

There are no robust experimental means to estimate local muta-

tion rates at loci under selection. However, loss-of-function muta-

tion rates can be estimated for marker genes (Lang & Murray, 2008)

and used as somewhat crude proxies. We therefore tested the model

prediction that FPS1, ASK10 and ACR3 mutation rates are at the

most moderately elevated in cells adapting to As(III) by measuring

the loss-of-function mutation rate for CAN1 at its native locus

(Fig EV4). Both in non-adapted (WT) and adapted (FPS1 mutated)

genotypes, we found a slightly elevated (1.5–1.6×) loss-of-function

mutation rate at the CAN1 locus during As(III) exposure. These esti-

mates do not allow precise conclusions on loss-of-function mutation

rates at FPS1 and ASK10 loci, and emphatically not for the duplica-

tion rate at the ACR3 locus. However, they exclude a dramatic eleva-

tion of the general point mutation rate during arsenic exposure, in

agreement with model predictions.

Discussion

As all large effect mutations driving As(III) adaptation enhanced

multiple fitness components, positive pleiotropy appeared as the

main reason for the observed ultrafast adaptation, a conclusion

confirmed by the theoretical modelling. The underlying reason

being that the large effect mutations all contributed to fast exclu-

sion of As(III), preventing As(III) from accumulating inside cells

and thereby from delaying the time to the first cell division, delay-

ing cell division and increasing the energy costs of homeostasis

maintenance.

Mutations inactivated Fps1, the main entrance pathway for As

(III) or its critical activator, Ask10, or duplicated the major extrusion

system, Acr3 (Fig EV2), in agreement with that Fps1 and Acr3 are

the most critical contributors to intracellular As(III) accumulation

and toxicity (Wysocki et al, 1997, 2001; Talemi et al, 2014). The

ultrafast adaptation observed for As(III) was not shared by the other

selective pressures evaluated. This may be explained by the nature

of the elements used. First, several toxic metals share properties and

structures with critical metals. For instance, toxic Na+, Li+, Rb+

and Cs+ are similar to K+, which plays many important physiologi-

cal roles and exert their toxicity partially by substituting K+ in the

cell (Cyert & Philpott, 2013). Likewise, the toxicity of Cd2+ can in

part be attributed to its similarity with essential elements, such as

Zn2+ and Ca2+ (Wysocki & Tamas, 2010). These toxic metals often

use the same transport systems to enter or leave the cell as the

essential metal and a simple exclusion strategy, as for As(III), will

not be possible. Second, some elements are critical at low concen-

trations but toxic at elevated levels, for example Cu2+. For these

elements, solutions in the form of exclusion are likely to be severely

constrained by their essentiality (Wysocki & Tamas, 2010; Cyert &

Philpott, 2013). In contrast, As(III) is always toxic and has no

known function in cells. Third, an element may “hijack” an impor-

tant cellular process for mediating its toxicity (e.g. the sulphate

assimilation pathway is central to Te(IV) toxicity) (Ottosson et al,

2010). Such a mode of toxic action is likely to prevent fast adapta-

tion. Fourth, exclusion of toxic elements may be mediated by multi-

ple pathways. In these cases, exclusion may be constrained by

redundancy such that no single mutation has a large effect. Finally,

even when mutations at a locus have large effects, the locus may be

too small for mutations to be encountered frequently. Adaptation to

rapamycin is, for example, dominated by large effect mutations in

the rapamycin binding protein Fpr1 (Lorenz & Heitman, 1995), but

the gene is a tiny 345 bp and the expected waiting time for loss-of-

function mutations is therefore long.

There are currently two approaches to measure and model fit-

ness in experimental populations (Barrick & Lenski, 2013). The

standard approach measures the fitness of individual genotypes as

their frequency change over time in competition assays (Gresham

et al, 2008; Lang et al, 2011). This is simplified if each genome in a

population is barcoded before the onset of selection with a unique

sequence tag (Levy et al, 2015; Venkataram et al, 2016), allowing

very accurate estimation of the fitness distribution of standing and

de novo mutations for use as a model input. Given that change in

fitness of the population is also exactly measured and a suitable

modelling framework in place, such approaches are certainly useful

for understanding the speed of adaptation. So far, however, these

approaches have focused on steady-state adaptation where a popu-

lation has evolved in a constant environment for a long time, with

selection acting only on doubling time (Kosheleva & Desai, 2013;

Rice et al, 2015).

