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Abstract

Rice plant architecture affects biomass and grain yield. Thus, it is important to select rice

genotypes with ideal plant architecture. High-throughput phenotyping by use of an

unmanned aerial vehicle (UAV) allows all lines in a field to be observed in less time than with

traditional procedures. However, discrimination of plants in dense plantings is difficult, espe-

cially during the reproductive stage, because leaves and panicles overlap. Here, we devel-

oped an original method that relies on using UAV to identify panicle positions for dissecting

plant architecture and to distinguish rice lines by detecting red flags attached to panicle

bases. The plant architecture of recombinant inbred lines derived from Japanese cultivars

‘Hokuriku 193’ and ‘Mizuhochikara’, which differ in plant architecture, was assessed using a

commercial camera-UAV system. Orthomosaics were made from UAV digital images. The

center of plants was plotted on the image during the vegetative stage. The horizontal dis-

tance from the center to the red flag during the reproductive stage was used as the panicle

position (PP). The red flags enabled us to recognize the positions of the panicles at a rate of

92%. The PP phenotype was related to but was not identical with the phenotypes of the pan-

icle base angle, leaf sheath angle, and score of spreading habit. These results indicate that

PP on orthomosaics could be used as an index of plant architecture under field conditions.

Introduction

Phenotyping is important for the evaluation and selection of crop lines in breeding. Research-

ers evaluate various traits such as leaf water status, leaf color (chlorophyll content), the number

of culms, plant size and architecture, of each line in the field using the traditional procedures,

which are often labor- and time-consuming. On the other hand, recently developed high-

throughput phenotyping technologies have begun to be used for monitoring plant growth, dis-

ease occurrence and damage under abiotic stresses [1–4]. One of these technologies relies on

the use of unmanned aerial vehicles (UAVs), which are convenient and powerful tools for
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phenotyping of field crops[5]. By using aerial images obtained from UAVs, researchers can

evaluate the crop lines in larger experimental field with less time and labor-work than the tra-

ditional procedures. UAVs have a strong point to observe the whole plot rather than an indi-

vidual leaf and plant of lines, allowing to overcome individual phenotypic variability. Some

UAVs are commercially available with affordable price. These lead to time- and cost-saving for

phenotyping. Moreover, UAVs have an ability to take hundreds of images a flight and can

mount different types of cameras or sensors to take red-green-blue (RGB), multispectral,

hyperspectral, and thermal images, which can provide information on plant density, height,

water status, leaf temperature, and disease severity[1–10]. In particular, RGB images can be

relatively easily analyzed by user-friendly software such as Pix4D Mapper[11] and Metashape

(developed from PhotoScan)[6, 8]. Data from UAVs can be useful for the genetic analysis of

traits[7, 9, 10] and estimation of yield[12–15]. Therefore, high-throughput phenotyping using

UAVs may innovate breeding methods.

Plant architecture influences biomass and grain yield in crops; one of the best examples of

this came with the introduction of the semi-dwarf phenotype in the Green Revolution [16–

19]. But the same plant architecture generally has both advantages and disadvantages for crop

cultivation[20, 21]. Plants with a spreading habit cover furrows, inhibiting weed growth

through shading, but they cover a large area, limiting the number of plants that can be grown

in a field. In rice, there is a risk that panicles contact the wet ground, reducing grain quality

because of preharvest sprouting. Conversely, plants with a compact habit and erect leaves can

be grown densely, increasing yield [22] possibly by increasing light capture ability especially at

high latitude. However, compact habit may increase the risk of competition with weeds and

neighboring plants. When these risks and benefits are balanced, the most appropriate plant

types should differ among crops and production regions. Although plant architecture is geneti-

cally controlled [7, 10, 16–23], plants often adapt it to field conditions [24–26]. Therefore,

plant architecture should be investigated in production fields.

Panicle position (PP) is one of the determinants of plant architecture and may be an impor-

tant trait for determining the optimal distance between plants in a rice cultivation field and for

preventing panicles from touching the wet ground. To make breeding more efficient, PP could

be evaluated by UAV, but individual plants are indistinguishable, especially during the repro-

ductive stage, in densely planted rice fields. To identify the PP of individual rice plants in UAV

images, we attached red flags to the panicle bases, identified the flags in an orthomosaic derived

from UAV images, and calculated PP as a measure of plant architecture. To reveal what PP

relates to as an indicator, we compared it with other traits including leaf sheath angle (LSA),

panicle base angle (PBA), and score of spreading habit (SSH) evaluated by eye in the field.

