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Abstract

Background: Formaldehyde crosslinking is in widespread use as a biological fixative for microscopy and molecular biology.
An assumption behind its use is that most biologically meaningful interactions are preserved by crosslinking, but the
minimum length of time required for an interaction to become fixed has not been determined.

Methodology: Using a unique series of mutations in the DNA binding protein MeCP2, we show that in vivo interactions
lasting less than 5 seconds are invisible in the microscope after formaldehyde fixation, though they are obvious in live cells.
The stark contrast between live cell and fixed cell images illustrates hitherto unsuspected limitations to the fixation process.
We show that chromatin immunoprecipitation, a technique in widespread use that depends on formaldehyde crosslinking,
also fails to capture these transient interactions.

Conclusions/Significance: Our findings for the first time establish a minimum temporal limitation to crosslink chemistry
that has implications for many fields of research.
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Introduction

Chemical crosslinking with formaldehyde and related reagents

is widely used to fix sub-cellular structures for microscopy and to

immobilise protein-DNA contacts for chromatin immunoprecip-

itation (ChIP [1–4]). Exposure of living cells to formaldehyde

results in covalent linkage with exposed amino and imino groups

(notably in lysine and arginine sidechains). This forms a Schiff’s

base that can participate in a second linkage, creating methylene

bridges between amino acids that were in close proximity (,2 Å)

in the native protein. Crosslinks between proteins and DNA and

RNA are also possible, for example via the amino group on

cytosine, though the difficulty in detecting these suggests that intra-

and inter-protein crosslinks are far more abundant [2].

An assumption behind the widespread use of crosslinking is that

the fixed structures accurately reflect molecular relationships in the

living cell. In the present study, we have found that this

assumption becomes invalid when intermolecular contacts are

short-lived. This limitation to formaldehyde crosslinking became

apparent via our studies of the methylated DNA binding protein

MeCP2, which associates in a DNA methylation-dependent

manner with heterochromatic foci in mouse cell nuclei [5,6]. A

series of mutants of the MeCP2 DNA binding domain fail to

localize to heterochromatin in fixed cells, but localize indistin-

guishably from wildtype protein when living cells are examined by

fluorescence microscopy. An equivalent discrepancy between

living and formaldehyde-treated cells was seen at the level of

ChIP, as the immunoprecipitated mutant proteins recovered little

DNA compared with wildtype protein. Using Fluorescence

Recovery After Photobleaching (FRAP), we showed that all

mutants residing in heterochromatin for less than 2.5 seconds on

average escape capture by crosslink chemistry and misleadingly

indicate lack of localization. Our findings indicate that there is a

minimum time required for formaldehyde fixation of protein DNA

interactions, below which interpretation of ChIP and microscopy

becomes problematical. This limitation to crosslinking as an

experimental tool is likely to be general.

Results

During a study of the dynamics of MeCP2 binding to chromatin,

we transfected Mecp2-null fibroblasts with constructs expressing a

range of mutant MeCP2 proteins fused to GFP. The mutations

affected the DNA binding domain and were initially identified as

causes of the neurological disorder Rett Syndrome [7]. As reported

previously [8], many of these mutations prevent the localization of

MeCP2 to densely methylated heterochromatic foci and give diffuse

staining in fixed cells (Figs. 1, left). Two mutants (T158M and D97E)

gave rise to a mixed population of punctate and diffusely stained

nuclei. Surprisingly, when live cells were observed, all of the mutants,

including those that showed diffuse nuclear staining in fixed cells,

gave punctate localization indistinguishable from wildtype (Fig. 1,

right). We conclude that the preferential heterochromatic localization

seen in vivo has not been fixed by formaldehyde crosslinking.
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Figure 1. Major differences in nuclear localisation of MeCP2-GFP in living versus paraformaldehyde-fixed mouse fibroblasts. All
MeCP2 mutants (labelled left) localized to nuclear foci corresponding to peri-centromeric heterochromatin in living cells, but many showed diffuse
nuclear staining in the same cells after paraformaldehyde-fixation.
doi:10.1371/journal.pone.0004636.g001
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Fluorescence Recovery After Photobleaching (FRAP) was used