We employed the alternative approach: break fitness in batch-to-

batch experiments down into its components, both experimentally

and theoretically. This approach certainly comes with caveats

attached. It is not always clear that the estimated and modelled fit-

ness components—here cell division time and time to the first cell

division—fully capture fitness. In experimental microbial popula-

tions, death rates may not be negligible and it is debatable whether

efficient use of resources, as reflected in the final growth yield of a

population, is a selectable trait or not (MacLean, 2008; Ibstedt et al,

2015). Furthermore, to estimate fitness components, mutations must

be reconstructed or reversed and the fitness component of individ-

ual genotypes must be estimated. This is laborious, in particular if

interactions between mutations and between individuals (Moore

et al, 2013) are to be measured. Here, we considered evolutionary

scenarios of very fast adaptation, where single mutations drive

adaptation and rapidly rise to fixation, without measurable death

occurring. In such scenarios, the caveats above are lesser concerns.

Under slow, absent or negative adaptation, clonal interference, posi-

tive epistasis, cell–cell interactions and death may all be substantial.

ª 2016 The Authors Molecular Systems Biology 12: 892 | 2016

Arne B Gjuvsland et al Genetic and epigenetic adaptation Molecular Systems Biology

7



In such evolutionary scenarios, more complex models may be

needed.

A marked benefit of breaking fitness down, and connecting it to

genotypes via the intervening phenotypic layers, is the possibility to

identify the causal factors underlying particular patterns of adapta-

tion. This is illustrated by our discovery that positive pleiotropy

between fitness components is the driving force of the observed

ultrafast adaptation. To understand adaptation dynamics at an even

deeper level, both experimentation and modelling must be extended

to molecular phenotypes. For example, by connecting the time to

the first cell division and the cell division time to the biochemical

and network properties of As(III) metabolism (Talemi et al, 2014), a

complete and formalized understanding of the causes of ultrafast As

(III) adaptation could potentially be obtained.

In conclusion, our results show that even ultrafast adaptation

can be achieved based on purely genetic, de novo solutions, with-

out invoking either direct or indirect action of epigenetics (Lenski

& Mittler, 1993; Brisson, 2003; Galhardo et al, 2007; Ram &

Hadany, 2012). Proof by example provides no grounds for reject-

ing the hypothesis that transgenerational epigenetic mechanisms

mediating fast organismal adaptation can be evolutionarily rele-

vant. However, as adaptation speed is a frequent argument for

why adaptation by transgenerational epigenetic mechanisms would

be favoured by selection and become widespread in nature, our

result is a reminder of the forcefulness of plain neo-Darwinian

adaptation mechanisms. But the major instrumental value of our

study is that it provides a framework of generic worth across a

range of experimentally evolvable organisms and environments to

systematically assess how important epigenetic mechanisms are

for achieving fast adaptation.

Materials and Methods

Strains and medium

Haploid, asexual BY4741 cells (MATa; his3D1; leu2D0; met15D0;
ura3D0) (Brachmann et al, 1998), stored at �80°C in 20% glycerol,

were used as WT and to initiate founder populations. Gene duplica-

tion events were mimicked by transforming WT cells with centro-

meric URA3 and KANMX4 plasmids from the MoBY collection (Ho

et al, 2009). Each plasmid contained a single gene (BY4741 alleles).

Point mutations were individually reconstructed in BY4741 back-

grounds using in vivo site-specific mutagenesis, as described

(Stuckey et al, 2011). Strains were cultivated in synthetically

complete (SC) medium containing: 0.14% yeast nitrogen base

(YNB, CYN2210, ForMedium), 0.50% ammonium sulphate, 0.077%

complete supplement mixture (CSM, DCS0019, ForMedium), 2.0%

(w/v) glucose and pH buffered to 5.8 with 1.0% (w/v) succinic acid

and 0.6% (w/v) NaOH. Except for glucose, all required nutrients

were present in excess. Where indicated, the medium was supple-

mented with 3 or 5 mM NaAsO2 (As(III), Sigma-Aldrich) or other

environmental challenges as described in Appendix Table S1.