Materials and methods

Cultivation of RILs and parental cultivars

The members of the Institute of Crop Science, the National Agricultural Research Organiza-

tion (NARO) previously developed recombinant inbred lines (RILs) from ‘Hokuriku 193’

(HO) and ‘Mizuhochikara’ (MI) by single seed descent and named them HOMI-RILs [27]. We

examined 81 HOMI-RILs (F8) and the parental cultivars for this study.

Seeds soaked in water at 28˚C for 2 days were sown in trays filled with soil on 16 April 2018

and incubated at 30˚C in the dark for 2 days. Seedlings were grown in a paddy field in the Kan-

nondai District in Tsukuba (Japan) and were covered with thin plastic film to protect them

from the cold. On 16 May, we transferred 33 seedlings per line (11 plants 18 cm apart × 3 rows

30 cm apart, no replicates) to another paddy field in the Kannondai District and grew them

according to standard procedures at the NARO in Tsukuba.
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Location of the Kannondai District is shown in Fig 1. The map was made with ArcGIS soft-

ware (ESRI Japan, Tokyo, Japan). The meteorological data (S1 Table) were obtained from the

Weather Data Acquisition System of the Institute for Agro-Environmental Sciences, NARO

[28].

Field observation by unmanned aerial vehicle

Phantom 4 Pro (P4P; DJI, Shenzhen, China), a small UAV released in 2016, was used for tak-

ing aerial photographs (S1 Fig). The P4P’s digital camera has a 1-inch 20-megapixel comple-

mentary metal-oxide semiconductor (CMOS) sensor (valid pixels only), and provides an

84-degree field of view. The UAV automatically flew above the field where the 81 HOMI-RILs

and parental cultivars were grown. The flight pattern and image capture were controlled by

DJI GS Pro software on a tablet computer (iPad mini 4, Apple, Cupertino, CA, USA). Two

aerial surveys of 9 min each were conducted from 8 to 9 am: on 18 June (235 images; vegetative

stage, before heading) and 20 September (238 images; reproductive stage, after heading).

The DJI GS Pro software and the camera used the following settings: capture mode, time

interval; speed, 1.0 m/s; altitude, 10.3 m; front overlap ratio, 80%; side overlap ratio, 79%; gim-

bal pitch angle, −90˚, image size, 3:2 (5472 × 3648 pixels); image format, JPG; white balance,

cloudy; aperture, auto; shutter, auto; exposure compensation value, −1. To set the focus, the

P4P was manually raised to 10 m, the camera was focused automatically on a region of the can-

opy on the iPad, and then the focus mode was changed to manual.

Before the first aerial survey, we painted black and white markers at 8 points on paved sur-

faces surrounding the field as ground control points (GCPs), and precisely measured the lati-

tude, longitude, and altitude of each point with a TCRP1205 surveyor (Leica, Heerbrugg,

Switzerland).

Fig 1. Location of our paddy field, the Kannondai District in Tsukuba (Japan). Location of the Kannondai District

marked with a star.

https://doi.org/10.1371/journal.pone.0224386.g001
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Mapping and calculation of PP in an orthomosaic derived from aerial

images

We used Agisoft PhotoScan Professional v. 1.4.3 software (Agisoft, St. Petersburg, Russia) to

generate an orthomosaic from each set of aerial images in the following steps: (1) align photos

(accuracy, high), (2) input GCPs, (3) build mesh (surface type, height field; source data, sparse

cloud), (4) build digital elevation model (DEM; source data, sparse cloud), (5) calibrate colors

(source data, model; calibrate white balance, no), (6) build orthomosaic (surface DEM; blend-

ing mode, mosaic). The orthomosaics used in this study are shown in S2 and S3 Figs.