to deduce the residence half-time (t50[S]) for each mutant protein

on heterochromatic foci. A single focus was bleached and the time

of taken for recovery of fluorescence due to replacement by

protein from outside the bleached area was measured. Wildtype

MeCP2 exchanged on average every ,15 seconds [9], whereas

most mutants showed reduced residence times [10]. When t50[S]

values were plotted against the percentage of nuclei showing

punctate staining, it emerged that all mutants showing diffuse

staining in fixed cells had a residence time of less than 2.5 seconds,

whereas all fully localized proteins had residence times in excess of

5.4 seconds (Fig 2A). Interestingly, the two partially localized

mutants had intermediate t50[S] values between 2.5 and

4 seconds. The results demonstrate an inverse relationship

between time spent bound to heterochromatin and the efficiency

with which this liaison could be chemically fixed.

Is the apparent delocalization of MeCP2 mutant forms that

have short chromatin residence times also seen at the level of

ChIP? To test this, NIH3T3 cells were transfected with the mutant

series, crosslinked with formaldehyde and sheared chromatin was

immunoprecipitated with an anti-GFP antibody. The efficiency of

recovery of major satellite DNA, which is the major component of

centromeric heterochromatin, corresponded closely with the

microscopy results (Fig. 2B). Mutants with a residence time of

5.4 seconds or more were efficiently immunoprecipitated, whereas

rapidly exchanging mutants gave significantly weaker signals. The

two mutants with residence times of 2.5–4 seconds showed

intermediate ChIP recovery. Once again there is a discrepancy

between the strong and consistent localisation of mutant MeCP2

to heterochromatin as seen by microscopy in vivo and the relatively

poor association that is detectable by ChIP.

Discussion

The results show that proteins which predominantly localize to

chromatin in living cells can seem weakly chromatin-associated by

both microscopy and ChIP if the rate of exchange between bound

and unbound protein is rapid. In the case of MeCP2, the threshold

above which formaldehyde fixation is effective corresponds to a

binding time of ,5 seconds. Comparable mutational series that

affect the duration of intermolecular binding have not been

identified for other proteins. As a result, it is not possible to

determine the generality of the 5 second threshold identified for

MeCP2. It is highly likely, however, that the ability to cross-link

other DNA binding proteins is also limited by the intrinsic

temporal constraints on crosslink chemistry. For example, the

dynamic association between glucocorticoid receptor and cognate

binding sites is refractory to formaldehyde crosslinking [11].

Photobleaching studies of the association between NF-kappaB and

an array of high affinity sites in vivo established exchange with a

t50[S] of ,1 s, which may also escape fixation with formaldehyde

[12]. These examples emphasise that many protein-DNA

interactions that are transient but biologically important would

probably escape detection by ChIP.

A potential explanation for our findings is that the fixation

reaction that covalently links MeCP2 to heterochromatic DNA

requires an average of 5 seconds of protein immobility to

complete. Wildtype MeCP2 remains bound for ,15 seconds [9]