Experimental evolution

Except for the four follow-up arsenic adapting populations, P5–P8,

reported in Fig EV1, all experimental evolutions were initiated from

a single founder population. The founder population was

constructed by clonal colony expansion up to an estimated 1 million

cells, from a single cell, on SC agar medium (as above, +2% (w/v)

agar) with no added stress. The colony was dissolved in liquid SC

medium to create the founder population, the optical density was

measured, and an average of 105 cells were randomly drawn by

pipetting of 5 ll of cell suspension into experimental wells to initiate

each adaptation. The follow-up experiment of arsenic adapting

populations, P5–P8, was initiated identically, except that each of the

four populations was initiated from four different founder popula-

tions. These were clonally expanded from four distinct cells, up to a

population size of ~3 × 107. Assuming that adaptive mutations

during the clonal expansion from a single cell are Poisson distrib-

uted, with normal mutation rates and the mutation target sizes

reported in Appendix Fig S6, the probability that a single P5–P8

population housed one or more standing adaptive variants is ~0.08.

The probability that all of P5–P8 housed one or more standing

adaptive variant at experiment start is ~3.9 × 10�5. Experimental

evolutions were performed in a batch-to-batch mode in flat-bottom

96-well micro-titre plates containing SC complete medium supple-

mented with stress factors (Appendix Table S1). To reduce the risk

of cross-contamination, every second well was left empty, such that

all pairs of populations were separated by empty wells. No indica-

tion of cross-contamination between As(III) populations was found

in the sequence data. Except for the follow-up As(III) adapting

populations P5–P8, populations were propagated over 50 batch-to-

batch cycles as 175 ll, non-shaken cultures maintained at 30°C. The

follow-up As(III) adapting populations P5–P8 were propagated over

20 cycles. In all cycles, populations were cultivated well into station-

ary phase. The cultivation length corresponding to ~120-h cultures

over the first 10 cycles, ~96 h in cycles 10–30 and ~72 h in cycles

30–50. Stationary phase population sizes corresponded to on aver-

age N = 3.5 × 106 cells, with the largest deviation corresponding to

half that size. To initiate each new cycle, 5 ll of re-suspended and

randomly drawn stationary phase cell cultures, corresponding to an

average of N = 105 cells, was multi-pipetted into fresh medium.

Each batch cycle corresponded to ~5 population size doublings. The

adaptation schema thus progressed over ~250 population doublings

(~100 doublings for follow-up As(III) adapting populations P5–P8).

Except for the follow-up arsenic adaptations, P5–P8, 50 ll of each
population was sampled at the end of every 5th cycle, pipetted into

100 ll of 30% glycerol and stored as a frozen fossil record at

�80°C. For populations P5–P8, sampling was instead performed at

every batch cycle.

Fitness component extraction

To estimate fitness components, frozen samples were first thawed

and re-suspended. 10 ll was pipetted into random wells in 100-well

honeycomb plates, each well containing 350 ll of liquid SC

medium. Populations were pre-cultivated without shaking at 30°C

for 72 h until well into stationary phase. Following re-suspension,

10 ll of each pre-culture was randomly sampled and transferred to

100-well honeycomb plates, containing 350 ll of liquid SC medium

supplemented by relevant stress factors. Populations were cultivated

in Bioscreen C (Growth Curves Oy, Finland) instruments for 72 h at

30°C and at maximum horizontal shaking for 60 s every other

minute (Warringer & Blomberg, 2003; Warringer et al, 2003).
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Optical density (turbidity) was recorded every 20 min using a wide-

band (420–580 nm) filter. Stochastic noise was removed by light

smoothing of the raw data, the background light scattering was

subtracted, and optical densities were transformed into population

size estimates using an empirically based calibration (Fernandez-

Ricaud et al, 2016). From population size growth curves, population

doubling times, length of the lag phase and population growth effi-

ciency (total gain in population size) were extracted (Fernandez-

Ricaud et al, 2016). Population growth parameters were log(2)-

transformed to better adhere to normal distribution assumptions.