The orthomosaics were imported into ENVI v. 5.5 remote sensing software (Harris Geospa-

tial, Boulder, CO, USA). The map projection was converted to UTM zone 54N (WGS-84) with

a 2-mm/pixel resolution. The converted image was rotated by 66˚ clockwise to match the

long-side direction of the test field with the lateral direction of the final output image. Then

the image was cropped to a rectangle (28 000 × 14 000 pixels) including the field and the 8

markers to minimize the file size and thus processing time.

To identify the positions of panicles in individual plants, we attached flags to the panicle

bases. By comparing colors, materials, and sizes (S2 Table), we chose 4.5-cm × 4.5-cm red felt

flags (Fig 2A–2E). If a plant had more than 8 panicles, we fixed the red flags to 8 panicles; oth-

erwise, we fixed the flags to all panicles. We fixed the flags at the panicle base of every third

plant in the middle row of a plot to show PP (Fig 2F) on 18 September, and took images using

the UAV on 20 September. The center of plants during the vegetative stage and the position of

the red flags during the reproductive stage were plotted by eye in ENVI 5.5 (Fig 3). Average

horizontal distance between paired points was used as PP.

Assessment of plant spreading habit at maturity

PBA and LSA were measured with a laser range finder (GLM 50 C, Bosch, Gerlingen, Ger-

many) in the field. SSH was evaluated by eye in the field on a scale of 1 (compact) to 5 (spread-

ing), before the red flags were attached.

Principal component analysis

Data of LSA, PBA, SSH, and PP in HOMI-RILs were used for principal component analysis

(PCA) of principal components (PCs) 1 to 4 in R version 3.3.3 software (https://www.r-

project.org/) for quantitative trait locus (QTL) analysis.

Measurement of yield traits

For measurement of panicle weight (PW, g) and stem + leaf weight (SLW, g), shoots of mature

plants were dried for over a month in a drying room and cut 3 cm below the panicle base to

separate the parts. For measurement of fertilized-grain weight (GW, g) per plant, all grains

were removed from panicles, and awns, rachis branches, and unfertilized grains were removed

using a PS-100 system with a vacuum cleaner (PSS, Ishinomaki, Japan). Grain number (GN)

was counted with a Waver IC-VA counter (Aidex, Nagoya, Japan). The 1000-grain weight

(TGW, g) was based on 500 grains. Days to heading (DTH) was calculated from sowing to the

day when 6 of the 11 plants in the middle row had headed. Culm length (CL, cm) from ground

to panicle base, panicle length (PL, cm) from panicle base to panicle tip of the longest culm,

and panicle number (PN) were recorded in the field from 2 weeks to a month after heading.

Panicle weight per panicle (PWPP, g), grain weight per panicle (GWPP, g), and grain number

per panicle (GNPP) were calculated as PW, GW, and GN divided by PN.
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QTL analysis

Genotype data of 163 indel markers (S1 File) and phenotype data of HOMI-RILs were used for

QTL analysis. Following PCR with a KAPA2G Fast PCR kit (Roche, Basel, Switzerland) and

DNA electrophoresis in 3% agarose gel, we constructed genetic maps in MAPMAKER/EXP v.

Fig 2. Red flags attached to panicle bases. (A) A square of red felt (4.5 cm × 4.5 cm) was cut from one corner to the center by scissors and (B)

stapled around (C) a panicle base. (D, E) The spread of the red flags on the panicles depended on the HOMI-RIL (photographed from above). (F)

The red flags were attached to every third plant in the middle row. This orthomosaic was made from photographs taken on 20 September 2018.

The black lines delineate the HOMI-RILs.

https://doi.org/10.1371/journal.pone.0224386.g002
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3.0b software[29]. QTL analysis was performed by composite interval mapping in QTL Car-

tographer v. 2.5 software[27], and the threshold was calculated from 1000 permutations.

Sequencing of TAC1
The sequences of Tiller Angle Control 1 (TAC1) alleles in HO and MI were determined from

short-read Illumina resequencing data [27, 30]. The sequences are shown in S2 File.