and is therefore almost quantitatively cross-linked to chromatin. As

a result, the image of wildtype MeCP2 localisation by either

microscopy or ChIP accurately reflects reality. On the other hand,

mutants that dissociate from chromatin in less than 5 seconds fail

to undergo covalent crosslinking to chromatin and appear to be

predominantly nucleoplasmic by both assays. Solomon and

Varshavsky [2] found that purified DNA binding proteins were

indetectably crosslinked to DNA in vitro, suggesting that protein-

DNA crosslinks are far less frequent than inter- and intra-

molecular protein crosslinks. Formaldehyde-ChIP may therefore

depend upon topological trapping of DNA via crosslinking of

histones and associated proteins, rather than covalent linkages to

DNA itself. We propose that intramolecular protein crosslinking

involving sidechain amino groups and amide nitrogens of the

peptide bond can explain the apparent nucleoplasmic accumula-

tion of mutant MeCP2 molecules. Intramolecular crosslinking will

proceed in the presence of formaldehyde whether the protein is

chromatin bound or in a free unbound state. Eventually, we

Figure 2. Inverse relationship between MeCP2 residence time
on heterochromatin and the ability to crosslink this interaction
by formaldehyde. A) In vivo residence times on heterochromatin of
MeCP2 mutants were determined by FRAP. Mutants with a residence
time above 5 seconds were 100% localized in fixed cells, whereas those
with shorter residence times localized partially or not at all. B)
Immunoprecipitation of formaldehyde-crosslinked MeCP2 is inefficient
when the residence time is below 4 seconds. The mutants in order from
left to right in panels A and B are: R168X, R106W, R111G, D97E, T158M,
L100V, R133C and wildtype. Error bars on both axes correspond to
6standard deviation.
doi:10.1371/journal.pone.0004636.g002
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suggest, the accumulation of internal covalent linkages prevents

the unbound protein from associating again with DNA by locking

it in a rigid inert configuration.

The literature contains anomalies that can potentially be

explained by the inability of formaldehyde to fix transient

interactions. For example, the localisation of the nucleosome

binding proteins known as High Mobility Group proteins B and N

(HMGBs and HMGNs) during the cell cycle is controversial. Live

cell imaging shows that exogenous GFP-tagged HMGNs are

predominantly associated with chromatin during mitosis, but

images of fixed cells indicate that the proteins are dispersed

throughout the nucleoplasm at this stage [13,14]. It was shown

that HMGBs exchange dynamically with chromatin, but the

residence time was not determined. Based on the present findings,

we suggest that HMGBs associate with chromatin too transiently

for formaldehyde fixation to crosslink HMGN/B proteins in their

native chromatin-bound state.

A further discrepancy that might be attributable to failure of

formaldehyde fixation concerns the in vivo distribution of

chromatin binding sites for Polycomb Group (PcG) proteins.

Results using formaldehyde-ChIP technology were compared with

a study that used ‘‘DamID’’ to locate the sites. DamID involves

expression at approximately physiological levels of a fusion

between PcG and the Dam DNA methyltransferase. Recruitment

of PcG causes the DNA methyltransferase to covalently mark in

vivo DNA sites where PcG is bound. Over 60% of PcG-bound sites

detected by DamID were not detected by the ChIP studies. This

may be because the interaction of PcG with DNA is too transient

to be efficiently crosslinked by formaldehyde. Measurements of

PcG exchange rates on Drosophila polytene chromosome bands

indicated t50[S] values of 1–10 minutes, which is one to two orders

of magnitude longer than the minimum duration of binding

needed to fix MeCP2 [15]. It was notable, however, that the

majority of fluorescent PcG signal recovered in a few seconds after

bleaching. This was considered to reflect diffusion of unbound

PcG into the bleached area, but may correspond to a ‘‘fast’’

exchanging fraction in addition to the ‘‘slow’’ fraction that was

emphasised. A fraction of this kind may exchange with chromatin

too rapidly for capture by formaldehyde fixation.

Materials and Methods

Construction of plasmids
A his-tagged expression plasmid of wildtype MeCP2 fused to

EGFP wtMeCP2 was constructed by cloning a PCR amplified

EcoRI/BamHI fragment into the pEGFP-c1 vector as described

[16]. MeCP2 mutants were subsequently generated by site

directed mutagenesis using mismatch primers according to

manufacturer’s protocol (Stratagene). Primer sequences are

available on request. All constructs were verified by sequencing.

Cell culture and transfection
Mecp22/y fibroblasts [17] were cultured in DMEM supple-

mented with 10% FCS, glutamine and penicillin/streptomycin in

5% CO2 at 37uC. For photobleaching experiments, cells were

seeded onto 25 mm coverslips. Between 16 and 20 h before

starting the experiment, cells were transfected with GFP fusion

constructs using polyethylenimine according to manufacturers

protocol (JetPei, Qbiogene).