When comparisons across plates were made, log(2) estimates were

first normalized to the corresponding mean of 4–20 WT (founder)

controls distributed in fixed but randomized positions. For doubling

time and lag, the relative growth measures equalled: mean of log(2)

WT estimates – log(2) experimental estimate. For the population

growth efficiency, the relative growth measure equalled: log(2)

experimental estimate – mean of log(2) WT estimates. Positive

values thus always indicate adaptation. The normalization accounts

for systematic bias between plates, instruments and batches.

Finally, a mean was formed across replicates.

Viable and total cell counts

We cultivated populations of founder (BY4741) and adapted (the

reconstructed FPS1 mutation) genotypes in 100-well honeycomb

plates in 350 ll of SC medium (as above) with and without 5 mM

As(III) until OD = 1.00 (n = 12). To count viable cells, we plated

diluted cells on solid (1.5% agar) medium with no added arsenic

and counted the number of colony-forming units (CFU) and multi-

plied by the dilution factor. No significant difference in CFU was

observed between presence and absence of 5 mM As(III) for either

founder or FPS1 cells. We counted total cells in two ways, both by

passing sonicated (30 s; to dissolve cell aggregates) and diluted

samples through a flow cytometer (BD FACSaria, BD Biosciences,

US) at a known flow rate, counting passage events and multiplying

by the dilution factor and by direct counting of cells in a

hemocytometer (B€urker counting chamber, Knittel Gl€aser).

As(III) accumulation

Exponentially growing cells (in 150 ml of complete SD medium,

with or without uracil) were exposed to 1 mM As(III) and sampled

at indicated time points. Cells were washed (2×) in ice-cold water

and centrifuged. Cell pellets were re-suspended in water, boiled

(10 min) and centrifuged to collect the supernatant. The As(III)

content of each sample was measured (n = 2) using a flame atomic

absorption spectrometer (3300, Perkin Elmer).

Fluctuation assay mutation rate estimation

The CAN1 fluctuation assay was performed as described (Lang &

Murray, 2008). Single streaked WT and reconstructed FPS1 colonies

were isolated on solid SC medium and inoculated and cultivated

overnight in SC medium. Cultures were diluted to a fixed cell

density and distributed into the wells of four (WT and FPS1, with

and without As(III) 96-well plates, each containing 25 ll of SC

medium. Wells were sealed to prevent evaporation and cross-

contamination and cultivated for 3 days at 30°C, without shaking.

We counted cells in three random wells for each plate with a hemo-

cytometer (as above), using the mean as an estimate of cell count

per wells in each sample. Discarding wells in the outer frame, we

plated the remaining 57 independent cultures on SC agar medium

lacking arginine but containing 0.6 g/l of L-canavanine sulphate

(Sigma-Aldrich). After 3 days at 30°C, we estimated the fraction, P0,

of plated patches without any canavanine-resistant colonies (i.e.

without colonies carrying CAN1 loss-of-function mutations). The

CAN1 loss-of-function mutation rate, l, (mutations per CAN1 locus

per cell division) was then estimated as: l = �ln(P0)/N.

Sequencing and sequence analysis

To sequence founder and As(III) adapting populations, frozen

samples were thawed and re-suspended and 10 ll was pipetted

into 100 ll of SC medium with weak (2 or 3 mM) As(III) selection,

minimizing allele frequency change. Populations were cultivated

into stationary phase. DNA from end point populations was

extracted, prepared and sequenced using ABI 5,500 × l SOLiDTM

sequencing, completely according to industrial standards. Quality

controlled reads were aligned to the yeast reference genome

(sacCer3) using ABI’s BioScope v1.3. SNPs and indels were called

using SAMtools mpileup (Li et al, 2009), filtering for regions > 5×

mean coverage. CNVs were called using a sliding window

approach, with window size: 300 bp and step length: 300 bp. A

CNV was conservatively called using CNV seq (Xie & Tammi,

2009) if the log(2) coverage ratio founder/adapted population)

exceeded 0.5 or fell short of �0.5. For re-sequencing of earlier time

points, DNA was extracted using Epicentre MasterPure Yeast DNA

Purification kit, with an added lyticase digestion step. Libraries

were prepared using the Illumina Nextera XT enzymatic kit.