Results and discussion

Characteristics of HOMI-RILs

‘Hokuriku 193’ (HO) and ‘Mizuhochikara’ (MI) are high-yielding semi-dwarf cultivars grown in

Japan that differ in plant architecture. HO has a spreading habit with inclined culms and leaves,

and MI has a compact habit with vertical culms and leaves (Fig 4A). Resequencing analysis iden-

tified HO as indica and MI as japonica [27]. HO had a lower PN than MI but a longer PL and

CL, which may be responsible for its higher GN and GW (S4 Fig). The LSA and PBA were sig-

nificantly lower in HO than in MI (S5 Fig). The difference in the plant architecture motivated us

to develop and evaluate HOMI-RILs derived from them. The phenotypic distributions of LSA,

PBA, SSH, and PP in the HOMI-RILs segregated beyond those of the parents (Fig 4B).

PP detected in orthomosaic as a new index of plant architecture

We characterized PP because this index is obtained from our original method using the UAV

systems and may have a potential to understand plant architecture in the field. We examined

Fig 3. Detection of plant centers in orthomosaics at (A) vegetative stage and (B) reproductive stage. (A) The images were viewed in ENVI software and

the position of the centers selected by eye were recorded using the software (left, before; right, after selection). (B) The positions of the red flags were selected

by eye in ENVI software, and the average distance from the center to the red flags was calculated as PP.

https://doi.org/10.1371/journal.pone.0224386.g003
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how often the red flags are found in the orthomosaic of the 81 HOMI-RILs and parents during

the reproductive stage. As a result, 92% (591/643) of the red flags were detected. We could

mark the position of all the center of plants in the orthomosaic during the vegetative stage. As

described in the Material and method, we calculated horizontal distance between the red flags

and the center of the plants for obtaining values of PP. These results indicated that our method

can provide data with a high probability.

Fig 4. Plant spreading habit of HOMI-RILs. (A) ‘Hokuriku 193’ (HO) and ‘Mizuhochikara’ (MI) at reproductive stage.

(B) Histograms of LSA, PBA, SSH and PP. The width of the values corresponding to each bar is 3 (LSA), 11 (PBA), 1

(SSH) and 4 (PP). Arrows indicate parental values.

https://doi.org/10.1371/journal.pone.0224386.g004
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To understand what this index is like, we characterized PP as a phenotype related to spread-

ing habit. We first compared it with LSA, PBA, and SSH in the HOMI-RILs (Fig 5). The corre-

lation between PBA and SSH was the greatest (R = −0.83), implying that the researcher who

scored SSH paid more attention to PBA than to LSA. The correlations between the three indi-

ces and PP were not as strong, although they were all significant (P<0.001); that between PP

and PBA was the greatest (R = −0.60). This result may be expected because both PP and PBA

are related to panicle, whereas LSA is measured on leaf sheaths hidden from above. These

results indicate that PP is an index similar to LSA, PBA, and SSH, but measures a different

aspect of plant architecture.

Next, we characterized the genetics of PP by performing QTL analysis with the data on PP,

LSA, PBA, and SSH in the HOMI-RILs (Table 1) and PCs obtained from PCA on the data (S3

Table). QTL analysis revealed several loci for the indices (Table 1). QTLs with the highest LOD

for PP (qPP9), LSA (qLSA9), PBA (qPBA9-1, 2), SSH (qSSH9), and PC1 (qPC1_9) were

detected at Indel_544 (20.5 Mb) or Indel_577 (22.9 Mb) on chromosome (Chr.) 9. This com-

monality supports the similarity of PP to the other indices. Tiller Angle Control 1 (TAC1,

Os09t0529300), at 20.7 Mb on Chr. 9, regulates rice tiller angle [31]. Analysis of the TAC1
sequence in HO and MI (S2 File) revealed that the MI allele is the same as the japonica Nip-

ponbare allele, which produces compact plants, and the HO allele is a typical indica allele, lead-

ing to a spreading habit. This result indicates that TAC1 is a candidate gene for qPP9, qLSA9,

qPBA9-1, 2, qSSH9, or qPC1_9. In contrast, the other QTLs for plant architecture did not show

commonality with the indices. These QTLs may be responsible for the differences among PP,

LSA, PBA, SSH, and PCs as indices of plant architecture.

Fig 5. Relationships between PP and related data. (A) Pearson correlation coefficients. All correlations were significant (P< 0.001).