Photobleaching studies
For photobleaching studies, transfected cells were grown on

coverslips and 16–20 h after transfection and then mounted on a

Leica SP2 TCS AOBS confocal scanning microscope equipped

with a heated stage and an environmental CO2-chamber

(Incubator S, Pecon). FRAP was performed with the 453 nm,

488 nm, 496 nm and 513 nm lines of an argon-neon laser with a

nominal output of 8 mW using a 636 HCX PL Apo NA 1.4 oil

objective. Images with an acquisition time of 0.344 s were

collected before (10 images) and after (1000 images) bleaching a

spot of 4 mm2 for one second. Each independent transfection

experiment was performed in triplicate and 10–15 cells were

photobleached in each preparation. For imaging, the laser

intensity was attenuated to 4% of nominal output. The t50[S]

was calculated by using the formula t50[S] = t((F‘2F0)*0.5)2t(F0),

where F0 is the fluorescence minimum at t0 (first image after the

bleach) and F‘ is the fluorescence maximum at the end of the

measurement [18].

MeCP2 Localisation
For analysis of fixed material, transfected cells were grown on 8-

well slides and 16–20 h after transfection were washed 26 with

PBS and incubated with 4% paraformaldehyde for 10 minutes at

room temperature. After a further two washes with PBS,

preparations were mounted in Vectashield containing DAPI

(Vector Laboratories). MeCP2 localisation was determined by

counting 50–100 cells on each slide. For localization studies in

living cells, transfected cultures were maintained at 37uC and

incubated with 9 mM Hoechst33342 (Sigma) for 15 min before

acquiring images with a 405 nm diode laser and a 488 nm argon

laser using a 636 HCX PL Apo Na 1.4 oil objective on a Leica

SP2 confocal microscope. All experiments were performed in

triplicate.

ChIP for exogenously expressed GFP-MeCP2 fusions
NIH 3T3 cells were cultured and transfected as above.

Typically 26106 cells were trypsinized and pelleted at 330 g for

5 min at room temperature. The cells were washed in phosphate-

buffered saline (PBS) and then crosslinked in 1% formaldehyde in

PBS for 10 min at room temperature. The crosslinking was

stopped with the addition of glycine to 125 mM for 5 min at room

temperature. The cells were pelleted, washed in PBS, lysed in 1%

SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8.0 for 10 min on ice

and then diluted 1:10 in dilution buffer (1% Triton X-100, 2 mM

EDTA, 150 mM NaCl, 20 mM Tris-HCl pH 8.0). The chromatin

was sonicated for 3 min at 30% amplitude, using a digital sonifier

(Branson). Precipitated debris was removed by centrifugation at

16,000 g for 10 min at 4uC. Fragmented chromatin was pre-

cleared for 1 h at 4uC with tRNA/BSA/protein A sepharose

beads. Chromatin immunoprecipitations were performed using

2 mg Invitrogen anti-GFP A11122 antibody overnight at 4 C. We

chose to use the anti-GFP antibody rather than anti-MeCP2 to

avoid precipitation of endogenous MeCP2 in the transfected

mouse cells. To isolate the immunocomplexes, 50 ml of protein A

sepharose were added to the samples for 1 h at 4uC. The beads

were then washed once in buffer 1 (0.1% SDS, 1% Triton X-100,

2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl), four times in

buffer 2 (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 500 mM

NaCl, 20 mM Tris-HCl), once in buffer 3 (250 mM LiCl, 1% NP-

40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl) and three

times in TE buffer (10 mM Tris-HCl, 1 mM EDTA). Immuno-

complexes were eluted with 200 ml extraction buffer (1% SDS,

100 mM NaHCO3) and crosslinks were reversed by adding 5 M

NaCl to a final concentration of 300 mM and incubation at 65uC
overnight. DNA was phenol extracted, ethanol precipitated and

resuspended in 200 ml 0.16TE. Real-time PCR was carried out

with iQ SYBR Green Supermix (Bio-Rad) on an iCycler (Bio-Rad)

according to the manufacturer’s instructions using the following
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steps: 95uC 3 min denaturation, followed by 95uC for 30 s, 62uC
for 30 s, 72uC for 30 s for a total of 45 cycles. Major satellite was

amplified using primers: GGCGAGAAAACTGAAAATCACG;

AGGTCCTTCAGTGTGCATTTC. Chromatin samples were

also analysed by western blotting to verify comparable expression

of the transgenes (not shown). All experiments were performed in

triplicate using independent biological material.
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