Paired-end sequencing was performed on a HiSeq 2500, according

to industrial standards. Reads were quality-trimmed (Phred score

cut-off of 25). Nextera transposase sequences were removed using

Trim Galore (v.0.3.8). Reads were mapped to the S288C reference

genome (R64-1-1_20110203) using BWA MEM (v.0.7.7-r441). PCR

duplicates were removed post-mapping using Picard tools

(v.1.109). Samples were sequenced 4–6×, and libraries from the

same sample were merged, again using Picard tools. To avoid false

variant calls as a result of misalignment around indels, base align-

ment quality scores were calculated using SAMtools (v.0.1.18

[r982:295]) (Li, 2011). Variants were called using FreeBayes

(v0.9.14-8-g1618f7e), treating all sequenced time points from each

population as a cohort and filtered in three steps. First, we

removed variants with a quality score < 20. Second, we removed

variants standing in our founder population (P > 10% in at least

two libraries of founder cultivated in absence of As(III)) relative

the reference genome. Third, we removed variants standing in the

founder after DNA preparative cultivation (3 mM As(III))

(P > 0.2). Variants were annotated using snpEff (v.3.6c). To only

retain mutations likely to affect protein function (Fig 2B), we fil-

tered for “Moderate” and “High” snpEff calls and further for non-

synonymous SNPs with a SIFT (Sorting Intolerant From Tolerant;

Ng & Henikoff, 2003) score of < 0.05. Appendix Fig S3 shows the

results without the protein function filtering. Nextera enzyme

digestion is biased, making CNV calling inaccurate. We therefore

only estimated the copy number of the ACR3 region, calling the

duplicated segment using a sliding window with a size and step
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length = 100 bp. Reads with mapping quality < 1 were discarded.

Segments were calculated with the circular binary segmentation

algorithm using DNAcopy (v.1.40.0) in R.

Deterministic modelling of competition assays

As a basis for the individual-based stochastic model, we devel-

oped a deterministic model of competition assays using simple

subpopulation growth curves. This deterministic model was used

to (i) analytically solve (black lines) fates of novel mutations

(Fig 3C) and (ii) to analytically convert mutation effects on

doubling time and lag into a selection coefficient (Appendix Fig

S5). The model describes a competition assay between two

subpopulations, WT (P1) and mutated (P2), in a batch cycle set-

up mimicking the experimental framework (Appendix Fig S1A).

Within each subpopulation (index i = 1, 2) individuals share

genotype and genetically determined fitness component values.

We let Ni(t) be the population size of population Pi at time t.

Batch cycles start with Ni(0) individuals in Pi. The total bottle-

neck population size is N = N1(0) + N2(0). No net growth occurs

in the time period until time ki (lag period). Thereafter, growth is

exponential with doubling time si, giving:

NiðtÞ ¼ Nið0Þ2
t�ki
si (1)

A batch cycle ends at time tend after M population doublings such

that: 2MN = N1(tend) + N2(tend).

Simulations underlying black lines in Fig 3C

Parameter settings: N = 105, M = 5 and lag (kWT = 804.8,

kfps1 = 276.6, kask10 = 503.3 kacr3 = 630.4 min) and doubling times

(sWT = 162.3, sfps1 = 130.2, sask10 = 134.6 sacr3 = 122.8 min) based

on mean empirical values. We assumed ACR3 duplication effects

and the marginal effect of the plasmid to be multiplicative. We

simulated competition assays over 20 cycles starting from a single-

mutant cell (N2(0) = 1) in the first cycle (Fig 3C black lines). We

recorded the frequency ratio, r(t) = N2(t)/N1(t) of mutant over WT

genotypes. We computed mutation selection coefficients, s, by

regressing ln(r(t)) on the number of (P1) generations (Appendix Fig

S5A). Finally, we estimated the sensitivity of these selection coeffi-

cient estimates to potential measurement error in lag and doubling

time (Appendix Fig S5B).