(B) Scatter plots of PP against PBA, LSA, and SSH. Fitted lines are green.

https://doi.org/10.1371/journal.pone.0224386.g005
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Relationships between spreading habit and yield traits in HOMI-RILs

QTL analysis of yield traits identified QTLs for DTH, PL, PN, PW, SLW, CL, TGW, PWPP,

GWPP and GNPP (Table 1), but not for GW or GN. Comparison with previously identified

QTLs and genes revealed some candidates: NAL1 for PN [32, 33], Ehd1 for DTH [34], qIN3-6
for CL [35], and qPL-6 for PL [35].

To determine whether plant spreading habit is related to yield traits in HOMI-RILs, we

examined the relationship between indices of spreading habit and QTLs for yield traits. No

QTLs for yield traits were detected in the TAC1 region. We could not find studies of the effect

of TAC1 on traits other than tiller angle. On the other hand, qSSH6-1 and qPC1_6 were co-

localized with qCL6, and the allelic effect on CL differed between HO and MI, suggesting that

a longer culm leads to a greater spreading habit. qPP11 was localized near QTLs for PWPP,

GWPP, and GNPP; a possible explanation is that heavier panicles with more grains may spread

Table 1. QTL analysis of traits related to spreading habit (in bold) and yield in HOMI-RILs.

Trait Name of QTLs Chr. Closest markers Mba LOD AE(%)b R2 c Candidate genes or QTLs

Days to heading qDTH1-1 1 Indel_10 3.2 5.5 2.42 0.18 -

Days to heading qDTH1-2 1 Indel_14 5.7 4.2 2.96 0.25 -

Grain number per panicle qGNPP2 2 Indel_92 2.4 3.3 7.56 0.12 -

Panicle length qPL2 2 Indel_139 23.8 4.6 0.95 0.17 -

PC3 of PCA qPC3_3 3 Indel_155 4.2 3.0 0.24 0.16 -

Panicle length qPL3 3 Indel_165 9.3 3.3 -0.73 0.10 -

Grain number per panicle qGNPP3 3 Indel_762 25.3 3.7 8.01 0.14 -

Panicle weight qPW4 4 Indel_271 30.5 3.5 -3.13 0.13 -

Panicle number qPN4-1 4 Indel_271 30.5 7.4 -1.49 0.26 NAL1
Panicle number qPN4-2 4 Indel_276 33.4 5.1 -1.48 0.25 NAL1

Stem and leaf weight qSLW5-1 5 Indel_322 22.6 7.2 -5.87 0.32 -

Stem and leaf weight qSLW5-2 5 Indel_324 23.7 7.0 -5.94 0.34 -

Scores of spreading habit qSSH6-1 6 Indel_386 24.5 4.3 -0.47 0.19 -

Scores of spreading habit qSSH6-2 6 Indel_805 26.0 4.3 -0.33 0.09 -

PC1 of PCA qPC1_6 6 Indel_805 26.0 3.5 0.44 0.06 -

Culm length qCL6 6 Indel_805 26.0 10.0 -5.39 0.34 qIN3-6
Panicle length qPL6 6 Indel_392 28.0 3.6 -0.82 0.12 qPL-6
Culm length qCL7 7 Indel_437 18.8 3.5 -3.07 0.10 -

Panicle position qPP9 9 Indel_544 20.5 6.3 -2.55 0.26 TAC1
Panicle base angle qPBA9-1 9 Indel_544 20.5 3.3 5.32 0.12 TAC1
Leaf sheath angle qLSA9 9 Indel_544 20.5 14.2 3.13 0.49 TAC1

Scores of spreading habit qSSH9 9 Indel_544 20.5 14.6 -0.70 0.39 TAC1
PC1 of PCA qPC1_9 9 Indel_544 20.5 14.8 1.09 0.38 TAC1

Panicle base angle qPBA9-2 9 Indel_547 22.9 6.5 7.19 0.25 TAC1
Days to heading qDTH10 10 Indel_584 16.9 3.6 2.09 0.11 Ehd1

Thousands grain weight qTGW10 10 Indel_586 17.3 5.2 -1.01 0.20 -

Panicle weight per panicle qPWPP11 11 Indel_636 21.3 4.4 -0.24 0.23 -

Grain weight per panicle qGWPP11 11 Indel_636 21.3 3.2 -0.21 0.18 -

Grain number per panicle qGNPP11 11 Indel_636 21.3 3.9 -9.62 0.20 -

Panicle position qPP11 11 Indel_648 25.6 3.5 -2.05 0.11 -

a Physical positions of the closest markers to LOD peaks.

b Additive effect of alleles of MI in each population.

c Percentage of the phenotypic variance explained by each QTL.

https://doi.org/10.1371/journal.pone.0224386.t001
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more. These results suggest that observation of plant architecture using various methods can

provide insights into the relationship between plant architecture and yield traits.