Analytic results on selection coefficients

With a simplifying assumption on tend, we also derived analytical

expressions for the joint contribution of lag and doubling time

effects on selection coefficients. We assumed k2 ≤ k1 and computed

r(t) for a single cycle starting at t = 0 and ending at tend = k1 + Ms1
where P1 has doubled M times.

rðtÞ ¼ r0; 0� t� k2

rðtÞ ¼ r02
t�k2
s2 ; k2\t� k1

rðtÞ ¼ r02
t�k2
s2

�t�k1
s1 ; k1\t

(2)

The selection coefficient s expressed as the per generation slope

of ln(r(t)) becomes:

s ¼ ln r Ms1 � k1ð Þð Þ � ln r 0ð Þð Þ½ �=M

s ¼ ln r02
Ms1þk1ð Þ�k2

s2
� Ms1þk1ð Þ�k1

s1 � ln r0ð Þ
� �� �

=M

s ¼ ln 2
Ms1þk1�k2

s2
�M

� �h i
=M

s ¼ ln 2ð Þ Ms1 þ k1 � k2
s2

�M

� �
=M

s ¼ ln 2ð Þ s1
s2

� 1

� �
þ k1 � k2

Ms2

� �

(3)

When mutations only affect doubling time (k2 = k1), equation 3

simplifies to

s ¼ lnð2Þ s1
s2

� 1

� �
(4)

This is equivalent to equation 3.2 in (Chevin, 2011). When muta-

tions only affect lag time (s1 = s2), equation 3 simplifies to

s ¼ lnð2Þ k1 � k2
Ms2

� �
(5)

Thus, the selection coefficient due to a difference in lag time

is reduced when the number of mitotic divisions between bottle-

necks or the doubling time increases. Furthermore, for the

parameter values for our reconstructed mutation, the lag and

doubling time effects on selection coefficients are close to

additive.

Individual-based model of batch experimental evolution

To account for the combined effects of random mutation events,

random subsampling of cells, clonal interference and epistasis, we

mimicked the experimental framework (Appendix Fig S1A) in an

individual-based model. Each cell has its individual genotype that

determines the time to the first cell division and its cell division

time. Cells with identical genotypes divide at the same time.

Parameters, similar to those for the deterministic model above,

describe population size at the start of each batch cycle (N), aver-

age number of mitotic divisions before serial transfer (M) and

total number of batch cycles. When the total population size

reaches 2MN cells, N cells are subsampled randomly to found the

next cycle. The model assumed no cell death, that all effects on

cell division rate and lag are genetic, no meiosis or ploidy change

and no interactions between cells. We found no evidence of cell

death, no evidence of ploidy change in sequence data and meiosis

is inactivated by deletion of the mating type-switching gene. The

model was used for three sets of simulations of increasing

complexity:

Individual-based competition assays

We simulated the competition assays studied with subpopulation

growth curves (N = 105, M = 5, 20 batch cycles, genotypic lag and

doubling time parameters as above) in Fig 3C (coloured lines).

Competition assays were initiated with a single-mutant (fps1, ask10

or ACR3) cell in a founder population and no other mutations

emerging. Frequency trajectories are stochastic due to the random

sampling of individuals. In the extreme case, random sampling

leads to loss-of-mutant lines.
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Simulating experimental evolution with mutations in FPS1,

ASK10, ACR3

We simulated experimental evolution starting from a founder popu-

lation accumulating mutations in FPS1 (loss-of-function), ASK10

(loss-of-function) and ACR3 (duplication). The basal duplication

rate of ACR3 was set to 3 × 10�7 duplications per division. Benefi-

cial mutational target sizes for FPS1 and ASK10 were computed by

downloading the SIFT yeast database (http://sift-db.bii.a-star.edu.

sg/public/Saccharomyces_cerevisiae/EF4.74/) and extracting all

possible stop gain base changes and non-synonymous mutations

with attached SIFT scores, for FPS1 and ASK10 (Appendix Fig S6).

In Fig 3D, beneficial mutation was considered as all mutations with

a SIFT score < 0.06, corresponding to the observed driver mutation

with the highest SIFT score. Mutational target sizes were multiplied

with a global mutation rate estimate (Lynch et al, 2008) of

0.33 × 10�9 mutations/bp/division. Empirical lag and doubling time

values were used (above), assuming complete negative epistasis.

We ran four sets of simulations (n = 25) over 50 cycles with

N = 105 and M = 5, varying the mutation rate from basal to 3×, 5×

and 10× the basal rate.

Simulating adaptation across the realistic range of mutation

parameter values

We simulated the experimental framework (N = 105, M = 5, 50

batch cycles) starting from a clonal wild-type (WT) population with

empirical arsenic WT lag and doubling time values (Lwt = 805 min,

Twt = 162 min) adapting towards wild-type performance in absence

of arsenic (Lwt,N = 271 min, Twt,N = 126 min). Mutation events were

sampled after each cell division with parameters being the overall

mutation rate, the proportion of mutations affecting fitness, the

proportion of fitness-affecting mutations that are beneficial, and the

distribution of selection coefficients for non-neutral mutations.

Following (Joseph & Hall, 2004), the selection coefficient sr for a

given mutation m was sampled from a gamma distribution with

shape a and scale b. The selection coefficients in Joseph and Hall

(2004) are given by the ratio of exponential growth rates of the

mutant and wild-type strain, respectively, and following (Chevin,

2011) we compensated for the overestimation (factor ln(2)) of the

per generation selection coefficients in equations 3–5. Sampled

selection coefficients, s = sr ln(2), were inserted into equations 3–5

and rearranged to provide the mutation induced change in doubling

or lag time from the WT. For doubling time, the equation becomes

DTm
wt ¼

Twtsr
sr þ 1

(6)

DTm
wt is the change in doubling time when mutation m emerges as

the first mutation in a WT cell with doubling time Twt. In the very

rare cases where DTm
wt exceeded Twt � Twt,N, the value was trun-

cated. Negative epistasis was implemented in the form of diminish-

ing return of positive mutations. If the mutation m emerges in a cell

with genotype G and doubling time TG, the resulting change in

doubling time was modelled as

DTm
G ¼ TG�Twt;N

Twt � Twt;N
DTm

wt (7)

The capping of extreme effects and diminishing return of consecu-

tive positive mutations means that adapting cells asymptotically

approach WT growth in absence of arsenic. All empirical populations

followed this behaviour (Figs 1A and EV1), and there is strong

experimental support for a diminishing return of positive mutations

(Chou et al, 2011; Khan et al, 2011). We simulated models where

mutations affected only cell division time (population doubling time,

M1), cell division time (population doubling time), and time to the

first cell division (population lag time) with the same effect sign and

size (M2) and cell division time (population doubling time), and time

to the first cell division (population lag time) with random effect sign

and magnitudes (M3) using 500 mutation parameter sets based on

empirical values. These corresponded to full-factorial combinations

of the mutation rate (l5 ;
l
3 ; l; 3l; 5l, where the base mutation rate

l = 0.33 × 10�9 mutations/bp/division; Lynch et al, 2008), the frac-

tion of fitness-affecting mutations (y5 ;
y
3 ; y; 3y; 5y; where y = 0.034

(Hall et al, 2008), the fraction of fitness-affecting mutations that are

beneficial (z5 ;
z
3 ; z; 3z; 5z; where z = 0.13; Hall et al, 2008) and the

scale (b = 13.3, 20, 27.35, 33, 40, 47 min) of the effect size distribu-

tion. Thirty-three minutes corresponded to the reported empirical

value (Joseph & Hall, 2004). The shape of the effect size distribution

was kept constant at a = 2. We recorded population averages for

doubling times at the end of each batch cycle.

Data availability

Models are available as Code EV1 and can also be downloaded from

https://bitbucket.org/ajkarloss/yeast_sim. The SOLiD sequencing

data are accessible at EBI (http://www.ebi.ac.uk/ena/data/view/

PRJEB17740) with accession number PRJEB17740. The Illumina

sequencing data are accessible at NCBI (https://www.ncbi.nlm.

nih.gov/sra?term=SRP092403) with accession number SRP092403.

Expanded View for this article is available online.
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