Conclusions

We developed a new method to identify the positions of panicles in individual plants in the

field by a commercial camera-UAV. Our method does not need highly specialized facilities or

expensive cameras, yet it has high sensitivity for the detection of PP, and is cost-effective, as

the red felt and staples cost very little. We detected plant centers in orthomosaic during the

vegetative stage to calculate the distance to the flags from the center because it was hard to find

the center during the reproductive stage. This technique has been made possible by the devel-

opment of remote-sensing technology, image analysis, and global positioning system (GPS)-

based surveying. The phenotype of PP was similar to but not identical to the phenotypes of

LSA, PBA, and SSH; PP is another index of plant architecture in the field. We expect our

method to be useful for time-lapse analysis to understand how PP changes over time and is

affected by wind, which would provide information on lodging resistance at maturity. PP phe-

notyping will help in selection during breeding of new cultivars. The integration of genetic

analyses with these phenotypes may help to clarify the relationship between plant architecture

and crop productivity.

Supporting information

S1 Fig. UAV and the control system used in this study. Phantom 4 Pro (left), the controller

with iPad (right) are shown (the grey box behind them is used for their storage).

(TIF)

S2 Fig. Orthomosaic of the rice paddy field on 18 June 2018. The orthomosaic was made

with 235 digital images taken by our UAV system. Eight points outside the field were used as

GCPs to produce the orthomosaic.

(TIF)

S3 Fig. Orthomosaic of the rice paddy field on 20 September 2018. The orthomosaic was

made with 238 digital images taken by our UAV system. Eight points outside the field were

used as GCPs to produce the orthomosaic.

(TIF)

S4 Fig. Yield traits of HO and MI RILs. Panicle number (PN), panicle length (PL), and culm

length (CL) were assessed from 2 weeks to a month after heading. Panicle weight (PW) was

measured after drying. Fertilized grains were isolated from panicles, and grain number (GN)

and grain weight (GW) were assessed. Data are means ± standard deviations. �P< 0.05,
��P< 0.01 (Student’s t-test, n = 5).

(TIF)

S5 Fig. Measurement of (A) LSA and (B) PBA with a laser range finder. Data are

means ± standard deviations. Both angles were significantly different between parents

(�P< 0.01, Student’s t-test, n = 5).

(TIF)

S1 Table. Meteorological data of the Kannondai District in Tsukuba. Monthly air tempera-

ture, relative humidity, sunshine duration, solar radiation, and total precipitation in 2018. The

data was extracted from the Weather Data Acquisition System of the Institute for Agro-Envi-

ronmental Sciences, NARO.

(TIF)
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S2 Table. Evaluation of color, material, and optimum size of a flag. Bold indicates our final

selection. Red was easiest to distinguish from the many senescent yellow leaves and dark green

leaves. Narrow polyvinyl chloride (PVC) tape was hard to see as it hung vertically, and hard

plastic sheets were difficult to fix to the panicle bases. Soft felt proved easiest to handle and

attach. Squares (4.5 cm × 4.5 cm) balanced visibility beneath leaves with not overlapping one

another.

(TIF)

S3 Table. Principal component analysis of PP, PBA, LSA, and SSH of HOMI-RILs.

(TIF)

S1 File. Positions and primer sequences of DNA insertion-deletion (indel) markers used

for QTL analysis in HOMI-RILs.

(XLSX)

S2 File. TAC1 allele sequences of HO and MI. The MI allele of TAC1 is the same as in Nip-

ponbare. The HO allele of TAC1 has the single nucleotide polymorphism (SNP) for spreading

habit reported in Yu et al. (2007). The position of the mutation is shown in red.

(DOCX)
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